Umberto Castellani
Strada le grazie, 15
Strada le grazie, 15
37134 Verona, Italy
+39 045 8027988 Sources
Tutorial on Diffusion Geometry in Shape Analysis
Over the last decade, the intersections between 3D shape analysis and image processing have become a topic of increasing interest in the computer graphics community. Nevertheless, when attempting to apply current image analysis methods to 3D shapes (feature-based description, registration, recognition, indexing, etc.) one has to face fundamental differences between images and geometric objects. Shape analysis poses new challenges that are non-existent in image analysis. The purpose of this tutorial is to overview the foundations of shape analysis and to formulate state-of-the-art theoretical and computational methods for shape description based on their intrinsic geometric properties. The emerging field of diffusion geometry provides a generic framework for many methods in the analysis of geometric shapes and objects. The tutorial will present in a new light the problems of shape analysis based on diffusion geometric constructions such as manifold embeddings using the Laplace-Beltrami and heat operator, heat kernel local descriptors, diffusion and commute-time metrics.
We appreciate if you cite this tutorial: "Diffusion Geometry in Shape Analysis", by Alex Bronstein, Umberto Castellani, and Michael Bronstein, Eurographics tutorial 2013 (bib).
Tutorial on Diffusion Geometry in Shape Analysis
Over the last decade, the intersections between 3D shape analysis and image processing have become a topic of increasing interest in the computer graphics community. Nevertheless, when attempting to apply current image analysis methods to 3D shapes (feature-based description, registration, recognition, indexing, etc.) one has to face fundamental differences between images and geometric objects. Shape analysis poses new challenges that are non-existent in image analysis. The purpose of this tutorial is to overview the foundations of shape analysis and to formulate state-of-the-art theoretical and computational methods for shape description based on their intrinsic geometric properties. The emerging field of diffusion geometry provides a generic framework for many methods in the analysis of geometric shapes and objects. The tutorial will present in a new light the problems of shape analysis based on diffusion geometric constructions such as manifold embeddings using the Laplace-Beltrami and heat operator, heat kernel local descriptors, diffusion and commute-time metrics.
We appreciate if you cite this tutorial: "Diffusion Geometry in Shape Analysis", by Alex Bronstein, Umberto Castellani, and Michael Bronstein, Eurographics tutorial 2013 (bib).