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Abstract. In POPL’00, Cousot and Cousot showed that the classical
state-based model checking of a very general temporal language calledx?
µ -calculus is an incomplete abstract interpretation of its trace-based se-
mantics. In ESOP’01, Ranzato showed that the least refinement of the
state-based model checking semantics of the

x?
µ -calculus which is complete

w.r.t. its trace-based semantics exists, and it is essentially the trace-
based semantics itself. The analogous problem in the opposite direction
is solved by the present paper. First, relatively to any incomplete tem-
poral connective of the

x?
µ -calculus, we characterize the structure of the

models, i.e. transition systems, for which the state-based model checking
is trace-complete. On this basis, we prove that the unique abstraction of
the state-based model checking semantics of the

x?
µ -calculus (actually, of

any fragment allowing conjunctions) which is complete w.r.t. the trace-
based semantics is the straightforward semantics carrying no information
at all. The following consequence can be drawn: there is no way to either
refine or abstract sets of states in order to get a model checking algo-
rithm for (any fragment allowing conjunctions of) the

x?
µ -calculus which

is trace-complete.

1 Introduction

The standard state-based model checking problem consists in characterizing the
set of all the states of a transition system, modelling some reactive system,
that satisfy a given temporal specification φ. φ is defined within some tem-
poral logic language and specifies the required temporal properties of the sys-
tem to be verified [7, 16]. This model checking procedure must collect all the
states s of the model M such that all the possible executions (in the existen-
tial checking: “there exists one execution”) in M departing from s satisfy φ:
{s ∈ State | M, s |=state φ}, where |=state is used to emphasize the state-based
semantics of temporal formulae (i.e., the semantics of a temporal formula is a
set of states). Although model checking systems are state-based, i.e. they solve



the above state-based model checking problem, semantics of temporal calculi
can be also naturally given in terms of sets of execution traces, i.e. sequences of
states distributed along a discrete time-line. Obviously, traces are much richer
than states, and, as advocated by Cousot and Cousot [11] in their approach to
model checking, the natural semantics of a temporal formula should be a set
of execution traces. Nevertheless, for obvious pragmatic reasons of efficiency,
model-checkers handle and observe states only, i.e., they abstract away from
traces observing states. This abstraction is the subject of this paper. A far more
concrete model checking problem can then be formulated for traces: the seman-
tics of a temporal formula is a set of traces, and M, s |=trace φ means that all
the traces in M with present state s satisfy φ, i.e. belong to the semantics of
φ. It should be clear that trace-based model checking is strictly more precise,
but it is obviously unfeasible to design a practical model checking algorithm for
system verification handling sets of traces. It is not clear however whether it is
possible to find some approximation of the trace-based model checking problem
which can be solved starting from the state-based model checking with no loss
of precision, namely this approximate checking should be logically equivalent to
the trace-based checking. More precisely, the paper answers the following ques-
tion: is it possible to minimally refine or abstract the state-based semantics of a
general temporal calculus so that this induces a corresponding model checking
which is trace-complete, i.e. logically equivalent to the trace-based model check-
ing? In our approach, refinements and abstractions of a semantics are intended
to be expressed by standard abstract interpretation. As far as refinements are
concerned, the negative answer has been given by Ranzato [17]: the only se-
mantic refinement of the state-based semantics inducing a trace-complete model
checking is the trace-based semantics itself. This paper faces with the remaining
question and also in this case reports a negative answer: there exists no trace-
complete abstraction of the state-based semantics but for the trivial semantics
carrying no information at all. Thus, summing up, this result shows that states
are, so to say, “intrinsically trace-incomplete”, since there is no way to get a
trace-complete model checking by modifying by refinement or by abstraction
the state-based semantics.

The Scenario. This result is formulated and shown within the Cousot and
Cousot’s [11] abstract interpretation approach to model checking. In POPL’00,
Cousot and Cousot proposed a general framework, called temporal abstract in-
terpretation, introducing an enhanced temporal calculus, called

x?
µ -calculus and

inspired by Kozen’s µ-calculus, with a trace-based semantics, and hence featuring
a trace-based model checking. The state-based model checking is then specified
as an abstract interpretation of the trace-based model checking. The trace-based
semantics of the

x?
µ -calculus is time-symmetric: this means that execution traces

have potentially infinite length both in the future and in the past. This time-
symmetry is not the only new feature of the

x?
µ -calculus. The

x?
µ -calculus also

provides a tight combination of linear- and branching-time, allowing to derive
classical specification languages like CTL, CTL∗, and Kozen’s µ-calculus itself,
as suitable fragments.

2



One of the main achievements of Cousot and Cousot’s paper [11] is that state-
based model checking has been reduced to an abstract interpretation of the trace-
based semantics of the

x?
µ -calculus. The semantics [[φ]]trace of a temporal specifica-

tion φ is the set of traces of a transition system M making φ true. Coherently with
the state-based model checking problem, the state-abstraction α∀M abstracts a set
of traces [[φ]]trace to the set of states of M such that any execution of M depart-
ing from s satisfies the formula φ: α∀M ([[φ]]trace) = {s ∈ State | M, s |=trace φ},
where M, s |=trace φ means that all the traces in M with present state s are
in [[φ]]trace . This abstraction α∀M induces a state-based semantics [[·]]state for thex?
µ -calculus which is sound by construction with respect to the trace semantics:
for any temporal formula φ, [[φ]]state ⊆ α∀M ([[φ]]trace). As proved in [11], this in-
clusion may be strict, namely the state-based model checking of the

x?
µ -calculus

is trace-incomplete. This means that there exists some formula φ and state s of
the system such that M, s |=trace φ (viz., s ∈ α∀M ([[φ]]trace)), while M, s6|=stateφ
(viz., s 6∈ [[φ]]state). This incompleteness means that the semantics [[·]]state used
for designing and proving preserving or even strongly preserving properties of
most state-based model checking algorithms is incomplete w.r.t. traces. The same
holds even for abstract model checking [5, 7, 12, 15], where the abstraction map
actually is a state-abstraction and can be modeled as a further abstract inter-
pretation step of [[·]]state [11, 14]. It is therefore important in order to understand
the limits of state-based (concrete or abstract) model checking with respect to
properties of traces, to investigate whether it is possible to find a semantics [[·]]?
as a refinement or abstraction of [[·]]state which is complete for the trace-based
semantics [[·]]trace .

The Main Result. Ranzato [17] proved that any refinement of the state-based
model checking, i.e. which can be obtained by refining the abstraction α∀M , is still
incomplete with respect to the trace-based semantics of the full

x?
µ -calculus. This

means that the most abstract semantics which is trace-complete and includes
the state-based semantics, is the trace-based semantics itself. This shows that
there is no way to enhance state-based model checking to get completeness for
traces unless having traces themselves in the model. In this paper we consider
the symmetrical situation: instead of refining the state-based model checking
abstraction α∀M , we are interested in isolating those abstractions of α∀M which
are trace-complete, namely no loss of precision is introduced in the verification
by using a state-based model checker with respect to check the same property
on the trace-based semantics.

The fact that completeness can be achieved not only by refining abstract
domains but also by abstracting them should not be surprising. In this case the
abstraction is intended to remove from the abstract domain the source of poten-
tial incompleteness in such a way that the resulting domain contains the largest
amount of information in order to let completeness be achieved. Consider for
instance the abstract domain Sign+ = {Z, [0,+∞], [−∞, 0], [0, 10], [0]}. This do-
main is not complete for integer multiplication: for example, 2×2 is approximated
in Sign+ by [0, 10] while the abstract multiplication ⊗ in Sign+ of the same ex-
pression [0, 10] ⊗ [0, 10] is [0 +∞]. However, Sign = {Z, [0,+∞], [−∞, 0], [0]},
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which is an abstraction of Sign+, turns out to be complete for multiplication, i.e.
abstract multiplication can be performed with no loss of precision with respect
to the approximation of the concrete multiplication. Sign is the most concrete
domain which abstracts Sign+ and it is complete for multiplication: this is called
the core of Sign+ (see [13] for details). The core of Sign+ removed the abstract
value [0, 10], which was the unique source of incompleteness.

We first characterize the structure of transition systems for which the state-
based model checking is complete for the basic modalities predecessor, time-
reversal, and conjunction of the

x?
µ -calculus. In particular, conjunction turns out

to be the crucial connective: in fact, the core of the state-based model checking
for the conjunction is the straightforward abstraction of states carrying no in-
formation at all. On the basis of this fact, we prove that, for any fragment of
the

x?
µ -calculus allowing arbitrary conjunctions, the straightforward abstraction

is the unique abstraction of the state-based model checking which induces a cor-
responding model checking which is complete for the trace-based semantics. This
result, together with the one proved by Ranzato [17], shows that there is no way
to get a complete approximation of the trace-based semantics by either refining
or approximating the state-based model checking, emphasizing the intrinsic lim-
its of the precision of state-based model checking with respect to the trace-based
semantics of the

x?
µ -calculus. This proves that state-based model checking cannot

be used as an economic way to prove properties of traces in a complete way. In
particular, since abstract model checking can be viewed as abstract interpreta-
tion of [[·]]state (cf. [11]), this also implies that there is no abstraction α of states
(unless it is the straightforward abstraction) such that no loss of precision occurs
by considering the abstract model checking [[·]]α(state) with respect to α([[·]]trace).
Otherwise stated, any abstract model checking is intrinsically incomplete with
respect to the trace-based semantics of the

x?
µ -calculus.

2 Abstract interpretation and model checking

2.1 Abstract interpretation basics

The structure 〈uco(C),v,t,u, λx.>, λx.x〉 denotes the complete lattice of clo-
sure operators on a complete lattice 〈C,≤,∨,∧,>,⊥〉, where ρ v η iff ∀x ∈
C. ρ(x) ≤ η(x). Throughout the paper, for any ρ ∈ uco(C), we follow a stan-
dard notation by denoting the image ρ(C) simply by ρ itself: This does not give
rise to ambiguity, since one can readily distinguish the use of ρ as function or
set according to the context. Let us recall that (i) each closure ρ ∈ uco(C) is
uniquely determined by the set of its fix-points, which coincides with its image,
i.e. ρ = {x ∈ C | ρ(x) = x} and (ii) ρ v η iff η ⊆ ρ.

Within the standard Cousot and Cousot framework, abstract domains can be
equivalently specified either by Galois connections/insertions (GCs/GIs) or by
closure operators [10]. In the first case, concrete and abstract domains C and A —
for simplicity, these are assumed to be complete lattices — are related by a pair of
adjoint functions α : C → A and γ : A→ C, compactly denoted by (α, C,A, γ),
and therefore C and A may consist of objects having different representations.
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In the second case, instead, an abstract domain is specified as a closure operator
on the concrete domain C (this closure could be also given by means of its set
of fix-points). Given a concrete domain C, we will identify uco(C) with the so-
called complete lattice LC of abstract interpretations of C (cf. [9, Section 7] and
[10, Section 8]). The ordering on uco(C) corresponds precisely to the standard
order used in abstract interpretation to compare abstract domains with regard to
their precision: A1 is more precise (or concrete) than A2 iff A1 v A2 in uco(C).
Thus, lub’s t and glb’s u on LC give, respectively, the most precise abstraction
and the most abstract concretization of a family of abstract domains.

Complete Abstract Interpretations. Let us succinctly recall the basic notions
concerning completeness in abstract interpretation. Let f : C → C be a mono-
tone or antitone concrete semantic function1 occurring in some complex semantic
specification, and let f ] : A → A be a corresponding abstract function, where
A ∈ LC . Then, 〈A, f ]〉 is a sound abstract interpretation — or f ] is a correct
approximation of f relatively to A — when ∀c ∈ C. α(f(c)) ≤A f ](α(c)). On
the other hand, 〈A, f ]〉 is complete when equality holds, i.e. α ◦ f = f ] ◦ α.
Thus, completeness means that abstract computations accumulate no loss of
information.

Any abstract domain A ∈ LC induces the so-called canonical best correct
approximation fA : A → A of f : C → C, defined by fA def= α ◦ f ◦ γ. This
terminology is justified by the fact that any f ] : A → A is a correct approx-
imation of f iff fA v f ]. Consequently, any abstract domain always induces
an (automatically) sound abstract interpretation. However, not all abstract do-
mains induce a complete abstract interpretation. It turns out that whenever a
complete abstract function exists then this actually is the best correct approx-
imation. This therefore means that completeness for an abstract function is a
property which depends on the underlying abstract domain only. Thus, for ab-
stract domains specified by closure operators, an abstract domain ρ ∈ LC is
defined to be complete for f if ρ ◦ f = ρ ◦ f ◦ ρ. More in general, this definition
of completeness can be naturally extended to a set F of semantic functions by
requiring completeness for each f ∈ F . Throughout the paper, we will adopt the
following notation: Γ (C, f) def= {ρ ∈ LC | ρ is complete for f}. Hence, for a set
F , Γ (C,F ) = ∩f∈F Γ (C, f).

2.2 Temporal abstract interpretation

Let us recall the basic notions and definitions of Cousot and Cousot’s [11] ab-
stract interpretation-based approach to model checking. S is a given, possibly
infinite, set of states. Discrete time is modeled by the whole set of integers and
therefore paths of states are time-symmetric, in particular are infinite also in the
past. Thus, P def= Z→ S is the set of paths (an execution path with an initial state
s can then be encoded by repeating forever in the past the state s). Of course,

1 For simplicity, we consider unary functions with the same domain and co-domain,
since the extension to the general case is conceptually straightforward.
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traces keep track of the present time, and hence T def= Z× P is the set of traces.
A (temporal) model is simply a set of traces: M def= ℘(T) is the set of temporal
models. The semantics of a temporal logical formula φ will be a temporal model,
that will be the set of all and only those traces making φ true.

Models to check will be generated by transition systems, encoding some re-
active system. The transition relation →⊆ S × S is assumed to be total, i.e.,
∀s ∈ S.∃s′ ∈ S. s→s′ and ∀s′ ∈ S.∃s ∈ S. s→s′. This is not restrictive, since any
transition relation can be lifted to a total transition relation simply by adding
transitions s→s for any state s which is not reachable or which cannot reach any
state. The model generated by the transition system 〈S,→〉 is therefore defined
as M→

def= {〈i, σ〉 ∈ T | i ∈ Z, ∀k ∈ Z. σk→σk+1}.
The reversible

x?
µ -calculus has been introduced by Cousot and Cousot [11] as

a generalization of Kozen’s µ-calculus, provided with a trace-based semantics.
Throughout the paper, X will denote an infinite set of logical variables.

Definition 2.1 ([11, Definition 13]). Formulae φ of the reversible
x?
µ -calculus

are inductively defined as follows:

φ ::= σS | πt | X | ⊕ φ | φx | φ1 ∨ φ2 | ¬φ | µX.φ | νX.φ | ∀φ1 : φ2

where the quantifications are as follows: S ∈ ℘(S), t ∈ ℘(S× S), and X ∈ X.
Lx?

µ
denotes the set of

x?
µ -calculus formulae. �

The intuition is that a closed formula φ is interpreted as the set of traces
which make φ true. The trace-based semantics for the

x?
µ -calculus goes as follows.

Definition 2.2 ([11, Definition 13]). E def= X→M is the set of environments
over X. Given ξ ∈ E, X ∈ X and N ∈ M, ξ[X/N ] ∈ E is defined to be the
environment acting as ξ in X r {X} and mapping X to N . The

x?
µ -calculus

semantics [[·]] : Lx?
µ
→ E → M is inductively and partially (because least or

greatest fix-points could not exist) defined as follows:

[[σS ]]ξ def= σ{|S|} [[φ1 ∨ φ2]]ξ
def= [[φ1]]ξ ∪ [[φ2]]ξ

[[πt]]ξ
def= π{|t|} [[¬φ]]ξ def= ¬([[φ]]ξ)

[[X]]ξ def= ξ(X) [[µX.φ]]ξ def= lfp(λN ∈M.[[φ]]ξ[X/N ])

[[⊕φ]]ξ def= ⊕ ([[φ]]ξ) [[νX.φ]]ξ def= gfp(λN ∈M.[[φ]]ξ[X/N ])

[[φx]]ξ def= x([[φ]]ξ) [[∀φ1 : φ2]]ξ
def= ∀([[φ1]]ξ, [[φ2]]ξ),

where the corresponding temporal model transformers are defined as follows:

– For any S ∈ ℘(S), σ{|S|}
def= {〈i, σ〉 ∈ T | σi ∈ S} ∈ M is the S-state model,

i.e., the set of traces whose current state is in S.
– For any t ∈ ℘(S × S), π{|t|}

def= {〈i, σ〉 ∈ T | (σi, σi+1) ∈ t} ∈ M is the t-
transition model, i.e., the set of traces whose next step is a t-transition.

– ⊕ : M→M is the predecessor transformer:
⊕(X) def= {〈i− 1, σ〉 ∈ T | 〈i, σ〉 ∈ X} = {〈i, σ〉 ∈ T | 〈i + 1, σ〉 ∈ X}.
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– x : M→M is the reversal transformer:
x(X) def= {〈−i, λk.σ−k〉 ∈ T | 〈i, σ〉 ∈ X}.

– ¬ : M→M is the complement transformer:
¬X

def= M r X.
– Given s ∈ S, (·)↓s : M→M is the state projection operator:

X↓s
def= {〈i, σ〉 ∈ X | σi = s}.

– ∀ : M×M→M is the universal state closure transformer:
∀(X, Y ) def= {〈i, σ〉 ∈ X | X↓σi

⊆ Y }. �

The successor operator 	 on traces can be dually defined as follows:

	(X) def= {〈i + 1, σ〉 ∈ T | 〈i, σ〉 ∈ X} = {〈i, σ〉 ∈ T | 〈i− 1, σ〉 ∈ X}.

Within this trace-based framework the model checking problem is easily for-
mulated as follows. A closed temporal specification φ ∈ Lx?

µ
is identified by its

semantics, namely by the temporal model [[φ]]∅ ∈M. Thus, the universal model
checking of a system M→ against a specification φ amounts to check whether
M→ ⊆ [[φ]]∅. Dually, in the existential model checking the goal is that of checking
whether [[φ]]∅ ∩M→ 6= ∅.

2.3 State-based model checking abstractions

The classical state-based model checking can be formulated as an abstract in-
terpretation, roughly abstracting traces to states.

Universal Checking Abstraction. Given a model (to check) M ∈ M, the uni-
versal checking abstraction map α∀M : M → ℘(S) abstracts a trace-interpreted
temporal specification φ ∈M to the set of possible (present) states s of M which
universally satisfy φ, that is, such that if the present state of M is s then φ holds.
The intuition is that α∀M (φ) encodes a standard state-based interpretation like
{s ∈ S | M, s |= φ}. The universal checking abstraction is therefore encoded by
the following definition [11, Definition 45]:

α∀M (φ) def= {s ∈ S | M↓s ⊆ φ}.

Following the terminology by Müller-Olm et al. [16]: (i) the state-based global
model checking problem of determining the set of present states in M that satisfy
φ simply amounts to determining α∀M (φ), and (ii) the state-based local model
checking problem of checking if a given state s in M satisfies φ amounts to
checking whether s ∈ α∀M (φ).

In this case, the superset relation between states provides the notion of
approximation. Actually, α∀M gives rise to an adjunction between 〈M,⊇〉 and
〈℘(S),⊇〉, and, together with its adjoint γ∀M , induces the following closure oper-
ator on models.

Definition 2.3. The universal checking closure relative to a model M ∈ M is
ρ∀M

def= γ∀M ◦ α∀M ∈ uco(〈M,⊇〉) defined by ρ∀M = λX.{〈i, σ〉 ∈ M | M↓σi
⊆ X}.

�
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The intuition is that ρ∀M (X) throws away from X all those traces 〈i, σ〉 either
which are not in M — these traces “do not matter”, since α∀M (¬M) = ∅ — or
which are in M but whose present state σi does not universally satisfy X.

Existential Checking Abstraction. Dually, the existential checking abstraction
map α∃M : M → ℘(S) abstracts a given trace-interpreted temporal specification
φ ∈M to the set of possible (present) states s of the model M which existentially
satisfy φ, that is, for which there exists at least a trace of M which satisfies φ and
whose present state is s. This leads to the following definition [11, Definition 49]:

α∃M (φ) def= {s ∈ S | M↓s ∩ φ 6= ∅}.

It can be roughly said that the existential checking abstraction is useful for
checking so-called safety properties of reactive systems, i.e., “bad things do not
happen during executions”. In fact, the subset relation formalizes the notion of
approximation: if α∃M (φ) ⊆ S then each s 6∈ S is such that if M is in state s then
φ surely does not hold, and therefore any T ⊇ S has to be understood as less
precise than S. It turns out that α∃M gives rise to an adjunction between 〈M,⊆〉
and 〈℘(S),⊆〉, and hence to the following closure (γ∃M is the adjoint map).

Definition 2.4. The existential checking closure relative to a model M ∈M is
ρ∃M

def= γ∃M ◦ α∃M ∈ uco(〈M,⊆〉) defined by ρ∃M = λX.{〈i, σ〉 ∈ T | 〈i, σ〉 ∈ M ⇒
M↓σi

∩X 6= ∅} = λX.{〈i, σ〉 ∈M | M↓σi
∩X 6= ∅} ∪ ¬M . �

Here, the intuition is that ρ∃M adds to X any trace which is not in M —
these can be considered meaningless as far as the existential checking of M is
concerned, since α∃M (¬M) = ∅ — and any trace in M whose present state
existentially satisfies X.

State-Based (Abstract) Semantics. Given a total transition system 〈S,→〉 and its
associated model M→, the classical state-based semantics on ℘(S) of a temporal
formula is calculationally designed as the abstract semantics induced by the
model checking abstractions seen above. This is an instance of the standard
abstract interpretation methodology (as recalled in general terms by Cousot
and Cousot in [11, Section 8]): basically, this amounts to abstract any model
transformer of Definition 2.2 by the corresponding best correct approximation
induced by the checking abstraction. For example, the predecessor transformer
⊕ : M→M is abstracted to α∀M→

◦ ⊕ ◦ γ∀M→
: ℘(S)→ ℘(S).

The general scenario is as follows. Es def= X→ ℘(S) is the set of state environ-
ments. The checking abstractions α∀M and α∃M are extended pointwise to environ-
ments: α̇∀M , α̇∃M : E→ Es, where, e.g., α̇∀M (ξ) def= λX ∈ X.α∀M (ξ(X)). The process
of abstraction then compositionally leads to the following abstract state-based
semantics for the

x?
µ -calculus: [[·]]∀→, [[·]]∃→ : Lx?

µ
→ Es → ℘(S). These are induc-

tively defined as one expects, following the lines of Definition 2.2. Thus, [[φ]]∀→
and [[φ]]∃→ correspond to the classical state interpretations of a temporal formula
φ.

8



Soundness of the abstract state-based semantics is by construction: for any
φ ∈ Lx?

µ
and ξ ∈ E, α∀M→

([[φ]]ξ) ⊇ [[φ]]∀→α̇∀M→
(ξ) and α∃M→

([[φ]]ξ) ⊆ [[φ]]∀→α̇∃M→
(ξ).

In general, completeness does not hold, even when the set of states is finite,
i.e., the containments above may well be strict (see the finite counterexam-
ple given in [11, Counterexample (60)]). This means, for example, that there
exist a closed formula φ ∈ Lx?

µ
and a state s ∈ S such that trace-based and

state-based model checking for φ in s are not equivalent: M→, s |=trace φ (viz.,
(M→)↓s ⊆ [[φ]]∅), while M→, s 6|=stateφ (viz., s 6∈ [[φ]]∀→∅). Intuitively, incomplete-
ness states that in order to deal with temporal specifications of the

x?
µ -calculus,

model checking algorithms should handle sets of traces instead that sets of states,
and clearly this is unfeasible.

Cousot and Cousot [11] identified the model transformers causing such in-
completeness and provided some sufficient conditions ensuring completeness. The
first incomplete transformer for the universal checking abstraction is the prede-
cessor operator ⊕, as shown in [11, Section 11.2]. Disjunction, namely set union,
is the second incomplete model transformer, as observed in [11, Section 11.6]. The
aforementioned sufficient conditions allow to identify some meaningful complete
fragments of the

x?
µ -calculus. This is the case, for example, of the µ∀+-calculus

considered in [11, Section 13], which is complete for the universal checking ab-
straction and subsumes the classical ∀CTL logic. Finally, the reversal model
transformer x is also incomplete, as shown by the example given in [17], al-
though this is not explicitly mentioned in [11]. Of course, a dual reasoning can
be made for the existential checking abstraction: here, the incomplete model
transformers are predecessor, conjunction and reversal.

3 Making state-based model checking complete for traces

We have seen that the possibility of defining a complete abstract operation on a
given abstract domain A depends on A only. This means that completeness is an
abstract domain property and therefore opens the relevant question of making an
abstract interpretation complete by minimally extending or, dually, restricting
the underlying abstract domain. Following [13], given a concrete interpretation
f : C → C and an abstract domain A ∈ LC , the absolute complete shell2 (resp.,
core) of A for f , when it exists, is the most abstract (resp., concrete) domain
As ∈ LC (resp., Ac ∈ LC) which extends (resp., restricts), viz. is more (resp.,
less) precise than A, and is complete for f . In other words, the absolute complete
shell, respectively core, of A characterizes the least amount of information to be
added to, respectively removed from, A in order to get completeness, when this
can be done. These completeness problems have been solved in a constructive
way by Giacobazzi et al. in [13].

Theorem 3.1 ([13, Theorem 5.10]). Let F ⊆ C → C and A ∈ LC . If F is
a set of continuous (i.e., preserving lub’s of directed subsets) functions then the

2 [13] also introduces the concepts of relative complete shell and core, and this explains
the use of the adjective absolute.

9



absolute complete shell and core of A for F exist, and they can be characterized,
respectively, as greatest and least fix-points.

In the following, we study the problem of making state-based model check-
ing complete with respect to the trace semantics of the

x?
µ -calculus by minimally

reducing the abstract domain of states ℘(S). We will make the following assump-
tion.

Hypothesis 3.2. For any universal and existential checking closure, respec-
tively ρ∀M and ρ∃M , the model M ∈M is such that for any s ∈ S, |M↓s| > 1.

This means that for any state s, M↓s contains at least two traces, i.e., for any
trace in the model M there exists at least one more trace in M with the same
present state. This hypothesis is satisfied by any model generated by a total
transition system. In fact, let M→ be generated by a total transition system
〈S,→〉. Thus, if s ∈ S then, by the totality of the transition relation, there exists
at least a trace in M→ with present state s, i.e., there exists 〈i, σ〉 ∈ (M→)↓s. If
σi+1 = s = σi then we simply consider the trace 〈i+1, σ〉 ∈ (M→)↓s. Otherwise,
σi+1 6= σi, and therefore it is enough to consider, for example, the shifted path
σ+1 def= λj. σj+1, which is different from the path σ, and the trace 〈i − 1, σ+1〉,
which belongs to (M→)↓s.

We have chosen to present our results for the case of the existential checking
closure ρ∃M . The existential closure ρ∃M is defined on the concrete domain 〈M,⊆〉
of models ordered by the subset relation, and therefore this simplifies both the
technical approach and the intuition.

3.1 Absolute complete core for the predecessor

As recalled in Section 2.3, the predecessor model transformer of Definition 2.2
is a source of incompleteness. Since ⊕ is clearly continuous, by Theorem 3.1, we
know that the absolute core of the existential checking closure for ⊕ exists. The
following results characterize this core.

Definition 3.3. Given n ∈ N, define ηn
∃M

def= ⊕n ◦ ρ∃M ◦ 	n. �

Note that ηn
∃M
∈ uco(〈M,⊆〉). Monotonicity follows by composition, while ηn

∃M

is extensive because Y ⊆ ηn
∃M

(Y )⇔ 	nY ⊆ ρ∃M (	n(Y )). Idempotence is as fol-
lows: ηn

∃M
(ηn
∃M

(Y )) = ⊕n(ρ∃M (	n(⊕n(ρ∃M (	n(Y )))))) = ⊕n(ρ∃M (ρ∃M (	n(Y )))) =
⊕n(ρ∃M (	n(Y ))) = ηn

∃M
(Y ).

Theorem 3.4. The absolute complete core C⊕
∃M

of ρ∃M for ⊕ exists and it is
characterized as follows:
(1) The set of fix-points of C⊕

∃M
is {Y ∈M | ∀k ∈ N. 	k Y = ρ∃M (	kY )}.

(2) C⊕
∃M

= tn∈Nηn
∃M

.

The following result provides a useful characterization of the absolute com-
plete core C⊕

∃M
based on the structure of the underlying transition system. We use

the following notation: given a transition system 〈S,→〉 and states r, s ∈ S, for
any k > 0, r

k→s iff r = r0 → r1 → r2 → . . .→ rk = s, where {r1, ..., rk−1} ⊆ S.

10



Lemma 3.5. ρ∃M = {(
⋃

s∈S M↓s) ∪ ¬M | S ⊆ S}.

Theorem 3.6. Let M = M→, for some total transition system 〈S,→〉. Then,
for any S ⊆ S, (

⋃
s∈S M↓s) ∪ ¬M 6∈ C⊕

∃M
iff there exist k > 0, q ∈ S, r ∈ S r S

and t ∈ S such that q
k→t and r

k→t.

Hence, by Lemma 3.5, Theorem 3.6 characterizes exactly all the fix-points
of the closure ρ∃M which must be removed in order to get the absolute complete
core C⊕

∃M
. As a consequence, observe that it always holds that T,¬M ∈ C⊕

∃M
: in

fact, by Theorem 3.6, T = (
⋃

s∈S M↓s) ∪ ¬M and ¬M = (
⋃

s∈∅ M↓s) ∪ ¬M .
By exploiting the constructive results above, we are also able to characterize

the structure of transition systems whose models induce an existential checking
closure which is complete for the predecessor. These are the transition systems
〈S,→〉 for which the transition relation→ is injective: the relation→ is injective
whenever ∀r, s, t ∈ S. (r → t & s→ t)⇒ r = s.

Theorem 3.7. Let M = M→, for some total transition system 〈S,→〉. Then,
ρ∃M is complete for ⊕ if and only if → is injective.

It is worth noting that injectivity means that each computation step is re-
versible, i.e. the reverse transition system 〈S,←〉 obtained by reversing the tran-
sition relation is deterministic. This is the case of reversible computations, i.e.
computations whose output uniquely defines the input [2]. Let us also observe
that if s ∈ S is a stalling state, i.e. such that s → s, then the injectivity of the
transition relation requires that t 6→ s for any t 6= s, i.e., s cannot be reached by
any other state.

_^]\XYZ[red // _^]\XYZ[green // _^]\XYZ[yellow

gg

GFED@ABCred // GFED@ABCgo
UU





Fig. 1. A traffic light controller and its abstract version.

Example 3.8. Consider a traffic light controller as in Figure 1 with three states,
i.e., S def= {red , green, yellow} and → def= {red → green, green → yellow , yellow →
red}. Then, 〈S,→〉 is total and injective, and therefore, by Theorem 3.7, the
corresponding existential checking closure is complete for the predecessor, i.e.
C⊕
∃M

= ρ∃M .
Consider instead the abstraction induced by the following state partition: h(red) =
red and h(green) = h(yellow) = go (cf. [6]). The resulting abstract transition
system S] def= {red , go} and→] def= {red →] go, go →] go, go →] red} is systemat-
ically derived from h as usual (cf. [6], see Figure 1). 〈S],→]〉 is total but it is not
injective. Let M ] be the model generated by 〈S],→]〉. In order to compute the
absolute complete core of ρ∃M] for ⊕ we exploit Theorem 3.6. Then, it is easy to
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verify that for any ∅ 6= S ( S], i.e. either S = {go} or S = {red}, the condition
of Theorem 3.6 is satisfied. For example, for S = {go}, we have that red→ ]go
and go→ ]go, with go ∈ S and red 6∈ S. Thus, the absolute complete core of ρ∃M
for ⊕ is C⊕

∃M
= {T,¬M}.

Actually, it is not difficult to show that any abstraction with at least two states
of 〈S,→〉 induces an abstract transition system for which the existential closure
is not complete for the predecessor. Of course, this is not always the case for
abstract transition systems. In the case of an infinite counter modelled by a con-
crete transition system 〈S,→〉 where S = N and x → y iff y = x + 1, it turns
out that both 〈S,→〉 and the abstract transition system 〈{even, odd},→p〉 with
→p def= {odd → even, even → odd}, obtained by the straightforward abstraction
partitioning states in even and odd numbers, are such that the existential check-
ing closure is complete for the predecessor: in fact, both transition relations are
injective and therefore Theorem 3.7 can be applied. ut

3.2 Absolute complete core for time reversal

Let us now analyze the time reversal operator x. Also in this case x is trivially
continuous on 〈M,⊆〉, and therefore Theorem 3.1 guarantees the existence of the
absolute core of the existential checking closure for x. Then, let us characterize
the existential checking closure for the reversed model.

Lemma 3.9. ρ∃xM = x ◦ ρ∃M ◦x.

The following characterization proves that the absolute complete core is given
by those fix-points of ρ∃M which also belong to the existential checking closure
ρ∃xM relative to the reversed model xM .

Theorem 3.10. The absolute complete core C
x

∃M
of ρ∃M for x exists and it is

characterized as follows:
(1) The set of fix-points of C

x

∃M
is {Y ∈M | Y, xY ∈ ρ∃M}.

(2) C
x

∃M
= ρ∃M t ρ∃xM .

This result allows us to give a characterization of the structure of transi-
tion systems inducing an existential checking closure complete for time reversal.
These are the transition systems with a symmetric transition relation (→ is sym-
metric whenever ∀r, s ∈ S. r→s ⇒ s→r), i.e. which allow both a computation
and its reverse.

Corollary 3.11. Let M = M→, for some total transition system 〈S,→〉. Then,
ρ∃M is complete for x if and only if → is symmetric.

Thus, in practice, the existential checking closure is rarely complete for time
reversal, since symmetry is not a realistic condition for most concrete transition
systems.

12



Example 3.12. Consider the abstract transition systems of Example 3.8, namely
the abstract counter and the abstract traffic light controller. For both systems,
since the transition relations are symmetric, by Corollary 3.11, the existential
checking closure is complete for time reversal. Instead, this is not the case for
the concrete three-state traffic light controller, since the transition relation is
not symmetric. ut

3.3 Absolute complete core for conjunction

Finally, let us consider conjunction, namely set intersection of models. Again,
Theorem 3.1 ensures us that the absolute complete core does exist.

Theorem 3.13. The absolute complete core C∩
∃M

of ρ∃M for ∩ exists and it is
the top closure operator λX.T.

Recall that the top closure operator corresponds to a straightforward and to-
tally uninformative abstract domain consisting of a unique abstract value which
is the abstraction of any concrete value. Hence, this is a “striking” result: in
general, the top closure operator is always trivially complete (see [13]), and in
our case this is the unique abstraction of ρ∃M which is complete for the conjunc-
tion. The intuition, that will be formally proved later on, is that any abstraction,
but for the straightforward top closure, of the state-based model checking for a
temporal calculus including an unrestricted connective of conjunction is incom-
plete for the trace-based semantics. This allows to state that state-based model
checking is intrinsically incomplete for temporal calculi including conjunction,
such as Kozen’s µ-calculus, CTL, and CTL∗.

3.4 Absolute complete core for all the connectives

Finally, let us characterize the absolute complete core of ρ∃M for all the connec-
tives of the

x?
µ -calculus, i.e., the set of all the model transformers of Definition 2.2.

This core exists by Theorem 3.1 because all the operations are continuous. How-
ever, as noted by Ranzato [17], we must take care of the following technicality. As
far as the universal state closure transformer ∀ is concerned, the following restric-
tion is needed. We just consider the unary restrictions λX.∀(N,X) : M → M,
where N ⊆ M ∪ x(M), of the universal state closure transformer, because the
binary transformer ∀ : M × M → M is neither monotone nor antitone in its
first argument, and therefore it does not give rise to a concrete binary opera-
tion suitable to abstract interpretation. On the other hand, given any N ∈ M,
the unary restriction λX.∀(N,X) is monotone. As observed in [11, Section 5]
and [17, Section 3.1], this slight restriction still allows to recover the standard
universal state quantification. In the sequel, we will use the following compact
notation: M∗ def= M ∪ x(M). As a simple consequence of Theorem 3.13, we get
the following result.

Theorem 3.14. The top closure operator λX.T is the absolute complete core
C∃M

of ρ∃M for {σS}S∈℘(S) ∪ {πt}t∈℘(S2) ∪ {⊕,∩,∪,¬, x}∪{λX.∀(N,X)}N⊆M∗ .
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The proof simply consists in observing that (1) the top closure λX.T is
trivially complete for any operation [13, Proposition 3.5 (i)], and (2) the ab-
solute complete core of conjunction λX.T is less than or equal to C∃M

, i.e.,
C∃M

= λX.T.

4 Completeness of temporal calculi

As observed above, from the abstract interpretation viewpoint, the universal
state closure connective ∀ of the full

x?
µ -calculus is somehow problematic, because,

according to Cousot and Cousot’s [11] Definition 2.1, the binary connective ∀ can
be applied without any restriction, while its semantic counterpart, the universal
state closure transformer ∀ : M×M → M, is neither monotone nor antitone in
its first argument. On the other hand, given any N ∈ M, the unary restriction
λX.∀(N,X) : M → M is monotone, and this is enough in order to have the
standard universal state quantification: ∀φ

def= ∀ �± (πτ ) : φ, where [[�± (πτ )]]∅ =
Mτ (see [11, Section 5] for the details). Following Ranzato [17], this naturally
leads to the following slight “monotone” restriction, which we call

x?
µ --calculus,

of the
x?
µ -calculus.

Definition 4.1. Formulae φ of the
x?
µ --calculus are inductively defined as fol-

lows:

φ ::= σS | πt | X | ⊕ φ | φx | φ1 ∨ φ2 | ¬φ | µX.φ | νX.φ | ∀φ

where S ∈ ℘(S), t ∈ ℘(S × S), and X ∈ X. Lx?
µ- denotes the set of

x?
µ --calculus

formulae. �

Of course, the trace-semantics for the
x?
µ --calculus is completely identical to

that of the
x?
µ -calculus given in Definition 2.2, but for the universal connective:

[[∀φ]]ξ def= ∀(Mτ , [[φ]]ξ).
The main result is stated for this

x?
µ --calculus. The scenario is as follows. Any

abstraction of the concrete domain M of temporal models, ordered by the su-
perset or subset relation, induces an abstract semantics for the

x?
µ -calculus, and

therefore for the
x?
µ --calculus. As seen in Section 2.3, the checking abstractions

are an example: [[·]]∀→ and [[·]]∃→ are the abstract semantics induced, respectively,
by ρ∀M and ρ∃M . More in general, for the existential case of our interest, given
a model to check M ∈ M — which is supposed to be generated by a transi-
tion system 〈S,→〉 — any closure operator, i.e. abstract domain, ρ ∈ uco(M⊆),
induces the set of abstract environments Eρ def= X → ρ, and the correspond-
ing abstract semantics [[·]]ρ : Lx?

µ- → Eρ → ρ. Given an environment ξ ∈ E,
ρ̇(ξ) def= λX.ρ(ξ(X)) ∈ Eρ is the corresponding abstract environment induced by
ρ. Soundness, i.e., ∀φ ∈ Lx?

µ- .∀ξ ∈ E. ρ([[φ]]ξ) ⊇ [[φ]]ρρ̇(ξ), holds by construction
(cf. [11, Theorem (40)]), while completeness for ρ means that equality always
holds.

Theorem 4.2. Let δ∧ be any fragment of the
x?
µ --calculus which allows arbitrary

conjunctions of formulae. The top closure operator λX.T ∈ uco(M⊆) is the
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greatest (w.r.t. subset image containment) closure operator on M⊆ (1) complete
for δ∧ and (2) contained in the existential checking closure ρ∃M .

This result exactly formalizes the intuition described above: for any temporal
language allowing unrestricted conjunctions of formulae, the top closure is the
unique abstraction of the existential state-based checking closure which induces
a corresponding model checking which is complete for the trace-based semantics.

To conclude, let us mention that, dually, for the universal case, one gets the
greatest closure operator on 〈M,⊇〉, i.e. λX.∅.

5 Conclusion

This paper completed the study started by Ranzato [17] on the completeness of
state-based model checking w.r.t. trace-based model checking. Both results show
that abstract interpretation provides a powerful body of techniques to study the
relation between computational models at different levels of abstraction. By us-
ing a slogan, this study showed that “the state checking is intrinsically incomplete
w.r.t. trace checking”, since no refinement or abstraction of the classical state-
based model checking can lead to a semantics inducing a model checking which
is complete for the trace semantics of the temporal language. This is not only
a negative result concerning completeness of states vs. traces. This result opens
new interesting research directions. In particular, in view of Theorem 3.7 and
Corollary 3.11, it is possible to isolate fragments of µ-calculi which are complete
for particular classes of transition systems. An important issue in this context
is how completeness of state-based abstractions interacts with the presence of
spurious counterexamples, when the transition systems are derived by abstract
interpretation [1, 6, 14]. Completeness of states w.r.t. traces can also be studied
from a different viewpoint. The idea is that of modifying the underlying tem-
poral language in order to get completeness of states w.r.t. traces, where the
modifications of the temporal language should be minimal. This means that
temporal languages should be somehow ordered w.r.t. their expressive power,
and this order should allow to define syntactically the minimal simplifications
of the language. Further applications of our results could be obtained for tem-
poral databases. Temporal logic has been proposed as the core language for
specifying integrity constraints and triggers in temporal databases [3, 18]. Since
the time-point-indexed sequences (i.e. traces) of database states cannot be effi-
ciently handled, several more efficient models have been obtained by abstraction.
The problem of characterizing completeness in database abstractions has been
attacked by several authors (e.g. see the notion of weak completeness in [8]),
in particular for comparing different data-models. However, to the best of our
knowledge, none of them have been considered as an abstract interpretation
problem. In the case of temporal databases, temporal abstractions, such as the
interval abstraction which induces the notion of period or temporal element [19],
are particularly relevant. In view of recent results encoding temporal query lan-
guages as fragments of temporal logic [4], we believe that our results can help in
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comparing abstractions of temporal databases with the expressivity of temporal
query languages, in particular for aspects concerning completeness with respect
to a concrete temporal time-point-indexed database.
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