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A classical transition mechanism
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Tollmien-Schlicting (TS) waves first experimentally detected by Schubauer and Skramstad

(1947), “Laminar boundary-layer oscillations and transition on a flat plate”, J. Res. Nat. Bur.

Stand 38:251-92, originally issued as NACA-ACR, 1943.
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Are TS waves the only mechanism?

If the disturbances are not really infinitesimal (real world!)...
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Are TS waves the only mechanism?

If the disturbances are not really infinitesimal (real world!)...

...Streaks (instead of waves) can develop where the flow is
stable according to the classical neutral stability curve.
Alternative mechanism to TS waves: Transient growth.
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A boundary layer, and its governing equations, can be
thought in an input/output fashion.

# Inputs. Initial conditions and boundary conditions.
# Outputs. Flow field, which can be measured by a norm.
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Optimal perturbations

Question.

What Is the most
disrupting, steady ini-
tial condition, which
maximizes the energy
growth for a given
initial energy of thez
perturbation?

;’"’/Boundary layer edge\%/

Flat plate

Zuccher, S., Tumin, A., Reshotko, E., Optimal Disturbances in Compressible Boundary Layers — Complete Energy Norm Analysis, Paper AIAA-2005-5314 —p. 5
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In this sense the perturbations are optimal.
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Goals/Tools

Goals
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Goals/Tools

Goals

o Efficient and robust numerical determination of optimal
perturbations in compressible flows.
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Goals/Tools

Goals

o Efficient and robust numerical determination of optimal
perturbations in compressible flows.

# Formulation of the optimization problem in the discrete
framework.

# Coupling conditions automatically recovered from the
constrained optimization.

o Effect of energy norm choice at the outlet.

Tools
# Lagrange Multipliers technique.

# |terative algorithm for the determination of optimal initial
condition.
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Problem formulation

# Geometry. Flat plate and sphere.

#® Regimes. Compressible, sub/supersonic. Possibly
reducing to incompressible regime for M — 0.

#® Equations. Linearized, steady Navier-Stokes eguations.
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Scaling (1/2)

® L. Is atypical scale of the geometry (L for flat plate, R
for sphere, etc.)
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Scaling (2/2)

From previous works, disturbance expected as streamwise
vortices. The natural scaling is therefore
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Scaling (2/2)

From previous works, disturbance expected as streamwise
vortices. The natural scaling is therefore

#® z normalized with L,.¢, y and z scaled with €L .

® v Is scaled with U,.s, v and w with eU,.

® T with Ty and p with €?p,¢U2 . p eliminated through the
state equation.

Due to the scaling, (:)., << 1. The equations are parabolic!

By assuming perturbations in the form ¢(z, y) exp(iGz) (flat
plate — 5 spanwise wavenumber) and q(x, y) exp(imeo)
(sphere — m azimuthal index)...
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Governing eguations

(Af)x — (ny)m + Bof + Blfy -+ Bnyy

f =[u,v,w,T,p|'; A, By, B1, Ba, D5 x 5 real matrices.
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Governing eguations

(Af)x — (ny)w + Bof + Blfy -+ Bnyy

f =[u,v,w,T,p|'; A, By, B1, Ba, D5 x 5 real matrices.

Boundary conditions

y=0: u=0v=0w=0;17=0

y—0o0: u—0w—0p—0;17 —0

Zuccher, S., Tumin, A., Reshotko, E., Optimal Disturbances in Compressible Boundary Layers — Complete Energy Norm Analysis, Paper AIAA-2005-5314 — p. 10



Governing eguations

(Af)x — (ny)w + Bof + Blfy -+ Bgfyy
f =[u,v,w,T,p|'; A, By, B1, Ba, D5 x 5 real matrices.

Boundary conditions

y=0: u=0v=0w=0;17=0

y—0o0: u—0w—0p—0;17 —0

More compactly
(Hlf)x + Hof =0

with Hy = A — D(-),; Hy = —Bg — Bi(-)y — Ba(")yy
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Objective function (1/2)

Caveat!
# Results depend on the choice of the objective function.
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Objective function (1/2)

Caveat!
# Results depend on the choice of the objective function.
# Physics dominated by streamwise vortices.

# Common choices of the energy norms.
s Inlet. Vin # 0 and Win 7& 0 (uin = 1in = O).
s Outlet. vyt = 0 and weoyt = 0 (ui, # 0; Tin # 0).
# Blunt body. Largest transient growth close to the
stagnation point.

o Due to short z-Interval, a streaks-dominated flow
field might not be completely established.

s Contribution of v,y and we,t could be non negligible.
s Outlet norm. FEN vs. PEN
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Objective function (2/2)

Mack’s energy norm (derived for flat plate and temporal
problem), after scaling and using state equation,

> 2 2 2 psoutT2 £
ou
Eout — A [Psout (uout + Uout + wout) + (’Y . 1)T 2 M2 dy

Sout
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T2

00
p
Fout = A [/0 sout (u(2)ut + vgut T wﬁllt) " (/V _Sf;; SUtM 2] dy

Sout

OO P
or in matrix form as E, = / (f(ﬂtM Outfout) dy, With
0

~——

. Psout
M .+ = dia : , ; 0.
out g (psout Psouts Psout (7 o 1)T8(2)utM2 )
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Objective function (2/2)

Mack’s energy norm (derived for flat plate and temporal
problem), after scaling and using state equation,

> 2 2 2 pSOutT2 t
ou
Eout — A [pSout (uout T Uout + wout) T (”Y . 1)T 2 M2] dy

Sout

OO P
or in matrix form as E, = / (f(ﬂtM Outfout) dy, With
0

~——

: Psout
]\4-01146 — dlag (108()11’57 Psouts Psout (/y B 1)8;_,112 tMQ ] O) .

Sou

Initial energy of the perturbation

Ly = / [IOSin(UiQIl + w?n)} dy = Ein = / (fiEMinfin) dy
0 0

Zuccher, S., Tumin, A., Reshotko, E., Optimal Disturbances in Compressible Boundary Layers — Complete Energy Norm Analysis, Paper AIAA-2005-5314 — p. 12



Constrained optimization (1/3)

Our constraints are the governing equations, boundary
conditions and the normalization condition E;, = Ej.
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Constrained optimization (1/3)

Our constraints are the governing equations, boundary
conditions and the normalization condition E;, = Ej.

After discretization (M, < Min and My < ]\A/_/Iout),
» objective function J = fy M yfy
® constraint By, = Ey = f; Mofy = E

# governing equations (BC included) C,,.1f,, 11 = B,f,

The augmented functional £ Is

N
L(fo, ..., fn) = FE My + Mo[ff Mofo — Eo] +

J[P;E (Cn—i—lfn—l—l - ann)]
n=0
//

with \g and (vector) p,; Lagrangian multipliers.

1
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Constrained optimization (2/3)

By adding and subtracting p,}_ ; B,+1f,+1 in the summation,

N—-1 N—-1_
> [P;FL (Crntafnyr — ann)] = ) |PaCntifni1 — pg—l—an-l—lfn—l—l] +
n=0 0

1

23

PE+1 Bpyifn41 — pZann]

(]

0
1

23

= PECn+1fn+1 — pg—|-1Bn—|—1fn—|—1] +

3
|
o

prBnfN — pg Bofo,
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Constrained optimization (2/3)

By adding and subtracting p,}_ ; B,+1f,+1 in the summation,

N—-1 N—-1_

> [P;FL (Crntafnyr — ann)] = ) |PaCntifni1 — pg—l—an-l—lfn—l—l] +
-

1

n=0

23

PE+1 Bpyifn41 — pZann]

(]

i
Iyt

= PECn+1fn+1 — pg—|-1Bn—|—1fn—|—1] +

S
o

prBnfN — pg Bofo,

N—-1
L(fo,.. fx) = EEMnfn+ Y [PRCutifnit —Phpi Briifar | +

n=0

prBNEN — pd Bofo + Molfy Mofy — Eo].
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Constrained optimization (2/3)

By adding and subtracting p,}_ ; B,+1f,+1 in the summation,

N—-1 N—-1_
> [P;FL (Crntafnyr — ann)] = ) |PaCntifni1 — pg—l—an-l—lfn—l—l] +
n=0 n=0 B
N—1_
Z pg+1Bn+1fn+1 - pZann]
n=0
N—1
_ T T
= Pn Cn—l—lfn—|—1 — pn—|-1Bn—|—1fn—|—1] +
n=0

pyBnEN — pg Bofo,

N—-1
L(fo,.. fx) = EEMnfn+ Y [PRCutifnit —Phpi Briifar | +

n=0

prBNEN — pd Bofo + Molfy Mofy — Eo].

Stationary condition
N—2

oL
0L =0 = —of
5fo O+nZ:O

0L
of, —0fny =0
+1] + 5En N

5fn—|—1
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Constrained optimization (3/3)

6L
— = —piBo+2X\fy Mo=0
&fo
0L T T
— pnC’l’L 1_pn Bn ]_:O, n:O,,N—2
5fni1 + +1 +
6L
— = 2fiMyx+pyBn =0
of N
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Constrained optimization (3/3)

0L
0fo

—pJ Bo + 2X\ofy My =0

0L
fn—I—l

= pECn+1_pr£+1Bn—|—1:O7 n:O,,N—2

2o T My +pL By =0

- 200 M 7
Inlet conditions : fo i = 4
L 0 if M()jj =0

“Adjoint” equations : p;)Cpi1 — pE+1Bn+1 =0

Oulet conditions : B%pN = —2M%fN
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An optimization algorithm

1. guessed Initial condition fi(r?)
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1. guessed Initial condition fi(r?)
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An optimization algorithm
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3. evaluation of objective function 7™ = E™. If
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7 ) g=1 — 1| < ¢ optimization converged
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4. if |7 /g1 _ 1| > ¢ outlet conditions provide the
“Initial” conditions for the backward problem at x = zout
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4. if |7 /g1 _ 1| > ¢ outlet conditions provide the
“Initial” conditions for the backward problem at x = zout

5. backward solution of the “adjoint” problem from x = xgut
10 x = x5,
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An optimization algorithm

1. guessed Initial condition fi(r?)
2. solution of forward problem with the IC figf)

3. evaluation of objective function 7™ = E™. If

out"

7 ) g=1 — 1| < ¢ optimization converged

4. if |7 /g1 _ 1| > ¢ outlet conditions provide the
“Initial” conditions for the backward problem at x = zout

5. backward solution of the “adjoint” problem from x = xgut
10 x = x5,

6. from the inlet conditions, update of the initial condition
for the forward problem £!"+!

Zuccher, S., Tumin, A., Reshotko, E., Optimal Disturbances in Compressible Boundary Layers — Complete Energy Norm Analysis, Paper AIAA-2005-5314 — p. 16



An optimization algorithm

1. guessed Initial condition fi(r?)
2. solution of forward problem with the IC figf)

3. evaluation of objective function 7™ = E™. If

out"

7"/ 7(n=1) _ 1| < ¢, optimization converged
4. if |7 /g1 _ 1| > ¢ outlet conditions provide the
“Initial” conditions for the backward problem at x = zout

5. backward solution of the “adjoint” problem from x = xgut
10 x = x5,

6. from the inlet conditions, update of the initial condition
for the forward problem £!"+!

/. repeat from step 2 on
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Results

® Discretization.

s 2nd-order backward finite differences in = and
4th-order finite differences in y.
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Results

® Discretization.

s 2nd-order backward finite differences in = and
4th-order finite differences in y.

» Uneven grids in both x and y.

# Code verified against results by Tumin & Reshotko
(2003, 2004) obtained with spectral collocation method.
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# Code verified against results by Tumin & Reshotko
(2003, 2004) obtained with spectral collocation method.

# Inlet norm includes v, and w;, only.

# Outlet norm.
s Partial Energy Norm (PEN) uo,t and T, only.
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Results

® Discretization.

s 2nd-order backward finite differences in = and
4th-order finite differences in y.

» Uneven grids in both x and y.

# Code verified against results by Tumin & Reshotko
(2003, 2004) obtained with spectral collocation method.

# Inlet norm includes v, and w;, only.

# Outlet norm.
s Partial Energy Norm (PEN) uo,t and T, only.
s Full Energy Norm (FEN) uout, Yout, Wout, Lout -
s FEN depends on Re, PEN Is Re-independent.
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Results — Flat plate

0.0018 I I I I I

X % Re — o0 ——

0.0016 [ //X ;K\ Re = 104 ———- ]
0.0014 |- 7 X Re =107 > _

X

0.0012 |-
0.001 -
0.0008 [~
0.0006 [~
0.0004 -
0.0002

G/ Re

Objective function GG/ Re: effect of Re and g for M = 3, Ty, /Taq = 1, Tin = 0 zout = 1.0,
FEN.

= Reynolds number effects only for Re < 104.
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Results — Flat plate

0.02
0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

G/ Re

Objective function GG/ Re: effect of 3, T, /T.q and norm choice (PEN vs. FEN) for M = 0.5,
Re = 103, iy = 0 zout = 1.0. O, Tw/Taq = 1.00; O, Ty /Taq = 0.50; A, Ty /Taq = 0.25.

= No remarkable norm effects; cold wall destabilizing factor.
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Results — Flat plate

Objective function GG/ Re: effect of 3, T, /T.q and norm choice (PEN vs. FEN) for M = 1.5,
Re = 103, iy = 0 zout = 1.0. O, Tw/Taq = 1.00; O, Ty /Taq = 0.50; A, Ty /Taq = 0.25.

= Shift of the curves maximum, enhanced difference between norms (7', /T.q = 1.00).
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Results — Flat plate

0.0018
0.0016 -
0.0014 -
0.0012 |-
0.001 -
0.0008 -
0.0006 -
0.0004
0.0002 -

G/ Re

Objective function GG/ Re: effect of 3, T, /T»q and norm choice (PEN vs. FEN) for M = 3,
Re = 103, x;y = 0 zout = 1.0. O, Tw/Taq = 1.00; O, Ty /Taq = 0.50; A, Ty /Taq = 0.25.

= Up to 17% difference for low values of (.
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Results — Flat plate

0.0025

0.002

0.0015

G/ Re

0.001

0.0005

obL 1 1111 )]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

&

Objective function GG/ Re: effect of z;,, and g and norm choice (PEN vs. FEN) for M = 3,
Tw/Taq =1, xout = 1.0. O, 3y = 0.0; O, 3, = 0.2; A, xj, = 0.4.

= Up to 60% difference for x;, = 0.4 and 8 = 0.1.
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Results — Flat plate

0.2
0.15
0.1
0.05

-0.05
0.1
-0.15
0.2
-0.25 ' ' '

Uout (y) y Wout (y)
(-

Inlet and outlet profiles: effect of norm choice (PEN vs. FEN) for M = 3.0, Re = 103,
Tin = 0.4, Tout = 1.0 and g = 0.1.

= No significant changes in v;,,, some discrepancies in wjy,; larger effects on voyut, rather

than on weyt. NO significant effects on ueyt and Tout -
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Results — Sphere

Tumin & Reshotko (2004)|
0.0012 |- 0 e

2; 5] —-x-- -

Obijective function Ge?: effect of interval location and m = me for 6, = 30.0 deg,
Tw/Taq = 0.5, € = 10~3. PEN.

= Largest gain for small 8,4+ — 6;,; strongest transient growth close to the stagnation point.
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Results — Sphere

0.0012 , , | .
0.0011 / ff—::-—fi%‘{ _
0.001 |- 7 Y |
0.0009 [ 7

0.0008 |- f AN -
0.0007 - 3 .

/ \
0.0006 [~ 7 \t\\\ -
0.0005 | /
0.0004 { | | | N

0.02 0.04  0.06 0.08 0.1
m

Ge?

Objective function Ge?: effect of €, energy norm (PEN vs. FEN) and m = me for
0in = 2.0 deg, Oout = 5.0 deg, O,of = 30.0deg, T /Tag = 0.5. 0, e =1-1073; 0,
e=2-10"3;A,e=3-1073.

= Maximum appreciable difference within 1%. Effect increases with e.
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Conclusions
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Conclusions

v/ Efficient and robust numerical method for computing
compressible optimal perturbations on flat plate and
sphere.
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Conclusions

v/ Efficient and robust numerical method for computing
compressible optimal perturbations on flat plate and
sphere.

v/ Adjoint-based optimization technique in the discrete
framework and automatic in/out-let conditions.

v/ Analysis including full energy norm at the outlet.

J/ Flat plate. For Re = 10°, significant difference in G/ Re
(up to 62%) between PEN and FEN. Effect of M/ and
rin. NO effect in subsonic basic flow. If Re > 10%, vyt
and wq,t do not play significant role.
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Conclusions

v/ Efficient and robust numerical method for computing
compressible optimal perturbations on flat plate and
sphere.

v/ Adjoint-based optimization technique in the discrete
framework and automatic in/out-let conditions.

v/ Analysis including full energy norm at the outlet.

J/ Flat plate. For Re = 10°, significant difference in G/ Re
(up to 62%) between PEN and FEN. Effect of M/ and
rin. NO effect in subsonic basic flow. If Re > 10%, vyt
and wq,t do not play significant role.

v/ Sphere. Largest G¢? close to the stagnation point and
for small range of 4. No significant role played by vyt
and wqy: In the interesting range of parameters.
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The End!
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Are we missing something?

# At non-infinitesimal level of disturbance streaks are
observed on a flat plate, instead of
Tollmien—Schlichting waves.
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# Linear Stability Theory (classical modal approach) fails
even for the simplest geometries (Hagen-Poiseuille pipe
flow, predicted stability vs. Recrex =~ 2300)!
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# At non-infinitesimal level of disturbance streaks are
observed on a flat plate, instead of
Tollmien—Schlichting waves.

# Linear Stability Theory (classical modal approach) fails
even for the simplest geometries (Hagen-Poiseuille pipe
flow, predicted stability vs. Recrex =~ 2300)!

# Certain transitional phenomena have no explanation
yet, e.g. the “blunt body paradox” on spherical
fore-bodies at super/hypersonic speeds.
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Are we missing something?

# At non-infinitesimal level of disturbance streaks are
observed on a flat plate, instead of
Tollmien—Schlichting waves.

# Linear Stability Theory (classical modal approach) fails
even for the simplest geometries (Hagen-Poiseuille pipe
flow, predicted stability vs. Recrex =~ 2300)!

# Certain transitional phenomena have no explanation
yet, e.g. the “blunt body paradox” on spherical
fore-bodies at super/hypersonic speeds.

There must exist another mechanism, not related to the
eigenvalue analysis: transient growth.
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Alternative paths of BL transition

Forcing Environmental Disturbances

amplitude

Receptivity

.

Transient Growth

A
11 1
| §c &
Primary Modes ' Bypass

Secondary Mechanisms

|

Breakdown

I

Turbulence

M. V. Morkovin, E. Reshotko, and T. Herbert,
(1994),“Transition in open flow systems — A re-
assessment”, Bull. Am. Phys. Soc. 39, 1882.
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Alternative paths of BL transition

Forcing Environmental Disturbances

amplitude

Receptivity
| l | “At the present time, no
Transient Growth : .
T mathematical model exists
| P Sy l that can predict the transition
Primary Modes | . 2YPASS Reynolds number on a flat
Secondary Mechanisms p|ate”!
B',eakdown Saric et al., Annu. Rev. Fluid
1 Mech. 2002. 34:291-319
Turbulence

M. V. Morkovin, E. Reshotko, and T. Herbert,
(1994),“Transition in open flow systems — A re-
assessment”, Bull. Am. Phys. Soc. 39, 1882.
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Transient growth
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Transient growth

Angle between modes ¢ = 150 [deg]

Normalized amplitude

0.8
0.6
0.4
0.2

Normalized time or space

NN M1+ M2
] M1
n | M2 _
| | | | | I
0 2 4 6 8 10 12 14
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Transient growth

Non-normality of the oper-
ator. For most flows the lin-
ear stability equations are
not self-adjoint (the eigen-
functions are not orthogo-
nal)

Normalized amplitude

e R
o Nk~ O oo =

Angle between modes ¢ = 150 [deg]

| | | | |
_ |M1+ M2
- M
- ’M2|‘\\ —
| | | | L
0 2 4 6 8 10 12

Normalized time or space

14
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