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Optimal disturbances for the supersonic flow past a sharp cone are computed to assess the effects due to flow

divergence. This geometry is chosen because previously published studies on compressible optimal perturbations for

flat plate and sphere could not isolate the influence of divergence alone, as many factors characterized the growth of

disturbances on the sphere (flow divergence, pressure gradient, centrifugal forces, and dependence of the edge

parameters on the localMachnumber). Flow-divergence effects result in the presence of an optimal distance from the

cone tip for which the optimal gain is the largest possible, showing that divergence effects are stronger in the

proximity of the cone tip. By properly rescaling the gain, wave number, and streamwise coordinate due to the fact

that the boundary-layer thickness on the sharp cone is
���

3
p

thinner than the one over theflat plate, it is found that both

the gain and thewave number compare fairlywell.Moreover, results for the sharp cone collapse into those for theflat

plate when the initial location for the computation tends to the final one andwhen the azimuthal wave number is very

large. Results show also that a cold wall enhances transient growth.

Nomenclature

A, B0, B1, B2, C,

D,H1,H2,M, ~M

= 5 � 5 matrices

E = perturbation energy
f = vector of perturbation unknowns
G = energy ratio G� Eout=Ein

H = wall-normal characteristic length
i =

��������1p
J = objective function
L = streamwise characteristic length
L = augmented functional
M = Mach number
m = azimuthal index
~m = azimuthal wave number ( ~m� �m)
n = nth streamwise step
Pr = Prandtl number
p = perturbation pressure
p = vector of adjoint variables
Re = Reynolds number (Re� UL

�
)

T = temperature
U = base-flow streamwise velocity component
u = perturbation streamwise velocity

component

V = base-flow wall-normal velocity
component

v = perturbation wall-normal velocity
component

w = perturbation spanwise velocity
component

x = streamwise coordinate
y = wall-normal coordinate
� = spanwise wave number for flat plate
� = specific heat ratio
�x = streamwise interval (�x� xout � xin)
� = small parameter (��Href=Lref)
� = half-angle of cone tip
� = kinematic viscosity
� = density
� = azimuthal coordinate

Subscript

ad = adiabatic conditions
in = inlet conditions
loc = local (edge) conditions
out = outlet conditions
ref = reference conditions
s = basic state
w = wall conditions
1 = upstream conditions

Superscript

T = transpose

I. Introduction

I NMANYapplications transition to turbulence occurs without the
classical exponential growth. On the contrary, a transient growth

of the disturbance energy and a subsequent downstream decay is
observed in flows that are stable to wavelike perturbations such as
Tollmien–Schlichting (TS) waves. The problem of optimal
disturbances, in the context of bypass transition to turbulence, has
been of great interest during the last decade.
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Transient growth arises from the coupling between slightly
damped, highly oblique Orr–Sommerfeld (OS) and Squire modes
leading to algebraic growth followed by exponential decay, in
subcritical regions outside the TS neutral curve. A weak transient
growth can also occur for two-dimensional modes because the OS
operator and its compressible counterpart are not self-adjoint, and
therefore their eigenfunctions are not strictly orthogonal [1].

Historically, the first approach to nonmodal disturbances was in
the inviscid limit and in the temporal framework, where it was found
that the streamwise disturbance velocity amplitude may grow
algebraically in time, even though the basic flow does not possess an
inflection point [2]. Several other pioneeringworks followed [3–9] in
the temporal framework, recognizing the great potential of nonmodal
growth for explaining bypass transition. For a brief account on the
development of transient-growth studies the reader is referred to
[10].

Optimal perturbations in the spatial framework have only more
recently been considered. The spatial Cauchy problem within the
scope of the linearized Navier–Stokes equations is, however,
radically different from the temporal one and ill posed [10,11],
raising some obstacles in applying to the spatial analysis the same
optimization methods used in the temporal case. The ill posedness of
the spatial Cauchy problem was first overcome by considering the
(linearized) boundary-layer equations [12,13] instead of the Navier–
Stokes equations, and including nonparallel effects. The optimal
initial disturbance was found to be composed of stationary
streamwise vortices whereas the induced velocity field was
dominated by streamwise streaks. In the spatial framework, optimal
perturbations have also been computed in the nonlinear case [14].

In the compressible case, and within the scope of the parallel flow
approximation, temporal [15,16] and spatial [17–19] analyses of the
transient-growth phenomenon have been carried out. A model for
transient growth including nonparallel effects in the compressible
boundary layer past a flat plate has also been developed [20] and then
extended to the compressible boundary layer past a sphere
[10,11,19]. In [10,11] compressible optimal perturbations were
calculated by including surface curvature effects and nonparallel
growth of the boundary layer. Moreover, the use of a full energy
norm at the inlet [10] and at the outlet [10,11] was considered,
motivated by the fact that in a flowfield dominated by streamwise
vortices, the wall-normal and spanwise velocity components at the
outlet might also play a role in the energy norm to be maximized.
This could be the case for a blunt body, for which there are some
indications that the largest transient growth is located close to the
stagnation point [21], where a flowfield dominated by streaks might
not yet have been established.

Despite the efforts to date, some issues regarding transition in
supersonic flows are still open. One of them is the long-standing
blunt-body paradox [17]. At high-speed flight, boundary-layer
transition on a blunt body occurs in a region that is subsonic and
characterized by a favorable pressure gradient and therefore stable to
TS-instability-like phenomena. Transient growth seems to be a
promising mechanism to explain such a paradox [10,21]. However,
the ultimate elucidation of the blunt-body paradox requires solving
the roughness receptivity problem, which can explain the origin of
the perturbation. The latter issue has not been addressed yet.

In the previously cited works concerning the compressible
boundary layer past a sphere [10,11], several effects contribute to the
results, such as the geometrical divergence of the flow, the
centrifugal forces, the pressure gradient, and the indirect dependence
of the edge conditions (at the edge of the boundary layer) on theMach
number through the meridional coordinate. On the contrary, the
supersonic boundary layer past a flat plate does not include any of
these effects. A comparison betweenflat-plate results and sharp-cone
results, on the other hand, would shed some light on the role played
byflow divergence, due to geometrical factors only. In the case of the
sharp cone, in fact, there are no centrifugal forces and the Mach
number is constant in the streamwise direction, excluding two out of
three effects present in the compressible boundary layer past a
sphere. An analysis of the optimal perturbations in the supersonic
flow over a sharp cone is, however, still missing.

The objective of the present work is therefore the characterization
of optimal disturbances in the supersonic boundary layer over a sharp
cone. The aim is twofold. Results here obtained, when compared
with the flat-plate and sphere cases, will elucidate the role played by
the flow divergence alone. Secondly, the extension to the
axisymmetric case of the sharp cone represents an intermediate
step toward the computation of optimal perturbations in the
supersonic boundary layers for more realistic geometries, such as the
blunt-nose cone and three-dimensional geometries.

II. Governing Equations

The governing equations for steady, three-dimensional
disturbances in the supersonic flow past a sharp cone are derived
from the linearized Navier–Stokes equations, in the same fashion as
in [10,11,19,20].

A small parameter ��Href=Lref is introduced for scaling

purposes, where Href �
�������������������������
�refLref=Uref

p
is a typical-boundary layer

length in the wall-normal direction y and Lref is a typical scale of the
geometry (length of cone L in the present case). The scaling
parameter � is thus strictly related to the Reynolds number

�� Re�1=2ref , where Reref �UrefLref=�ref is the reference Reynolds
number.

As it follows frompreviousworks regarding optimal perturbations
in both incompressible and compressible boundary layers
[10,11,13,14,19,22,23], the disturbance flow is expected to be
dominated by streamwise vortices and therefore the following
scaling is employed [10]. The streamwise coordinate x is normalized
with Lref , whereas the wall-normal coordinate y is scaled with �Lref .
The azimuthal coordinate �, being an angle, is not normalized. The
streamwise velocity component u is scaled with Uref , wall-normal
velocity v and azimuthal velocity w with �Uref , temperature T with
Tref , and pressure p with �2�refU

2
ref . Density � is eliminated through

the state equation.
Because of the scaling adopted, the second derivative with respect

to the streamwise coordinate x and @p=@x are smaller than the other
terms, and are therefore neglected. This leads to a parabolic system of
equations.

Perturbations are assumed to be periodic in the azimuthal direction
� as exp�im��, where m is the azimuthal index, so that the general
unknown can be expressed as q�x; y� exp�im��, where q�x; y� is the
amplitude, which depends on x and y, and i is the imaginary unit.

If the vector of perturbations is f� �u; v; w; T; p�T (where the
superscript T denotes the transpose), with w� i ~w ( ~w being the
amplitude of the spanwise velocity component), the governing
equations can be written as follows:

�Af�x � �Dfy�x � B0f�B1fy �B2fyy (1)

This form of the governing equations is general and can be derived
for different geometries such as flat plate, sphere, sharp cone, or
blunt-nose cone. Nonzero elements of the 5 � 5 real matricesA,B0,
B1, B2, andD are given in the Appendix. New terms, relative to the
flat-plate case, arise in the equation due to the geometrical factors
introduced by the half-angle of the cone tip �.

As far as boundary conditions are concerned, all perturbations are
required to be zero at the wall except forp, whereas in the freestream
all perturbations vanish except for v:

y� 0: u� 0; v� 0;w� 0;T � 0

y ! 1: u ! 0;w ! 0;p ! 0;T ! 0
(2)

To isolate the derivative with respect to x, system (1) can be recast
as

�H1f�x �H2f� 0 (3)

where operatorsH1 andH2 are still 5 � 5 real matrices and contain
the dependence on x and y due to the basic flow:

H 1 �A �D�	�y; H2 ��B0 � B1�	�y � B2�	�yy (4)
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System (3) is parabolic in nature and can be solved by means of a
downstream marching procedure with initial data specified at the
inlet section of the domain x� xin.

It is worth noting that the disturbance equations are not Reynolds
number independent (contrary to the flat-plate case) because of the
parameter � in the scaling, which is associated with geometrical
effects.

III. Formulation of the Optimization Problem

The problem of finding arbitrarily normalized optimal
perturbations practically reduces to performing a constrained
optimization. The constraints are the governing equation (3) and the
normalization of the initial energy of the perturbation at the inlet,Ein.
The objective function is a particular norm to be identified and
therefore arbitrary. However, it should be a measure of the flow
conditions relevant to the transition process. This choice is neither
easy nor unique. In previous works dealing with optimal
perturbations in the incompressible framework [12–14,22,23], the
kinetic energy of the disturbance field has always been the choice.

In the compressible case, previous works [10,11,19,20]
maximized Mack’s energy norm [24] of the perturbation kinetic
energy, density, and temperature (or simply the part containing u and
T) at the outlet plane,

Eout �
Z 1

0

�
�sout �u2

out � �2�v2out � w2
out�� �

�2outTsout

��soutM
2

� T2
out�sout

��� � 1�Tsout
M2

�
dy (5)

in which the scaling described in Sec. II is employed. Expression (5)
was derived for perturbations developing in the boundary layer over
a flat plate within the temporal framework and is here used for the
spatial case, as done in [20]. After employing the equation of state for
the basic flow and for the perturbation, and observing that in the limit
� ! 0 v and w can be neglected (Reynolds-independent approach,
see [13]), the norm reads

Eout �
Z 1

0

�
�soutu

2
out �

�soutT
2
out

�� � 1�T2
sout

M2

�
dy (6)

or more compactly

Eout �
Z 1

0

�
fTout ~Moutfout

�
dy (7)

where the linear operator ~Mout is the diagonal 5 � 5 matrix

~M out �

�sout 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0
psout

���1�T2
sout

M2 0

0 0 0 0 0

2
66664

3
77775 (8)

The initial condition for the compressible boundary-layer
equations is not arbitrary, but only three of the five variables can be
imposed at xin [25]. However, in the incompressible case and for
Re ! 1, it was observed that the choice uin � 0, pin � 0, vin and
win related by the continuity equation corresponds to the maximum
gain in an input–output fashion [13] (in the incompressible case the
number of independent initial conditions is two; see also [13,14,26]).
This choice also corresponds to the physical mechanism, observed in
transitional boundary-layer flows, known as the lift-up effect [27],
according to which streamwise vortices lift low momentum flow up
(from the wall) and push down highmomentum flow causing streaks
that eventually break down to turbulence. Led by these
considerations, here we focus on initial perturbations with only v
and w nonzero, which correspond to steady, streamwise vortices.

The kinetic energy of the optimal disturbance fin, if only vin and
win are nonzero, is therefore

Ein �
Z 1

0

��sin�2�v2in �w2
in�� dy (9)

or more compactly

Ein �
Z 1

0

�fTin ~Minfin� dy (10)

where ~Min is the 5 � 5 diagonal matrix

~M in �

0 0 0 0 0

0 �2�sin 0 0 0

0 0 �2�sin 0 0
0 0 0 0 0

0 0 0 0 0

2
6664

3
7775 (11)

The quantity to be maximized is G� Eout=Ein, the ratio between
the outlet and the inlet norms. However, to allow direct comparison
with previous works, G�2 will be presented in the Results section

G�2 �
R1
0

h
�soutu

2
out � psoutT

2
out

���1�T2
sout

M2

i
dy

R1
0 ��sin

�
v2in � w2

in

�
� dy

(12)

Because the problem is linear, an arbitrary normalization for the
initial disturbance at xin can be chosen, for example, Ein � 1, so that
the maximization of Eq. (12) turns out to be equivalent to the
maximization of expression (7), that is, J � Eout.

It should be clear now that the whole problem of finding optimal
perturbations reduces to a constrained optimization, in which we
seek the initial conditions for the disturbance equation (3) that
maximize Eq. (7) and that satisfy the constraint Ein � E0 at xin,
together with the direct equation (3) and boundary conditions (2) at
each x 2 �xin; xout�.

The details of the constrained optimization procedure are not
reported here, as they can be found in [10,11], to which the reader is
referred. The classical Lagrangemultiplier technique is applied to the
discrete version of problem (3), which can be recast as
Cn�1fn�1 �Bnfn, leading to the so-called adjoint equations
[10,11,13,14,22,23,26,28] (here n denotes the nth grid node in the
streamwise direction x, f is the vector of 5 � Ny unknowns at each n
station, Ny being the number of grid nodes in the wall-normal
direction y; matrices C and B depend on x and y, as the basic flow
does, and account for the discretization in both x and y).

The use of the discrete approach has several advantages among
which the necessity of an “ad hoc” adjoint code is avoided and a
foolproof test is available by comparing the results of the direct and
adjoint calculation, which must match up to machine accuracy for
any step size and not only in the limit of step size tending to zero
[13,14,26].

The augmented functional L contains the objective function
J � Eout, the constraints (3) and Ein � E0, and the Lagrange
multipliers [10,11]. The optimization imposes �L� 0, which leads
to the adjoint equations in the discrete form and coupling conditions
between the direct and adjoint problems at the inlet (xin) and outlet
(xout). These conditions can be written in a matrix form so that their
application becomes straightforward. To retrieve the outlet
conditions, a system needs to be solved where the coefficient matrix
is singular (due to @p=@x� 0 in this approximation), reflecting the
fact that at least one out of five adjoint variables is free at x� xout and
therefore can be chosen arbitrarily. For the sake of simplicity, we set
the fifth adjoint variable equal to zero.

The constrained optimization formulation requires the simulta-
neous solution of a large, coupled system of direct equations, adjoint
equations, boundary conditions, and coupling conditions. Instead of
doing it in one shot, however, we employ the intrinsic parabolic
nature of the equations to efficiently solve separately the two coupled
problems. Such an algorithm can be outlined in the following few

steps. 1) A guessed initial condition f�0�in is provided at the beginning
of the optimization procedure; 2) the forward problem is solved at the

ith iteration with the initial condition f�i�in ; 3) the objective function
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J �i� � E�i�
out is computed at the end of the forward iteration and

compared to the objective function J �i�1� � E�i�1�
out at the end of the

previous forward iteration. If jJ �i�=J �i�1� � 1j< �t (where �t is the
maximum tolerance accepted to stop the optimization) then the
optimization is considered converged and the problem solved; 4) if
jJ �i�=J �i�1� � 1j> �t the initial conditions for the backward
problem are assigned at the outlet and derived from the direct
solution at x� xout; 5) the backward problem is solved from x� xout
to x� xin; 6) a new initial condition for the forward problem f�i�1�

in is
obtained from the solution of the backward problem at x� xin
employing the coupling condition at the inlet; 7) the loop is repeated
from step 2 on until it is eventually ended in step 3. It should be noted
that this procedure does not necessarily guarantee convergence. If
there is an attractor for the solution, then the procedure will capture it
and this happens quite fast (2–3 forward–backward iterations).

IV. Discretization

A finite difference discretization scheme has been implemented to
numerically solve Eq. (3) with boundary conditions (2). For the sake
of generality, grid nodes in x and y are not necessarily equally spaced.
A staggered grid is introduced in the wall-normal direction, with
variables u, v,w, and T known at the grid nodes, and p known at the
midgrid (staggered) nodes. All equations are satisfied at the grid
nodes except for continuity, which is satisfied in the midgrid nodes.
The use of the uneven grid in y allows us to cluster more nodes close
to the wall so as to take into account the larger gradients of boundary-
layer quantities in this region. The last node of the y grid is located far
enough from the wall to allow satisfaction there of the boundary
conditions for y ! 1.

Fourth-order noncompact finite differences are used for the y
discretization, employing six nodes so as to allow fourth order
accuracy for the second derivative. By using six nodes, the first
derivative is automatically fifth order accurate and the function
(when interpolated due to the staggered grid) is sixth order accurate.

Also the discretization in the streamwise direction is based on an
uneven grid. Because the system of boundary-layer equations is
parabolic, a second order backward discretization is chosen, which
requires the solution at two previous steps to be known. For the first
step, however, a first order scheme is used because only the initial
condition is available.

For further details and for a thorough derivation of the discrete
adjoint equations, the reader is referred to [10,11].

V. Results

The basic flow for the sharp cone is obtained from the flat-plate
case by rescaling the wall-normal coordinate y and its derivatives
according toMangler’s transformation [29]. The localMach number,
Mloc, at the edge of the boundary layer was calculated assuming
calorically perfect gas flow at freestream Mach number M1 � 6.
Because the shockwave is assumed to be far away from the boundary
layer (and perturbation), their mutual interaction is not considered.
The calculations are performed for cone half-angles of �� 15 and
25 deg. The main goal in the presentation of the results is to discuss
the effects originating from flow divergence induced by the
geometry. The boundary-layer edge velocity, density, temperature,
and viscosity at x� Lref are chosen as the reference parameters. All
results are obtained at �� 0:001 unless otherwise stated.

Figure 1 shows the objective function G�2 obtained from the
optimization procedure for �� 15 deg. Adiabatic boundary
conditions are used for the temperature at the wall, Tw=Tad � 1,
and the initial station is kept constant, xin � 0:2, while changing the
outlet station. Results show that there exists a location, downstream
of xin � 0:2, where the curve of the maximum energy growth as a
function of the modified azimuthal wave number, ~m� �m, reaches
the largest value, after which the maximum of the curve decreases
with increasing xout. Among the computed curves, this maximum
seems to be reached for xout � 0:3. However, a better estimate can be
obtained by performing a parabolic interpolation of the data
corresponding to the maxima for the three cases xout � 0:275,

xout � 0:3, and xout � 0:35. This leads to the optimal outlet location
xout � 0:32, fromwhich the optimal interval�x� xout � xin � 0:12
is obtained.

The shape of the optimal perturbation at xin is very similar to what
has been found so far in both incompressible and compressible
studies [13,20] and is shown in Fig. 2 for the largest gain observed in
the previous figure, that is, ~m� 0:045 and xout � 0:3. Themaximum
energy growth is determined by streamwise vortices generated by v
andw perturbations that extend outside the boundary layer and decay
at the same rate as a function of y. This type of perturbation is
consistent with the assumptions employed in the scaling process.

By moving the inlet location further downstream to xin � 0:4,
results qualitatively similar to those shown in Fig. 1 are found. The
corresponding estimated xout that causes the maximum gain is xout �
0:64 and the interval�x� xout � xin � 0:24 is greater than the value
�x� 0:12 previously observed for xin � 0:2. The conclusion is that
divergence effects are stronger in the proximity of xin � 0, as one
could argue from geometrical considerations.

Figure 3 shows the objective function G�2 computed for a larger
cone half-angle, �� 25 deg, while keeping xin � 0:2 fixed. The
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Fig. 1 Objective function G�2: effect of xout and ~m for �� 15 deg,
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general trend of the results is as in Fig. 1. The estimated value of xout
that causes the maximum gain is xout � 0:32, leading to�x� 0:12.
Remarkably, the latter is the same as for �� 15 deg and xin � 0:2.

By moving the inlet location to xin � 0:4 (for �� 25 deg), the
optimal estimated outlet location is xout � 0:64 and thus�x� 0:24,
that is, the same as for �� 15 deg. This suggests the possible
insensitivity of �x� xout � xin to the nose-tip angle. However, as
can be deduced by comparing Figs. 1 and 3, � influences the values of
G�2, which are consistently higher for larger cone half-angles.

As opposed to the sharp-cone geometry, the flat-plate case has no
effects due to the flow divergence. Therefore, by analyzing the
results from the previous figures together with those obtained in the
same fashion for the flat plate, more insights can be gained regarding
the influence of the geometry. This is done in Fig. 4, where flat-plate
results are shown for M� 3:22 (the local Mach number
corresponding to the 25 deg cone), adiabatic wall, and xin � 0:4. It
is clear that moving the outlet location downstream leads to a
monotonic increase in the curve of maximum energy growth. A
precise optimal outlet xout, however, is not found. This is a new
finding with respect to previous figures and to previously published
results for the flat plate [20], in which only the inlet location xin was
changed, while keeping xout � 1:0. The straightforward conclusion
from the comparison between Fig. 4 and the previous ones is that,
once the inlet location is fixed, divergence effects result in the
existence of an optimal outlet location xout < 1 for which the largest
energy growth is reached. This behavior was also present in the
sphere case [10,11,19], corroborating the conjecture of being due to
the flow divergence only.

Figure 5 plots the reverse case to what was seen before. The gain
G�2 is shown for the sharp-cone geometry, keeping the outlet fixed,
xout � 1:0, and changing the inlet xin, for �� 25 deg (the other
parameters areM1 � 6,Mloc � 3:22, and Tw=Tad � 1). An optimal
inlet location is now found. By performing the same type of parabolic
interpolation for the maxima as done before, the largest energy
growth is obtained for an estimated xin � 0:72, that is, for
�x� 0:28. The latter is comparable with the value of�x found for
xin � 0:4 while changing xout for the 25 deg cone.

VI. Quantitative Comparison Between Flat-Plate
and Sharp-Cone Results

Results presented in Fig. 4 certainly shed a new light on the
differences between flat-plate and sharp-cone geometries that can be
attributed toflowdivergence.However, the order ofmagnitude of the
gain reported in that figure differs quite remarkably from what is
shown in the figures for the sharp cone. This allows only a qualitative
comparison. To compare quantitatively the energy growth for theflat
plate and cone, both physics and scaling should be considered.

The physics suggests that the results for the sharp cone should
reduce to those obtained for the flat plate in the limits xin ! xout and
m ! 1. The first is dictated by the fact that divergence effects
(which are the main difference between sharp-cone and flat-plate
geometries) are negligible far from the cone tip (in the proximity of
xout). The second limit is due to the fact that the presence of many
vortices in the azimuthal direction forces the flow to be less sensitive
to divergence and, thus, to behave as in the flat-plate case. To
emphasize the effects of divergence in the flow past the sharp cone,
therefore, we focus on the limits xin ! xout andm ! 1. The outlet
location xout � 1 is kept constant, as for the flat-plate case, so as to
allow direct comparison.

The scaling is important as well. The fact that the boundary-layer

thickness over the cone is 1=
���
3

p
times that of the boundary-layer

thickness over the flat plate, and the same length scale Lref is used in
the definition of the Reynolds number in both cases, suggests that
G=Re for the flat plate [10,11,20] must be compared with 3G�2. On
the other hand, the wave number�z=Href plate must be compared with

m��mz

R
�mHref cone

R

z

Href cone

where z is the transverse coordinate along the cone surface and R is
the local radius. The comparison between �z=Href plate and m�,
therefore, reduces to the comparison between � and mHref cone=R.
However, because Href cone �Href plate=

���
3

p
and R� Lref sin �, by

taking into account that ��Href plate=Lref , one gets

mHref cone

R
�mHref plate���

3
p

R
� mHref plate���

3
p

L sin �
� m����

3
p

sin �
� ~m���

3
p

sin �

This rescaling is employed in Fig. 6 for the sharp-cone results to
compare them with those for the flat plate. Many conclusions can be
deduced from these plots, obtained by changing � and
�x� xout � xin. First, the scaling is correct in that all the results
for the cone with xin � 0:95 and xout � 1:0 (□, △, ▽, ◇) collapse
onto one curve, regardless of �. Secondly, � does not have any effect
on the gain function (3G�2), as is proved by comparison of the cases
for �� 0:001 (□) and �� 0:0001 (△), both referring to xin � 0:95,
xout � 1:0, and �� 15 deg. Third, the comparison between the cone
(empty symbols) and the flat plate (full symbols) should be carried

β

G
/R

e
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0.0025

0.002

0.0015

0.001

0.0005

0

Fig. 4 Objective function G=Re, flat plate: effect of xout and � for
M � 3:22, Tw=Tad � 1, xin � 0:4. □: xout � 0:45; ■: xout � 0:6; ○:

xout � 0:8; ●: xout � 1:0.
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Fig. 5 Objective function G�2: effect of xin and ~m for �� 25 deg,
M1 � 6,Mloc � 3:22,Tw=Tad � 1, xout � 1:0.□: xin � 0:2;■: xin � 0:4;
○: xin � 0:6; ●: xin � 0:8; ▲: xin � 0:9.

β ; m/ (√3 sin θ)
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Fig. 6 Objective function, comparison between G=Re (flat plate) and

3G�2 (sharp cone) as a function of � and ~m=� ���

3
p

sin��, respectively,
effect of xin and wave number. Mloc � 3, Tw=Tad � 1, xout � 1:0. □:
�� 15 deg and xin � 0:95;△: �� 15 deg, xin � 0:95 and �� 0:0001;
○: �� 15 deg and xin � 0:97113; ▽: �� 25 deg and xin � 0:95; ■:

flat plate, xin � 0:913; ●: flat plate, xin � 0:95.
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out with further care with respect to �x. In fact, because of the
difference in the boundary-layer thickness between the flat plate and
the cone, distances�x having about the same number of boundary-
layer thicknesses should be considered. We suggest comparing

�xcone with �xplate=
���
3

p
, implying that the sharp-cone cases x 2

�0:95; 1� and x 2 �0:97113; 1� should be compared, respectively, with
the flat-plate cases x 2 �0:913; 1�, and x 2 �0:95; 1�. Figure 6
confirms this by showing that results for the sharp cone and the flat
plate collapse onto each other for ~m ! 1, when the correct intervals
�x are considered (see □ vs ■ and ○ vs ●).

To investigate the intuitive idea that the difference in the energy
growth between the two geometries should diminish as xin ! xout
andm ! 1, in Fig. 7 we compare the sharp cone (empty symbols),
�� 15 deg, and the flat plate (full symbols) at different xin. The
parameter�x is properly rescaled so that□ compareswith■,○with
●,△ with▲, and▽ with▼. Results confirm what is expected (see,
for example, the sharp-cone case xin � 0:95,▽, compared to the flat-
plate case xin � 0:913, ▼).

Having the correct scaling, further comparisons between the two
geometries can be carried out. The effect of wall temperature, which
can either promote or delay transition in supersonic boundary layers,
is shown in Fig. 8 in the limit xin ! xout. Empty symbols refer to the
sharp cone (�� 15 deg) and full symbols to the flat plate. It can be
noted that a cold wall, that is, Tw=Tad � 0:5 (○ and▽ for the sharp
cone, corresponding to the cases● and▼ for the flat plate) enhances
the energy growth, as already pointed out in previous studies
[10,11,19,20]. Moreover, not only is the gain larger for a cold wall,

but the wave number for which the optimum is reached is also larger.
For very large values of the wave number, results for the two
geometries collapse onto each other, as a consequence of the m !
1 limit previously described. This behavior is consistent, for every
case considered (see also □ vs ■, and▽ vs ▼).

All considered examples demonstrate that the growth factorG for
the flat plate is larger than that for the cone leading to the conclusion
that flow divergence has an abilizing effect.

VII. Conclusions

Optimal disturbances originating in the supersonic boundary-
layer flow past a sharp axisymmetric cone have been studied,
motivated by several factors. Similar studies previously published
[10,11,19,20] reported optimal perturbations for a flat plate and
sphere, but a direct comparison between them was complicated by
the many effects present in the case of the sphere (flow divergence,
pressure gradient, centrifugal forces, and dependence of the edge
parameters on the localMach number). The sharp-cone geometry, on
the other hand, is simpler than the spherical one and characterized by
flow-divergence effects only, allowing us to identify them more
easily when comparing a flat plate, a sharp cone, and a sphere.
Moreover, in the development of the studies toward a more realistic
three-dimensional supersonic case, the sharp-cone geometry is a
natural step before the blunt-nose cone.

Equations are obtained from the linearized Navier–Stokes
equations by employing a scaling that assumes the perturbation
dominated by streamwise vortices. This leads to parabolic-in-x
equations. The optimization is carried out in an iterative manner,
relying on the alternate solution of the direct and adjoint problems
related by coupling conditions at the inlet and outlet.

A first set of results, obtained by keeping the inlet location fixed
and changing the outlet location, provides interesting conclusions on
flow divergence. An optimal distance �x from the inlet
(�x� xout � xin) is found at xout < 1, for which the curve of the
maximum gain is the largest. The increase of �x when the inlet
location is moved downstream suggests that divergence effects are
stronger in the proximity of the cone tip. On the other hand,
increasing the cone half-angle does not seem to affect �x. When
these results are compared with the flat-plate case, it becomes clear
that the presence of an optimal downstream location for the energy
growth is a unique characteristic of flows dominated by geometrical
divergence, such as those on sharp cones and spheres. For the case of
the flat plate, in fact, for a given inlet station xin, the curve of optimal
energy gain reaches larger values monotonically as the outlet
location, xout, is moved downstream.

A second set of results is obtained by keeping the outlet location
fixed and changing the inlet location. The gain, wave number, and
�x are properly rescaled taking into account the half-cone angle �
and the fact that the boundary-layer thickness on the sharp cone is

���
3

p
thinner than that over the flat plate. By comparing the two
geometries, it is found that both the gain and the wave number scale
fairly well and that results for the sharp cone collapse onto those for
the flat plate in the limits xin ! xout and m ! 1.

Comparisons of growth factors for cones and flat plates
demonstrate that the flow divergence has a stabilizing effect on
transient growth. Results confirm also that a cold wall enhances
transient growth.

Appendix: Matrices for Compressible Flow Past a
Sharp Cone

Assuming that the basic flow is known, let x, y, and � denote the
three independent coordinates, where x is the streamwise distance
from the nose tip, y the wall-normal distance, and � the azimuthal
angle. With this notation, u, v, andw are the corresponding velocity
field, that together with temperature T and pressure p form the set of
the problem’s unknowns. Density � is related to T and p by the state
equation and thus is not an explicit unknown.

The scaling is as described in Sec. II. The unknowns in the
disturbance equations are only five and are assumed to be

β ; m / (√3 sin θ)
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Fig. 7 Objective function, comparison between G=Re (flat plate, full

symbols) and 3G�2 (sharp cone, empty symbols) as a function of � and

~m=� ���

3
p

sin ��, respectively, effect of xin and wave number. Mloc � 3,

Tw=Tad � 1, xout � 1:0. Sharp cone, □: �� 15 deg and xin � 0:6; ○:

�� 15 deg and xin � 0:8; △: �� 15 deg and xin � 0:9; ▽: ��
15 deg and xin � 0:95. Flat plate, ■: xin � 0:30718; ●: xin � 0:65359,
▲: xin � 0:82679, ▼: xin � 0:913.
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Fig. 8 Objective function, comparison between G=Re (flat plate, full

symbols) and 3G�2 (sharp cone, empty symbols) as a function of � and
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3
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sin ��, respectively, effect of xin and wave number and Tw=Tad.

Mloc � 3, xout � 1:0. Sharp cone, □: �� 15 deg, Tw=Tad � 1:0 and

xin � 0:95; ○: �� 15 deg, Tw=Tad � 0:5 and xin � 0:95; △:

�� 15 deg, Tw=Tad � 1:0 and xin � 0:97113; ▽: �� 15 deg,
Tw=Tad � 0:5 and xin � 0:97113. Flat plate, ■: xin � 0:913 and

Tw=Tad � 1:0; ●: xin � 0:913 and Tw=Tad � 0:5; ▲: xin � 0:95 and

Tw=Tad � 1:0, ▼: xin � 0:95 and Tw=Tad � 0:5.
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proportional to exp�im��, where m is the azimuthal index and i the
imaginary unit.

In what follows viscosity 	s is assumed to be a function of
temperature only, and therefore	0

s stands for the derivative d	s=dTs.
Transformations of the linearized equations lead to the system of

partial differential equations

�Af�x � �Dfy�x � B0f�B1fy �B2fyy (A1)

whereA,B0,B1,B2, andD are 5 � 5matrices, and can be recast as

�H1f�x �H2f� 0 (A2)

Operators H1 and H2 are still 5 � 5 matrices and contain the
dependence on x and y:

H 1 �A �D�	�y; H2 ��B0 � B1�	�y � B2�	�yy (A3)

The expression to be maximized, in the limit � ! 0 (i.e.,
Re ! 1), is the integral in the wall-normal direction of the kinetic
energy and temperature. After the transformations imposed by the
geometry, Eout reads

Eout �
Z 1

0

sin ��x� �y cot ��
�
�soutu

2
out �

�soutT
2
out

�� � 1�T2
sout

M2

�
dy

(A4)

where the term sin ��x� �y cot �� stems from the integration over
the whole domain, that is, over the three independent variables.

The nonzero elements of the matrices are here reported, with the
wave number � defined as �� ~m=�x� �y cot ��, ~m being ~m� �m.

Continuity equation:

A11 � �s; A14 �� �sUs

Ts

; B11
0 �� �s

�x� �y cot �� ;

B12
0 �� @�s

@y
; B13

0 ����s;

B14
0 � @

@y

�
�sVs

Ts

�
� �sUs

Ts�x� �y cot �� ; B13
1 ���s;

B14
1 � �sVs

Ts

x-momentum equation:

A21 � 2�sUs; A24 �� �sU
2
s

Ts

;

B21
0 �� @�sVs

@y
� 	s�

2 � 2�sUs
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@y
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�
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Ts
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�
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2
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� 	0
s

@Us

@y
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y-momentum equation:
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2

3
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;
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�
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�
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3
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