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Optimal perturbations in compressible, non-parallel boundary layers are considered
here. The flows past a flat plate and past a sphere are analysed. The governing
equations are derived from the linearized Navier–Stokes equations by employing
a scaling that relies on the presence of streamwise vortices, which are well-known
for being responsible for the ‘lift-up’ effect. Consequently, the energy norm of the
inlet perturbation encompasses the wall-normal and spanwise velocity components
only. The effect of different choices of the energy norm at the outlet is studied,
testing full (all velocity components and temperature) and partial (streamwise velocity
and temperature only) norms. Optimal perturbations are computed via an iterative
algorithm completely derived in the discrete framework. The latter simplifies the
derivation of the adjoint equations and the coupling conditions at the inlet and
outlet.

Results for the flat plate show that when the Reynolds number is of the order of 103,
a significant difference in the energy growth is found between the cases of full and
partial energy norms at the outlet. The effect of the wall temperature is in agreement
with previous parallel-flow results, with cooling being a destabilizing factor for both
flat plate and sphere. Flow divergence, which characterizes the boundary layer past
the sphere, has significant effects on the transient growth phenomenon. In particular,
an increase of the sphere radius leads to a larger transient growth, with stronger
effects in the vicinity of the stagnation point. In the range of interesting values of
the Reynolds number that are typical of wind tunnel tests and flight conditions for
a sphere, no significant role is played by the wall-normal and streamwise velocity
components at the outlet.

1. Introduction
The problem of optimal disturbances, in the context of bypass transition to

turbulence, has been of great interest during the last decade. This interest is motivated
by the fact that there are many applications where transition to turbulence occurs
without the classical exponential growth, allowing a large transient growth of the
disturbance energy in flows that are stable to wave-like perturbations (Tollmien–
Schlichting waves).

Today it is clear that transient growth arises from the coupling between slightly
damped, highly oblique Orr–Sommerfeld (OS) and Squire modes. This can lead to
an algebraic growth followed, in viscous flows, by exponential decay in subcritical
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regions outside the Tollmien–Schlichting (TS) neutral curve. A weak transient growth
can also occur for two-dimensional modes since the OS operator and its compressible
counterpart are not self-adjoint, and therefore their eigenfunctions are not strictly
orthogonal (Reshotko 2001; Schmid & Henningson 2001).

Historically, the first approach to non-modal disturbances was in the inviscid limit.
Ellingsen & Palm (1975) found that the streamwise disturbance velocity amplitude
may grow algebraically in time, even though the basic flow does not posses an
inflection point. This growth mechanism was labelled ‘lift-up’ (Landahl 1975). Later
on, Landahl (1980) showed that all parallel inviscid shear flows are unstable to a wide
class of three-dimensional disturbances and the result is independent of whether or
not the shear flow is unstable to exponential growth. The temporal analysis involving
resonance between OS and Squire modes was employed for the study of Couette flow
(Gustavsson & Hultgren 1980), Poiseuille flow (Gustavsson 1981) and boundary layers
(Hultgren & Gustavsson 1981; Benney & Gustavsson 1981; Jang, Benney & Gran
1986), revealing a viscous decay following initial algebraic growth of the disturbance,
otherwise known as transient growth. Meanwhile, the transient growth phenomenon
was intensively studied in meteorology (Farrell 1982, 1984, 1986, 1987).

Farrell (1988a, b) was the first to use the term optimal perturbations to denote the
initial flow disturbances that produced the maximum gain, defined as the ratio between
the perturbation kinetic energies at the final and initial time. A similar concept had,
however, already been introduced for flow in a pipe by Boberg & Brosa (1988). The
first quantitative calculation of three-dimensional optimal perturbations with respect
to temporal growth for a parallel approximation of the Blasius boundary layer was
performed by Butler & Farrell (1992). Other work (Gustavsson 1991; Reddy &
Henningson 1993; Trefethen et al. 1993), carried out more than a decade ago,
recognized the great potential of non-modal growth for explaining bypass transition.

Optimal perturbations in the spatial framework have only more recently been
considered. The spatial Cauchy problem within the scope of the linearized Navier–
Stokes equations is, however, radically different from the temporal one and is
ill-posed. This is the main obstacle to applying to the spatial analysis the same
optimization methods used in the temporal case. The problem arises from the presence
of modes with a negative imaginary part of the streamwise wavenumber α. These are
modes decaying upstream and associated with the downstream boundary conditions.
Tumin & Reshotko (2001) pointed out that if the downstream boundary is moved
far away, the upstream decaying modes can be neglected and the optimization can be
carried out within the scope of the Cauchy problem, similarly to the temporal analysis.
The ill-posedness of the spatial Cauchy problem was first overcome by considering
the (linearized) boundary layer equations (Andersson, Berggren & Henningson 1999;
Luchini 2000) instead of the Navier–Stokes equations. In addition, Andersson et al.
(1999) and Luchini (2000) included non-parallel effects. It was found that the optimal
initial disturbance is composed of stationary streamwise vortices whereas the induced
velocity field is dominated by streamwise streaks. For example, in the case of an
incompressible boundary layer past a flat plate, the maximum amplification occurs
in the steady case (frequency ω = 0) and for a non-zero value of the spanwise
wavenumber β = 0.45 (scaled with l =

√
νL/U∞, ν being the kinematic viscosity,

U∞ the free-stream velocity and L the longitudinal distance from the leading edge to
the location where output energy is maximized). For the spatial problem, Zuccher,
Bottaro & Luchini (2006) computed the optimal perturbations in the nonlinear case.

The compressible counterpart of the aforementioned works has also been
considered. Temporal (Hanifi, Schmidt & Henningson 1996; Hanifi & Henningson
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1998) and spatial (Reshotko & Tumin 2000; Tumin & Reshotko 2001, 2004) analyses
of the transient growth phenomenon have been carried out within the scope of
the parallel-flow approximation. Tumin & Reshotko (2003) developed a model for
transient growth including non-parallel effects in the compressible boundary layer
past a flat plate.

Compressible optimal perturbations calculated by including surface curvature
effects and non-parallel growth of the boundary layer do not exist and could be
of great importance to explain the long-standing blunt-body paradox (Reshotko &
Tumin 2000).

Depending on the choice of the norm, which states what quantity will be maximized,
constrained optimization in the framework of optimal perturbations can lead to quite
different results. With reference to the incompressible case, Andersson et al. (1999)
maximized a full energy norm including all velocity components, whereas Luchini
(2000) considered the energy of the streamwise component only. On the other hand,
the choice of the initial condition (i.e. the choice of the norm at the inlet) may
also contribute to the result. In the incompressible framework, the full inlet energy
norm (Andersson et al. 1999) and the energy norm including only the spanwise and
wall-normal velocity components (Luchini 2000) have been employed. In Andersson
et al. (1999) both norms at the inlet and at the outlet depend on the Reynolds number
Re. However, in the limit Re → ∞ (in practice for Re > 104) results collapse onto
those obtained by Luchini (2000).

The choice of the energy norm, therefore, can be a delicate issue, especially in the
compressible case where effects due to compressibility should be taken into account
through the inclusion of density and temperature fluctuations. The physics of transient
growth is mainly dominated by streamwise vortices (Andersson et al. 1999; Luchini
2000) and therefore the choice of an initial energy excluding the streamwise velocity
component, in the fashion proposed by Luchini (2000), is satisfactory. The choice
of an outlet norm including only temperature and the component of the velocity
in the streamwise direction, however, might not represent completely the structure
of the flow field if the flow is not dominated by streamwise streaks. This could be
the case for a blunt body, for which there are some indications that the largest
transient growth is located close to the stagnation point (Reshotko & Tumin 2004).
Due to the short interval in the streamwise direction, a flow field mainly dominated
by streaks might not be completely established and thus the contribution of the wall-
normal and spanwise velocity components to the energy norm at the outlet could be
non-negligible.

The objective of the present work is therefore twofold. In the framework of
compressible optimal perturbations, the use of a full energy norm at the outlet
(FENO) is considered and compared with the use of a partial energy norm. Curvature
effects are included in order to investigate optimal disturbances developing in the
compressible, non-parallel boundary layer over a sphere.

2. Governing equations
Governing equations for the steady, three-dimensional disturbance in a compressible

flow are derived from the linearized Navier–Stokes equations.
A small parameter ε = Href/Lref is introduced for scaling purposes, where Href =√
νrefLref/Uref is a typical boundary layer length in the wall-normal direction y

and Lref is a typical scale of the geometry (length of the flat plate L, radius of
the sphere R, etc.), Uref and νref are respectively the reference scaling velocity and
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kinematic viscosity. In the case of the flat plate Href = l =
√

ν∞L/U∞ (the subscript
∞ denotes free-stream parameters, outside the boundary layer), while for the sphere
Href =

√
νrefR/Uref where the reference quantities are the values at the edge of the

boundary layer at a certain downstream location xref , x being the streamwise direction.
The scaling parameter ε is thus strictly related to the Reynolds number Re. For the flat
plate ε = Re−1/2, where Re = U∞L/ν∞ is the Reynolds number based on the length
of the plate and free-stream conditions, while for the sphere ε = Re

−1/2
ref , where

Reref = UrefR/νref is the reference Reynolds number based on the radius of the sphere
R and reference parameters.

It follows from previous works regarding optimal perturbations in both
incompressible and compressible boundary layers (Luchini 2000; Cathalifaud &
Luchini 2000; Tumin & Reshotko 2004; Zuccher, Luchini & Bottaro 2004; Zuccher
et al. 2006), that the disturbance flow is expected to be dominated by streamwise
vortices and therefore the following scaling is employed. The streamwise coordinate
x is normalized with Lref , whereas the wall-normal coordinate y and the spanwise
coordinate z are scaled with εLref . The streamwise velocity component u is scaled with
Uref , wall-normal velocity v and spanwise velocity w with εUref , temperature T with
Tref and pressure p with ε2ρrefU

2
ref . Density ρ is eliminated through the state equation.

Due to the scaling adopted, the second derivative with respect to the streamwise
coordinate x is smaller than the other terms, and is therefore neglected. This leads
to a change in the nature of the equations from elliptic (Navier–Stokes equations) to
parabolic.

For the flat plate, perturbations are assumed to be periodic in z, so that a general
variable can be expressed as q(x, y) exp(iβz), where q(x, y) is the amplitude, which
depends on x and y, β is the spanwise wavenumber and i is the imaginary unit.
Similarly, for the sphere, perturbations are assumed to be periodic in the azimuthal
direction φ, proportional to exp(imφ), where m is the azimuthal index.

If the vector of perturbations is f = [u, v, w, T , p]T (where the superscript T
denotes the transpose), and w = iw̃ (w̃ being the amplitude of the spanwise velocity
component), the governing equations can be written as follows (Tumin & Reshotko
2003):

(A f )x = (D f y)x + B0 f + B1 f y + B2 f yy. (2.1)

This form of the governing equations is general and can be derived for different
geometries such as flat plate, sphere, sharp cone or blunt-nose cone. Non-zero elements
of the 5 × 5 real matrices A, B0, B1, B2 and D for the flat plate are defined in the
appendix of Tumin & Reshotko (2003), while for the sphere they are given in the
Appendix.

As far as boundary conditions are concerned, all perturbations are required to be
zero at the wall except for p, while in the free stream all perturbations vanish except
for v:

y = 0 : u = 0; v = 0; w = 0; T = 0
y → ∞ : u → 0; w → 0; p → 0; T → 0.

}
(2.2)

In order to isolate the derivative with respect to x, system (2.1) can be recast in a
simple form as

(H1 f )x + H2 f = 0 (2.3)

where operators H1 and H2 are still 5 × 5 real matrices and contain the dependence
on x and y due to the basic flow:

H1 = A − D(·)y, H2 = −B0 − B1(·)y − B2(·)yy. (2.4)
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System (2.3) is parabolic in nature and can be solved by means of a downstream
marching procedure with initial data specified at the inlet section of the domain
x = xin.

It is worth noting that, due to the normalization chosen, the disturbance equations
for the flat plate are Reynolds-number independent, i.e. the Reynolds number Re

does not enter explicitly in the equations, while for the sphere they are not Reynolds-
number independent due to the parameter ε in the scaling, which is associated with
curvature effects.

3. Constrained optimization and adjoint discrete equations
As stated in the Introduction, we are interested in finding initial optimal

disturbances for the compressible boundary layer over a flat plate and a sphere.
The term ‘optimal’ here refers to the initial condition that produces the worst possible
scenario as far as transition is concerned. It is clear that the choice of a specific quantity
that can measure this worst case is neither easy nor unique. In previous works dealing
with optimal perturbations in the incompressible framework (Andersson et al. 1999;
Luchini 2000; Cathalifaud & Luchini 2000; Zuccher et al. 2004, 2006), the kinetic
energy of the disturbance field has always been the choice.

Once the objective function has been identified, the Lagrangian multiplier technique
is employed in order to solve the constrained optimization problem. In doing so the
costate (or adjoint) equations are derived. If this is applied to the discrete equations,
the discrete version of the adjoint problem is obtained.

3.1. The objective function

In problems related to boundary-layer transition, the quantity that monitors the in-
stability development is typically the kinetic energy. In optimal perturbation studies it
is usually maximized at the outlet of the computational domain, but in other cases the
integral of the kinetic energy over the whole domain has been considered, especially for
optimal control problems (see Cathalifaud & Luchini 2000; Zuccher et al. 2004). Since
one of the goals of the present study is to check how the use of a ‘full energy norm’ at
the outlet can influence the results, the expression we choose to maximize is Mack’s
energy norm (Mack 1969) including the perturbation kinetic energy density and tem-
perature fluctuations in the outlet plane. After employing the scaling in § 2, it is written

Eout =

∫ ∞

0

[
ρsout

(
u2

out + ε2
(
v2

out + w2
out

))
+

ρ2
outTsout

γ ρsoutM
2

+
T 2

outρsout

γ (γ − 1)TsoutM
2

]
dy. (3.1)

Expression (3.1) was derived for perturbations in the boundary layer over a flat plate
within the temporal framework and is here utilized for the spatial one, as done by
Tumin & Reshotko (2003) (for the sphere, the integration generates a slightly different
expression for the energy norm, which can be found in the Appendix). After employing
the equation of state for the basic flow and for the perturbation, the norm becomes

Eout =

∫ ∞

0

[
ρsout

(
u2

out + ε2
(
v2

out + w2
out

))
+

psoutT
2
out

(γ − 1)Ts
2
outM

2

]
dy (3.2)

and can be more compactly recast in matrix form as

Eout =

∫ ∞

0

(
f T

outM̃out f out

)
dy (3.3)
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where the linear operator M̃out is a diagonal 5 × 5 matrix

M̃out =



ρsout 0 0 0 0

0 ε2ρsout 0 0 0

0 0 ε2ρsout 0 0

0 0 0
psout

(γ − 1)Ts
2
outM

2
0

0 0 0 0 0


. (3.4)

The initial condition for the compressible boundary-layer equations is not arbitrary,
but only three of the five variables can be imposed at xin (Ting 1965). However, in the
incompressible case and for Re → ∞, Luchini (2000) observed that the choice uin = 0,
pin = 0, vin and win related by the continuity equation, guarantees the maximum gain in
an input–output fashion (in the incompressible case the number of independent initial
conditions is two; see also Luchini & Bottaro (1998), Luchini (2000) and Zuccher
et al. (2006)). This choice also corresponds to the physical mechanism, observed
in transitional boundary layer flows, known as the lift-up effect (Landahl 1980),
according to which streamwise vortices lift low-momentum flow up (from the wall)
and push down high-momentum flow causing streaks that eventually break down
to turbulence. Led by these considerations, here we focus on initial perturbations
with only v and w non-zero, which correspond to steady, streamwise vortices. It
should be noticed, however, that in the case of finite Reynolds number, for example
Re = 1000, and for the incompressible boundary layer past a flat plate, the choice
of a full energy norm at both inlet and outlet guarantees the largest gain in the
optimization (Andersson et al. 1999).

The kinetic energy of the optimal disturbance f in, if only vin and win are non-zero,
is therefore

Ein =

∫ ∞

0

[
ρs inε

2
(
v2

in + w2
in

)]
dy, (3.5)

or more compactly

Ein =

∫ ∞

0

(
f T

inM̃in f in

)
dy (3.6)

where M̃in is a 5 × 5 diagonal matrix

M̃in =



0 0 0 0 0

0 ε2ρs in 0 0 0

0 0 ε2ρs in 0 0

0 0 0 0 0

0 0 0 0 0


. (3.7)

The quantity to be maximized is G = Eout/Ein, the ratio between the outlet and
inlet norms. However, in order to allow direct comparison with previous works, Gε2

will be presented in the results section. Combining expressions (3.2) and (3.5) leads
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to

Gε2 =

∫ ∞

0

[
ρsout

(
u2

out + ε2
(
v2

out + w2
out

))
+

psoutT
2
out

(γ − 1)Ts
2
outM

2

]
dy∫ ∞

0

[
ρs in

(
v2

in + w2
in

)]
dy

, (3.8)

which reduces, in the Re → ∞ limit (ε → 0), to the expression maximized by Tumin &
Reshotko (2003) for the compressible case and by Luchini (2000) for the
incompressible one. Since the problem is linear, an arbitrary normalization for the
initial disturbance at xin can be chosen, e.g. Ein = E0 = 1, so that the maximization
of (3.8) turns out to be equivalent to the maximization of expression (3.3).

From the above discussion it is clear that the whole problem of finding optimal
perturbations reduces to a ‘constrained optimization’, in which we seek the initial
conditions for the disturbance equations (2.3) that maximize (3.3) and that satisfy
the constraint Ein = E0 at xin together with the direct equations (2.3) and boundary
conditions (2.2) at each x ∈ (xin; xout).

3.2. Constrained optimization

The classical Lagrange multiplier technique is one of the best known tools to solve
constrained optimization problems. As applied to optimal perturbations, numerous
examples can be found in the literature regarding the continuous version of such
an approach, which leads to the so-called adjoint equations in a continuous fashion.
Rigorously speaking, in the theory of linear operators the adjoint equations are derived
by satisfying an equality involving an inner product (Naylor & Sell 2000; Kreyszig
1989). Therefore their form is not necessarily related to constrained optimization
problems. On the other hand, when the adjoint equations are derived from a
constrained optimization (as in our case), only if the objective function includes
exclusively quantities at the boundaries of the domain then is their form the same
as those derived from an inner product equality. In fact, if we try to maximize the
integral of the energy over the whole domain (as opposed to the outlet energy only),
a source term arises in the adjoint equations (Cathalifaud & Luchini 2000; Zuccher
et al. 2004, 2006). Unlike the continuous version of the Lagrange multiplier approach,
examples where this technique is applied directly to the discrete equations are less
numerous (Luchini & Bottaro 1998, 2001; Luchini 2000; Cathalifaud & Luchini 2000;
Zuccher et al. 2004, 2006).

The adjoint methodology for the calculation of optimal perturbations, and in
particular its discrete implementation, was introduced by Farrell & Moore (1992) in
the context of oceanic flows. The use of the discrete approach has several advantages,
among which the necessity of an ‘ad hoc’ adjoint code is avoided and a foolproof
test is available by comparing the results of the direct and adjoint calculations, which
must match to machine accuracy for any step size and not only in the limit of step
size tending to zero (Zuccher et al. 2006). This is due to the conservation of a quantity
which depends on x only (Luchini & Bottaro 1998; Luchini 2000). For a thorough
discussion on the issue of continuous versus discrete adjoints the reader is referred
to Gunzburger (2000).

The numerical discretization of a general parabolic system of partial differential
equations such as (2.3) can be recast as

Cn+1 f n+1 = Bn f n (3.9)
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where n denotes the nth grid point in the streamwise direction x, f is the vector of
unknowns (not with only 5 elements but with 5 × Ny , where Ny is the number of
grid points in the wall-normal direction y) and matrices C and B depend on x (as
does the basic flow) and account for the discretization in both x and y. The solution
is found by marching forward in space from n = 0 (xin), given the initial condition
f 0, to n = N − 1. The boundary conditions at the wall and for y → ∞ are already
included in the matrices rows. The discrete objective function we aim to maximize

is J = f T
NMN f N , where MN is the discrete version of M̃out as defined in (3.4) and

accounts for the discretization of the integral in y.
The augmented functional L, which contains the objective function J = Eout, the

constraints (3.9) and Ein = E0, and the Lagrange multipliers, is written as

L( f 0, . . . , f N ) = f T
NMN f N +

N−1∑
n=0

[
pT

n (Cn+1 f n+1 − Bn f n)
]
+ λ0

[
f T

0 M0 f 0 − E0

]
(3.10)

where pn is the vector of Lagrangian multipliers, which depends on the streamwise

location n and M0 is the discrete version of M̃in as defined in (3.7), in the same
fashion as MN . Only the dependence on f n (n = 0, . . . , N) has been emphasized
in L because its derivative with respect to the Lagrangian multipliers (which is
needed to impose δL = 0) would lead to the constraints that are already known. The
summation between 0 and N − 1 in (3.10) involving pn reflects the integral along x.
The integration by parts (which would be performed in the continuous case) is here
replaced by adding and subtracting pT

n+1Bn+1 f n+1 in the summation so that the terms
can be rearranged as

N−1∑
n=0

[
pT

n (Cn+1 f n+1 − Bn f n)
]

=

N−1∑
n=0

[
pT

nCn+1 f n+1 − pT
n+1Bn+1 f n+1

]
+

N−1∑
n=0

[
pT

n+1Bn+1 f n+1 − pT
nBn f n

]
=

N−1∑
n=0

[
pT

nCn+1 f n+1 − pT
n+1Bn+1 f n+1

]
+ pT

NBN f N − pT
0 B0 f 0,

and expression (3.10) can be rewritten as

L( f 0, . . . , f N ) = f T
NMN f N +

N−1∑
n=0

[
pT

nCn+1 f n+1 − pT
n+1Bn+1 f n+1

]
+ pT

NBN f N − pT
0 B0 f 0 + λ0

[
f T

0 M0 f 0 − E0

]
. (3.11)

As in the continuous case, the stationary condition is found when δL = 0

δL
δ f 0

δ f 0 +

N−2∑
n=0

[
δL

δ f n+1

δ f n+1

]
+

δL
δ f N

δ f N = 0,

which, in order to be satisfied for any arbitrary f 0, f n+1 and f N , leads to

δL
δ f 0

= − pT
0 B0 + 2λ0 f T

0 M0 = 0, (3.12)
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δL
δ f n+1

= pT
nCn+1 − pT

n+1Bn+1 = 0, n = 0, . . . , N − 1, (3.13)

δL
δ f N

= 2 f T
NMN + pT

NBN = 0. (3.14)

Equation (3.12) furnishes the optimality condition to be satisfied at xin and
equation (3.13) leads to

pT
nCn+1 − pT

n+1Bn+1 = 0, (3.15)

which is the discrete form of the adjoint equations to be solved by marching backwards
from xout to xin with the initial condition provided by equation (3.14) solved for pN .

3.2.1. Outlet conditions

From expression (3.14) follows

BT
N pN = −2MT

N f N (3.16)

where BN is the discrete representation of H1out and is singular because the fifth
column in H1 is made up of zeros as px = 0 in this approximation (the last column of
matrix A is made up of zeros). This implies that the solution cannot be found unless
the solvability condition is satisfied. The singularity of H1 is not simply a practical
numerical problem for the solution of (3.16) but contains deeper information and
insights regarding the initial condition for the adjoint variables. The impossibility of
determining a unique solution of (3.16) translates into the fact that at least one out
of five adjoint variables is free at x = xout and therefore can be chosen arbitrarily.
For simplicity, we set p5 (the fifth adjoint variable) to zero.

3.2.2. Inlet conditions

By imposing δL/δ f in = 0 condition (3.12) was obtained. The operator M0 is the
discrete counterpart of Min and is singular (as Mout) so M−1

0 does not exist and (3.12)
cannot be solved. However, M0 is diagonal and therefore the j th element of f 0

corresponding to M0jj �= 0 can be retrieved from

f 0j =


(

pT
0 B0

)
j

2λ0M0jj

if M0jj �= 0

0 if M0jj = 0.

(3.17)

The multiplier λ0 is found by imposing the constraint E0 = Ein.

3.3. An optimization algorithm

The constrained optimization developed above has enabled us to write a set of
equations and boundary conditions that must be satisfied simultaneously. More
specifically, we first need to solve system (3.9) from x = xin (n = 0) to x = xout

(n = N − 1) with initial conditions at xin expressed by (3.17). We refer to this as
the direct or forward problem. Then we need to solve system (3.15) from x = xout

(n = N −1) to x = xin (n = 0), with initial conditions derived from (3.16) and provided
at x = xout. We call this the adjoint or backward problem.

A quite large system of linear equations supplemented by initial and boundary
conditions has to be solved. Instead of doing it in one step, however, we employ
the intrinsic parabolic nature of the equations to efficiently solve separately the two
coupled problems. Such an algorithm can be outlined in the following few steps:

1. a guessed initial condition f (0)
in is provided at the beginning of the optimization

procedure;
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2. the forward problem (3.9) is solved at the ith iteration with the initial condition
f (i)

in ;

3. the objective function J(i) = E
(i)
out is computed at the end of the forward iteration

and compared to the objective function J(i−1) = E
(i−1)
out at the end of the previous

forward iteration. If |J(i)/J(i−1) −1| < εt (where εt is the maximum tolerance accepted
to stop the optimization) then the optimization is considered converged;

4. if |J(i)/J(i−1) − 1| > εt the initial conditions for the backward problem (3.16)
are assigned at the outlet and derived from the direct solution at x = xout;

5. the backward problem (3.15) is solved from x = xout to x = xin;
6. a new initial condition for the forward problem f (i+1)

in is obtained from the
solution of the backward problem at x = xin employing (3.17);

7. the loop is repeated from step 2 on.
A similar iterative approach was first introduced by Farrell & Moore (1992) for

obtaining the most rapidly growing perturbations in oceanic flows.
It should be noted that the above procedure does not necessarily guarantee

convergence. If there is an attractor for the solution, then the procedure will capture
it and this happens quite fast (2–3 forward–backward iterations) when the norm
proposed by Luchini (2000) is used. On the other hand, it was observed that when
the full energy norm is employed the convergence is generally much slower, depending
on the wavenumber β , reaching the fastest convergence in the proximity of the
optimal β .

4. Discretization
A finite difference discretization scheme has been implemented to numerically solve

equations (2.3) with boundary conditions (2.2). For generality, grid points in x and y

are not necessarily equally spaced. A staggered grid is introduced in the wall-normal
direction, with variables u, v, w and T known at the grid points, and p known at the
mid-grid (staggered) points. All equations are satisfied at the grid points except for
continuity, which is satisfied at the mid-grid points. The use of the uneven grid in y

allows us to cluster more nodes close to the wall so as to take into account the large
gradients of boundary layer quantities in this region.

The last point of the y-grid is located far enough from the wall to allow us to
specify there the boundary conditions for y → ∞.

Fourth-order non-compact finite differences are used for the y discretization,
employing six points so as to allow fourth-order accuracy for the second derivative.
By using six points, the first derivative is automatically fifth-order accurate and the
function (when interpolated due to the staggered grid) is sixth-order accurate.

Also, the discretization in the streamwise direction is based on an uneven grid.
Since the system of boundary layer equations is parabolic, a second-order backward
discretization is chosen, which requires the solution at two previous steps to be
known. For the first step, however, a first-order scheme is used because only the
initial condition is available.

After the discretization, the original system of partial differential equations (2.3) can
be re-written in the following form:[

C0
n+1H

1
n+1 + H2

n+1

]
f n+1 = −C1

n+1H
1
n f n − C2

n+1H
1
n−1 f n−1 (4.1)

where coefficients C0
n+1, C1

n+1 and C2
n+1 account for the streamwise discretization

and matrices H1
n+1 and H2

n+1 are the discretized versions of respectively H1 and H2
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introduced in § 2. The solution is thus completely determined once the initial condition
f 0 = f in is given at xin.

Equation (4.1) can be easily rewritten in a form similar to (3.9),

Cn+1 f n+1 = C1
n+1Bn f n + C2

n+1Bn−1 f n−1, (4.2)

where Cn+1 =
[
C0

n+1H
1
n+1 + H2

n+1

]
and Bn = −H1

n.
Unlike the simple form (3.9), which refers to a scheme where the new solution

f n+1 depends on f n only, the discrete equation (4.1) depends on f n and f n−1

due to the second-order approximation in x. Therefore, the discrete adjoint system
is slightly different from (3.15). More specifically, by repeating the same steps as
in § 3.2, the constraint Cn+1 f n+1 − C1

n+1Bn f n − C2
n+1Bn−1 f n−1 = 0 is left-multiplied

by the vector of Lagrangian multipliers pn and then all terms are included in
the summation on n (in the streamwise direction) to form the functional for the
constrained optimization. Within this summation, we first add and subtract
the quantity pT

n+1[C
1
n+2Bn+1 f n+1 + C2

n+2Bn f n] and rearrange the summation as∑
pT

n [Cn+1 f n+1] −
∑

pT
n+1[C

1
n+2Bn+1 f n+1 + C2

n+2Bn f n] and then we add and subtract
the quantity pT

n+2[C
1
n+3Bn+1 f n+1] so that the final form of the summation is∑

pT
n [Cn+1 f n+1] −

∑
pT

n+1[C
1
n+2Bn+1 f n+1] −

∑
pT

n+2[C
2
n+3Bn+1 f n+1]. In this way, all

terms are right-multiplied by f n+1 so that the derivative of the functional L with
respect to f n+1 leads to the adjoint discrete equation in the form

pT
nCn+1 − pT

n+1C
1
n+2Bn+1 − pT

n+2C
2
n+3Bn+1 = 0, (4.3)

where the solution at step n is obtained by marching upstream in space from the
outlet to the inlet and needs two steps downstream to be computed.

5. The basic-flow model
The basic flow for the flat plate is the same as in Tumin & Reshotko (2003) and is

obtained from a conventional similarity solution.
For the high-speed flow past a sphere, the streamwise velocity Ue at the edge of the

boundary layer of the subsonic part of the flow can be approximated by

Ue =
dUe

dθ

∣∣∣∣
0

θ,

where dUe/dθ |0 is the derivative of the edge velocity with respect to the meridional
coordinate θ evaluated at the stagnation point. This quantity can be calculated from
the modified Newtonian pressure distribution (Anderson 2000) as

1

U∞

dUe

dθ

∣∣∣∣
0

=

√
Cpmaxρ∞

ρ0

with Cpmax (maximum pressure coefficient) and ρ0 evaluated at the stagnation point
for a calorically perfect gas with specific heat ratio γ = 1.4. Flow parameters at the
edge of the boundary layer for the downstream locations can then be found from the
isentropic relationships.

For the compressible boundary layer we consider the local-similarity approxi-
mation (Anderson 2000) and introduce the Levy–Lees–Dorodnitsyn variables

ξ =

∫ θ

0

ρeµeUeR
3(sin θ)2 dθ, η̄ =

ρeUeR sin θ√
2ξ

∫ η

0

ρ

ρe

dη,
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Figure 1. (a) Hartree parameter βH and (b) local Mach number Me at the edge of the
boundary layer, as a function of the the meridional angle θ .

where η = y/Href , y being the coordinate in the wall-normal direction. After sub-
stituting these new variables ξ and η̄, boundary-layer equations can be recast as

(Cf ′′)′ + ff ′′ + βH

[
ρ

ρe

− (f ′)2
]

= 0,(
C

Pr
ĝ′

)′

+ f ĝ′ +
(γ − 1)M2

e

1 + 1
2
(γ − 1)M2

e

[
C

(
1 − 1

Pr

)
ff ′′

]′

= 0,

where the prime denotes the partial derivative with respect to η̄, C = (ρµ)/(ρeµe) and
βH = (2ξ/Ue)dUe/dξ is the Hartree parameter. These boundary layer equations are
solved subject to the conventional boundary layer conditions on the wall and in the
free stream (Anderson 2000). The flow quantities are then retrieved from functions
f (ξ, η̄) and ĝ(ξ, η̄), which are related to the velocity U (ξ, η̄) and total enthalpy I (ξ, η̄)
according to the similarity laws

U (ξ, η̄) = Ue(ξ )f ′(ξ, η̄), I (ξ, η̄) = Ieĝ(ξ, η̄).

As proved in figures 1(a) and 1(b), for θ � 30◦ βH lies within the interval [0.5; 0.6]
and the Mach number is a linear function of θ . Moreover, when the wall-normal
distance is scaled with H (θ) =

√
2ξ/(ρeUeR sin θ) profiles of U/Ue and T/Te are

almost independent of the Mach number Me and Hartree parameter βH , as shown in
figures 2(a) and 2(b).

The dependence on the meridional angle θ enters the analysis only through the
local velocity, temperature, density and pressure at the edge of the boundary layer,
and through the local length scale H (θ), which is however a slow function of θ as
figure 3 clearly shows.

For the present study we have chosen the scaled velocity and temperature profiles
obtained for Me = 0.6 and βH = 0.5.

6. Results
Results for the flat plate and sphere are discussed here. In the first case the code was

verified against incompressible (Andersson et al. 1999) and compressible (Tumin &
Reshotko 2003) published works, in which spectral collocation methods (SCM) were
employed.
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Figure 2. Effect of the Mach number Me and Hartree parameter βH on the basic flow
profiles: (a) streamwise velocity, (b) temperature.
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Figure 3. Boundary layer local length scale Re0H/R as a function of the meridional angle θ .
Re0 =

√
ρ0U∞R/µ0.

In figure 4 the gain Gε2 = G/Re, where G = Eout/Ein, is shown in the limit
Re → ∞ as a function of the wavenumber β for the incompressible flow past a flat
plate and compared with previous results available in the literature. The agreement
is very good, though present values of the gain are very slightly smaller than those
obtained by Andersson et al. (1999). This might be due to the different numerical
implementations.

In what follows, for the flat-plate case, only results regarding the use of the full
energy norm at the outlet (FENO), i.e. norm (3.2), are considered and compared to
those obtained by Tumin & Reshotko (2003), in which partial energy norm at the
outlet (PENO) was employed (i.e. only uout and Tout were non-zero, whereas vout and
wout were excluded from (3.2)). In both cases the inlet energy norm is the one intro-
duced by Luchini (2000) and extended to the compressible case as in (3.5). We refer
to (3.5) as partial energy norm at the inlet (PENI), as it considers the contributions
of vin and win only. The choice of this inlet norm is further discussed in § 7.

For the sphere case, the code for optimal perturbations was verified against Tumin &
Reshotko (2004) (SCM) and results are presented later for both partial (PENO) and
full (FENO) energy norm at the outlet, keeping the inlet norm fixed (PENI).
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Figure 4. Comparison of G/Re as a function of the wavenumber β with previous results
available in literature for the incompressible case in the limit Re → ∞. Solid line, present;
�, Andersson et al. (1999); ×, Tumin & Reshotko (2003). M = 0.02, xin = 0 xout = 1.0,
Tw/Tad = 1.

Re = 103
Re = 104
Re → ∞

G—
Re

0.0016

0.0012

0.0008

0.0004

β

1.00.80.60.40.20

Figure 5. Objective function J = G/Re: effect of Re and β for M = 3, Tw/Tad = 0.5,
xin = 0, xout = 1.0.

6.1. Flat plate

Here we consider a perfect gas with a specific heat ratio γ = 1.4, Prandtl number
Pr = 0.7 and viscosity depending on T only, in accordance with the Sutherland law.
The stagnation temperature T0 is fixed and equal to 333 K.

As described in § 3.1, the full energy norm at the outlet (FENO) includes not only
u and T (as in Tumin & Reshotko (2003)) but also also v and w. At the inlet, PENI
includes only v and w.

Figure 5 shows the effect of the Reynolds number Re on G/Re when PENI
and FENO are employed. The plot refers to the case with Mach number M = 3,
Tw/Tad = 0.5 (Tw is the wall temperature and Tad is the recovery temperature), initial
station for the computation xin = 0, and outlet station xout = 1.0. It is clear that the
Reynolds number has quite a strong influence only for Re < 104, while for values
greater than this limit, results do not differ significantly from the Reynolds-number-
independent case.

The effect of the norm (PENO versus FENO) for different temperature factors
Tw/Tad at M = 0.5 is reported in figure 6(a) (xin = 0, xout = 1.0). The Reynolds
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Figure 6. Objective function J = G/Re: effect of β , Tw/Tad and norm choice PENO (only
u2 and T 2 at xout) versus FENO. PENI at the inlet (only v2 and w2 at xin), Re = 103,
xin = 0 xout = 1.0. �, Tw/Tad = 1.00; �, Tw/Tad = 0.50; �, Tw/Tad = 0.25; full symbols
and solid lines refer to FENO, empty symbols and dashed lines to PENO. (a) M = 0.5,
(b) M = 1.5, (c) M = 3.0.

number for the case of full energy norm at the outlet (FENO) is Re = 103. It
can be concluded that at low Mach number M = 0.5, though large enough to
allow compressible effects, the choice of the norm does not produce a significant
difference.

The conclusion drawn from figure 6(a) does not extend to larger values of Mach
number. In figure 6(b), a moderate supersonic Mach number M = 1.5 is considered.
The effect of increasing M is clearly to shift the maximum of the curves towards
smaller values of β and to enhance the difference between results obtained with
different norms. This is particularly true for Tw/Tad = 1.00.

In the supersonic case, M = 3, reported in figure 6(c), a difference up to 17 %
can be detected when comparing PENO with FENO. This difference is significantly
higher for low values of the wavenumber β and is visible also in figure 2 of Andersson
et al. (1999) for M = 0.

It can thus be concluded that for the flat-plate case results obtained with an energy
norm including u, v, w and T at the outlet (FENO) are significantly different from
those where only u and T are considered and that this effect increases with the Mach
number.
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Figure 7. Estimate parameter ε at: (a) wind tunnel conditions:M = 6,p0 = 25 bar,T0 = 750 K;
(b) flight conditions: M∞ = 6, p∞ = 0.0253, bar, T∞ = 217 K; θref = 30.0◦ for both cases.
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Figure 8. Objective function J = G: effect of ε and m̃ = mε for θin = 10.0◦, θout = 15.0◦,
θref = 30.0◦, Tw/Tad = 0.5. Partial energy norm at both inlet and outlet (PENI and PENO).
�, ε = 2.5 × 10−4; �, ε = 5.0 × 10−4; �, ε = 7.5 × 10−4; �, ε = 1.0 × 10−3; �, ε = 1.25 × 10−3.

6.2. Sphere

In the case of the sphere, the solution of the governing equations is assumed to be
proportional to exp(imφ), where m is the azimuthal index and i the imaginary unit
(see the Appendix).

In order to estimate the values of the small parameter ε that might be of interest to
the analysis, we consider two examples at a free-stream Mach number M∞ = 6. The
first one corresponds to typical wind tunnel conditions, T0 = 750 K and p0 = 25 bar.
The second case is chosen as a flight condition, with T∞ = 217 K and p∞ = 0.0253 bar.
Figure 7 illustrates typical values of ε as a function of the sphere radius R (in metres)
and evaluated at the reference parameters corresponding to the edge of the boundary
layer at θref = 30◦. One can see that values of ε on the order or 10−3 correspond to
realistic cases.

In what follows, the edge boundary layer parameters are defined at θref = 30◦. This
choice has an impact on the definition of ε, but the final result Gε2 = Eout/Ein is
independent of the reference point θref .

The effect of ε on the gain G as a function of m̃ (m̃ = mε) is shown in figure 8, where
the partial energy norm is used at both inlet and outlet (PENI and PENO). Unlike
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Figure 10. Objective function J = Gε2: effect of outlet station θout and m̃ = mε for
θref = 30.0◦, Tw/Tad = 0.5, ε = 10−3. Partial energy norm at both inlet and outlet (PENI
and PENO). (a) θin = 10.0◦: ×, θout = 13◦; �, θout = 15◦; �, θout = 20◦; �, θout = 25◦.
(b) θin = 15.0◦: �, θout = 18◦; �, θout = 20◦; �, θout = 25◦.

the parallel-flow formulation (Reshotko & Tumin 2004) where the Reynolds number
and the curvature radius are independent, here the radius is strictly associated with
the Reynolds number and not only with the curvature. Assuming that all reference
parameters are constant, when the radius increases ε decreases (ε =

√
νref/RUref )

leading to an increases of the gain, as reported in figure 8.
The effect of wall temperature Tw/Tad is illustrated in figure 9. Similarly to previous

studies (Reshotko & Tumin 2000; Tumin & Reshotko 2001, 2003), the cooling of
the wall destabilizes the flow with respect to the transient energy growth and the
difference in G with respect to the adiabatic wall is about two orders of magnitude.

Figure 10(a) shows the effect of the outlet station θout and m̃ for θin = 10.0◦,
θref = 30.0◦, Tw/Tad = 0.5 and ε = 10−3. It is clear that the maximum transient growth
is achieved for smallest intervals of the θ range, more specifically for θ ∈ [10◦; 13◦].

The trend observed in figure 10(a) can be found also in figure 10(b), where the
same kind of plot is reported, but for θin = 15.0◦ instead of θin = 10.0◦. Again, the
smallest range of meridional angles produces the largest energy growth.
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Figure 11. Objective function J = Gε2: effect of interval location and m̃ = mε for θref = 30.0◦,
Tw/Tad = 0.5, ε = 10−3. Partial energy norm at both inlet and outlet (PENI and PENO).
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Figure 12. Objective function J = Gε2: effect of ε, choice of the energy norm (FENO
versus PENO, for PENI) and m̃ = mε for θin = 2.0◦, θout = 5.0◦, θref = 30.0◦, Tw/Tad = 0.5.
�, ε = 1 × 10−3; �, ε = 2 × 10−3; �, ε = 3 × 10−3; full symbols refer to FENO, empty ones
to PENO.

Figure 11 provides better insight into the dependence of G on the choice of θin and
θout. The difference θout − θin is not the only factor that causes a larger energy growth.
In fact, curves with the same θout − θin (5◦) but with different θin clearly show that the
strongest transient growth is achieved close to the stagnation point.

The main outcome from the results presented up to this point and referred to the
partial energy norm at both inlet and outlet (PENI and PENO) is a large transient
energy growth in the proximity of the stagnation point. Moreover, this effect is
much stronger when the difference θout − θin is small. Due to the short downstream
development of the flow, it is possible that the optimal perturbation in the form of
counter-rotating vortices still dominates the flow field and therefore the choice of the
partial energy norm at the outlet could be misleading. The use of the full energy
norm (which encompasses not only u and T but also v and w) at the outlet would
clarify this issue.

Figure 12 shows the effect of norm choice and ε. Quite a number of curves are
reported because comparisons of FENO have meaning depending on the value of ε,
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but results with the PENO change with ε as well. In all cases the inlet energy norm
is fixed (PENI). The constant parameters are θin = 2.0◦, θout = 5.0◦, θref = 30.0◦ and
Tw/Tad = 0.5. For ε = 10−3 there is basically no difference between using PENO and
FENO. However, it is precisely in this range of ε that it is meaningful to investigate
the behaviour of the solution, since it corresponds to the estimated values for wind
tunnel conditions and flight tests, as reported in figure 7. For higher values of ε

(2 × 10−3 and 3 × 10−3) the difference between the use of the two norms seems to be
more evident.

The conclusion from figure 12 is, however, that the maximum appreciable difference
is confined to within about 1 % of the parameters of interest.

7. Shortcomings of the iterative algorithm
As mentioned before, the choice of the norm is not unique. Here we discuss some

limitations of the iterative algorithm due to the choice of the inlet norm and focus on
the incompressible case, for which previously published results obtained with different
norms are available.

Andersson et al. (1999) employed the full norm including all components of velocity.
By combining the continuity equation with the streamwise momentum equation (for
the perturbations) and the continuity equation for the basic flow they derived a
constraint that holds for each x > 0,

(β2 − Vy)u + V uy − uyy + Uyv − Uvy − βUw = 0, (7.1)

but optimal disturbances were computed at the leading edge of the flat plate, xin = 0.
In order to avoid discontinuity of the solution at x = 0, Andersson et al. (1999)
required the optimal perturbation [uin, vin, win] to satisfy the constraint (7.1) also at
x = 0−. However, since u, v and w at x = 0−, as resulting from the application
of the inlet conditions stemming from the adjoint-based iterative algorithm, do not
satisfy (7.1), Andersson et al. (1999) needed to solve a further least-square problem
seeking [uin, vin, win] that simultaneously satisfy (7.1) and minimize the distance from
the solution obtained by applying the inlet conditions (3.17).

It should be noticed that in Luchini (2000), where uin was set to zero, no further
constraints such as (7.1) were required because in that case v and w as resulting from
the inlet conditions already satisfy the governing equations at xin = 0, and there is no
discontinuity in the solution.

From the point of view of optimization, what was done by Andersson et al.
(1999) corresponds to adding more constraints to the problem. Because of this, the
optimization procedure locates a maximum with a value of the objective function
lower than in the case where the optimal perturbation is not constrained by an
equation at the inlet.

Here we propose a further analysis of this issue.
By writing explicitly the inlet conditions (3.17), it is easy to verify that vin and

win go to zero at the wall as long as the streamwise component of the basic flow
does, because they originate from the adjoint solution multiplied by U . Therefore,
even if the adjoint field is not homogeneous at the wall, since U satisfies the no-slip
condition, vin and win are zero at the wall. On the other hand, the expression for
uin does not guarantee u = 0 at the wall and thus a non-homogeneous solution is
allowed at the wall by the algorithm. However, this non-physical solution guarantees
the maximum gain in the optimization procedure.
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Figure 13. Profile of uin as a function of y, no constraints on the initial condition, full energy
norm at both inlet and outlet, Re = 1000. M = 0.02, xin = 0 xout = 1.0, Tw/Tad = 1, β = 0.55.
(a) Outer view. (b) Zoom in the proximity of the wall.

We consider adiabatic wall conditions, Tw/Tad = 1, and free-stream Mach number
M = 0.02. Figure 13 shows the streamwise component of the optimal perturbation
obtained without any further constraint and using the full energy norm at both input
and output (FENI and FENO). The outer view, figure 13(a), indicates that uin does
not satisfy the no-slip condition at the wall. Zooming in on the proximity of y = 0,
figure 13(b), the behaviour of uin is clearer, showing a few oscillations. These do not
originate from the numerical scheme, as was proven by changing from fourth-order
to second-order finite differences in y. On the contrary, they originate from the fact
that uin is generated by a component of the adjoint solution that does not guarantee
uin = 0 at the wall.

Different possible choices are available to render uin homogeneous at the wall
so as to reconcile the optimization algorithm with the governing equations. Such a
‘smoothing’, i.e. forcing uin = 0 at the wall, avoids the discontinuity at xin = 0 that
would occur due to the fact that at x = 0+ it must be u = 0 on the wall because of
the no-slip condition.

The simplest approach is to substitute vin and win as provided by the inlet
conditions (3.17) into (7.1) and to obtain uin from a boundary value problem where
uin is forced to be zero at the wall and in the free stream. By doing so, results reported
in figure 14 are obtained. The order of magnitude of u is now much smaller than
in figure 13, while vin and win remain of the same order as before. This choice of
rendering uin zero at the wall so as to avoid the discontinuity at xin, therefore, leads to
an initial perturbation very far from the one originally computed without additional
constraints and consequently generates a much lower gain.

If the goal is to try to keep uin of the same order of magnitude as the profile
originating from the inlet conditions alone (that in figure 13) but ensuring the
continuity at xin by imposing the uin = 0 on the wall, then infinite possibilities are
available.

We chose to replace the oscillations in uin visible in figure 13 with a smooth solution
so as to keep uin unchanged from a certain ŷ to ymax (where the boundary conditions
for y → ∞ are imposed) and to replace uin with a smooth function that goes to zero
with y for y < ŷ. Both ŷ and the smooth function are arbitrary. For the function we
need a choice that guarantees the continuity of uin and its first and second derivative
in ŷ (to avoid discontinuities when uin is substituted in (7.1)) and such that its second
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Figure 14. Profile of uin, vin and win as a function of y, physical, constrained solution.
M = 0.02, xin = 0 xout = 1.0, Tw/Tad = 1, β = 0.55. The constraint (7.1) is used where vin and
win are those originating from the inlet conditions (3.17) and uin is calculated from the linear
ordinary differential equation obtained by imposing homogeneous boundary conditions at the
wall and in the free stream. (a) uin, (b) vin and win.
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Figure 15. Profile of uin, vin and win as a function of y. Comparison between the ‘free’ solution
computed from the inlet conditions (3.17) and the physical solution obtained by smoothing
uin and constraining it to be zero at the wall. The constraint (7.1) is used to compute win given
uin and vin. M = 0.02, xin = 0 xout = 1.0, Tw/Tad = 1, β = 0.55. (a) uin, (b) vin and win.

derivative is zero at the wall. The latter requirement is dictated by the constraint
equation (7.1), from which it is easy to verify that at the wall w = uyy . A fourth-order
polynomial is used. The value of ŷ is chosen to be 80 % of the position in y where
vin reaches its maximum. After uin has been smoothed, the constraint (7.1) is used to
compute win given uin and vin.

This choice of smoothing uin and constraining it to be zero at the wall produces a
small difference (in the profile of uin) with respect to the free case reported in figure 13
(see figure 15a), with the discrepancy localized in the proximity of the wall. On the
other hand, no significant differences are detectable in the profiles of vin and win

(figure 15b). Since the optimal perturbation remains almost unchanged, the difference
in the gain between the ‘free’ and ‘smooth and physical’ cases is very tiny. For the
smoothed case the gain is G/Re = 2.52 × 10−3 as opposed to G/Re = 2.54 × 10−3

in the free case. This difference is about 0.8 %, even smaller than the tolerance
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Figure 16. Comparison of G/Re between results obtained by Andersson et al. (1999) and
present work. ×, Andersson et al. (1999), Re = 1000; �, free optimization, Re = 1000; �,
smooth and constrained, Re = 1000; �, u = 0, Re = 1000; �, Re → ∞. M = 0.02, xin = 0
xout = 1.0, Tw/Tad = 1. Values of the gain are bounded between the free optimization results
(upper limit – �) and the Reynolds-number-independent ones (lower limit – �). Any constraint
on the initial perturbation produces an energy gain that is within these limits.

(1 %) which is required to end the forward–backward iteration in the optimization
procedure presented in § 3.3.

Such a result offers much better insight into the issue of the inlet norm. It shows
that in the constrained case the gain is, as expected, smaller than in the free case
but this difference is extremely tiny and within the tolerance of the scheme. The
explanation resides in the order of magnitude of uin. If it is kept of the same order as
resulting from the application of the automatic inlet conditions (3.17) then the gain
is practically the same as in the case of unconstrained uin. On the other hand, when
uin is obtained by solving the ordinary differential equation (7.1) assuming vin and
win given, a much smaller uin is obtained with a considerable difference in the gain.

A summary of the above discussion is shown in figure 16, where different curves are
reported. Results by Andersson et al. (1999) (×) were obtained with the full energy
norm at both inlet and outlet and show the largest values of the gain. They differ
only slightly from those obtained in the present work for the case of free optimization
(�) and for the case of smoothed and constrained inflow profile (◦). The maximum
discrepancy is of the order of 3 % and it is believed to be due to different numerical
schemes, as the same trend was observed in the case of infinite Reynolds number
(figure 4). Although it is not clear how the problem of discontinuity in uin at the
wall for xin = 0 was treated by Andersson et al. (1999), our results illustrate that the
energy gains are very close for constrained (smoothed u) and free optimizations.

Instead of employing a constraint equation, one can simply impose u = 0 at xin

(symbols � in figure 16). This is one of the possible constraints that the optimal
perturbation can be required to obey. The gain obtained in this way is smaller than
the previous ones (figure 16), but is still higher, at Re = 1000, than the Reynolds-
number-independent case (solid line – �), which represents the lower limit for the
gain.

The conclusion is therefore that the values of the gain are bounded between the
free optimization results (upper limit) and the Reynolds-number-independent ones
(lower limit). Any constraint on the initial perturbation produces an energy gain that
is within these limits.
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Many choices are available to constrain the initial perturbation to be zero on the
wall. Among those, we assume uin = 0 and Tin = 0 (in the compressible case). This
is more consistent with the scaling adopted in § 2, according to which the leading
mechanism is associated with the lift-up effect in the presence of streamwise vortices.
Due to this choice, all results presented in § 6 refer to partial energy norm at the inlet
(PENI), as defined in expression (3.5).

From this analysis it is clear that the iterative algorithm described in § 3.3 and
proposed as an efficient way to solve two coupled problems, which should be solved
simultaneously, suffers some limitations at finite Reynolds number. The shortcoming
is related to the choice of the energy norms, which change the coupling conditions
at the inlet and/or outlet and therefore the solution of the complete optimization
problem. When energy norms are those employed by Tumin & Reshotko (2003)
(i.e. PENI and PENO – the extension to the compressible regime of the norms
proposed by Luchini (2000) for the incompressible case), which are Reynolds-number
independent, the convergence of the iterative procedure on the attractor is fast and
usually does not require more than three forth–back iterations. On the other hand,
the use of the full energy norm at the outlet and the partial one at the inlet (FENO
and PENI), for Re = 1000, renders the convergence slower, requiring from five to ten
iterations. If Reynolds number is increased so as to emulate the Re → ∞ limit (e.g.
Re = 109) results collapse onto the Reynolds-number-independent ones, as observed
by Andersson et al. (1999) in the incompressible case, and convergence is fast. Several
iterations are still required at Re = 1000 when the full energy norm is employed
at both inlet and outlet (FENI and FENO), whereas a fast convergence is restored
by smoothing the optimal perturbation at the inlet so as to avoid the discontinuity
at x = 0, as discussed above. This smoothing, however, is arbitrary and does not
guarantee a solution independent of its choice.

The fact that the algorithm relies on the existence of an attractor, which changes
depending on the choice of the norm because the latter directly affects the initial
conditions of the direct and/or adjoint problems, raises the question of a more robust
optimization algorithm.

8. Conclusions
Optimal perturbations in the compressible regime have been considered for both a

flat plate and a sphere. An adjoint-based optimization technique is employed and the
discrete costate problem is obtained from the discretized direct problem by applying
the Lagrangian multipliers technique in the discrete framework. This simplifies the
code, reduces the number of possible errors, and allows the automatic generation
of coupling conditions at the inlet and outlet. The code has been verified against
available results (Tumin & Reshotko 2003, 2004).

The main contributions of the present work are an analysis that includes the full
energy norm at the outlet and the fully discrete approach (including the coupling
conditions), which considerably facilitates its implementation.

In the incompressible limit and for the flat plate (for which comparisons with the
full energy norm at both inlet and outlet are available) it is found that the values
of the gain are bounded by the free optimization results (the upper limit) and the
Reynolds-number-independent ones (the lower limit). Any constraint on the initial
perturbation produces an energy gain that is within these limits.
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The norm to be maximized at the outlet, in the compressible case, is extended to
the complete Mack’s norm, including not only uout and Tout in the fashion proposed
by Luchini (2000) but also vout and wout.

Results for the flat plate show that when the Reynolds number is of the order of
103, a significant difference in the energy growth (up to 17 %) is found between the
two choices of the outlet energy norm (full or partial). This is particularly true for
supersonic values of the Mach number. On the other hand, when compressible effects
are considerable but the basic flow is subsonic, the difference between the full and
partial energy norms is not a critical factor. If the Reynolds number is greater than
104, vout and wout do not play a significant role even in supersonic flows.

Results for the sphere are presented first by considering the use of the partial
energy norm only and secondly by comparing them with the full energy norm, in the
most interesting case. The effect of the wall temperature is in agreement with previous
findings based on the parallel-flow model with curvature effects (Tumin & Reshotko
2001) and on the non-parallel flow model over a flat plate (Tumin & Reshotko
2003). In particular, the cooling of the wall destabilizes the flow with respect to the
transient growth, with a difference up to two orders of magnitude when the adiabatic
wall is compared to a cold wall (Tw/Tad = 0.25). On the other hand, at fixed wall
temperature, it is found that the energy growth is stronger in the proximity of the
stagnation point, reinforcing what was found in the parallel-flow approximation. In
contrast with the latter, however, the present model includes a significant feature, the
divergence of the flow. In the parallel-flow approximation, the spanwise wavenumber
β is a fixed parameter, whereas in this work the azimuthal index is kept constant so
that the effective local spanwise wavenumber β is a function of the streamwise and
radial coordinates. This divergence of the flow also leads to a modification of the
energy norm resulting from the integration of the perturbation over a period in the
azimuthal direction. Due to the scaling, the equations governing the perturbations
on the sphere are not Reynolds-number independent. This reflects the twofold role
of the radius of the sphere in the transient growth phenomenon. Not only does it
enter the disturbance equations as the curvature parameter, but also the Reynolds
number through the small parameter ε. The overall effect is an increase of the energy
growth with the sphere radius. The use of the full energy norm at the outlet was
also investigated. This was done close to the stagnation point and for a small range
of the meridional angle, since this is the region where the largest gain is observed
for the sphere in the case of the partial energy norm. Results reveal that, in the
range of interesting values of Reref (related to the small parameter ε = (Reref )

−1/2)
that are typical of wind tunnel tests or flight conditions, no significant role is played
by v and w at the outlet. Despite the progress made in the present paper towards
a better understanding of transient growth on blunt (spherical) noses, the ultimate
elucidation of the blunt-body paradox would require solving the receptivity problem,
which would explain the origin of the perturbation. This issue will be addressed in a
future work.

This work was supported by the US Air Force Office of Scientific Research.

Appendix A. Matrices for compressible flow past a sphere
Assuming that the basic flow is known, let r, θ and φ denote respectively the radial,

meridional and azimuthal coordinate and v, u, w be the corresponding velocity field.
Temperature T and pressure p are the other unknowns of the problem, while density
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ρ is related to T and p by the state equation and thus is not an explicit unknown.
The radial coordinate r = R + y includes the sphere radius R and the distance from
the sphere surface y.

The scaling is as described in § 2. There are only five unknowns in the disturbance
equations and they are assumed to be proportional to exp (imφ), where m is the
azimuthal index and i the imaginary unit.

The scaling adopted for the sphere leads to the following relationships between ρ,
p and T (the subscript S denotes basic flow), which allow us to recast the equations
in five variables only:

ρ = −ρsT

Ts

, ρs =
ps

Ts

.

In what follows viscosity µs is assumed to be a function of temperature only, and
therefore µ′

s stands for the derivative dµs/dTs .
Transformations of the linearized equations lead to a system of partial differential

equations

(A f )θ = D f θη + B0 f + B1 f η + B2 f ηη, (A 1)

where A, B0, B1, B2 and D are 5×5 matrices and η = y/Href is the normalized distance
from the wall. System (A 1) can be recast as

(H1 f )θ + H2 f = 0, (A 2)

where the parabolic dependence on θ should be more clear and operators H1 and H2

are still 5 × 5 matrices and contain the dependence on θ and η:

H1 = A − D(·)η, H2 = −B0 − [B1 − Dθ ] (·)η − B2(·)ηη. (A 3)

It should be noted that system (A 1) is written in a different form to (2.1). However,
by rearranging the matrices, the same final forms (A 2) and (2.4) are obtained.

The expression to be maximized is the integral in the wall-normal direction of the
kinetic energy and temperature

Eout =

∫ ∞

0

(1 + εη) sin(θout)

[
ρsout

[
u2

out + ε2
(
v2

out + w2
out

)]
+

psoutT
2
out

(γ − 1)Ts
2
outM

2

]
dη, (A 4)

where the term (1 + εη) sin(θout) comes from the integration over the whole domain,
i.e. over the three independent variables.

The non-zero elements of the matrices are reported here. It should be noted that,
formally, in the limit ε → 0, the geometric factor (1 + εη) reduces to 1 and thus is
automatically excluded from the denominator. The dependence on ε remains only in
the terms associated with the centrifugal force such as B31

0 . However, in the present
numerical implementation, the outer boundary ηmax had to be chosen far away (of the
order of 100) and ε = O(10−3), leading to εη = O(10−1). Since εη is not negligible,
we keep the factor (1 + εη) in the governing equations.

The wavenumber β in the following terms is defined as β = mε/[(1 + εη) sin θ].

Continuity equation:

A11 =
ρs

(1 + εη)
, A14 = − ρsUs

Ts(1 + εη)
,

B11
0 = − ρs cot θ

(1 + εη)
, B12

0 = −∂ρs

∂η
, B13

0 = −βρs,

B14
0 =

∂

∂η

(
ρsVs

Ts

)
+

ρsUs cot θ

Ts(1 + εη)
, B12

1 = −ρs, B14
1 =

ρsVs

Ts

.
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θ-momentum equation:

A21 =
2ρsUs

(1 + εη)
, A24 = − ρsU

2
s

Ts(1 + εη)
,

B21
0 = −∂ρsVs

∂η
− µsβ

2 − 2ρsUs cot θ

(1 + εη)
, B22

0 = −∂ρsUs

∂η
, B23

0 = −βρsUs,

B24
0 =

∂

∂η

(
ρsVsUs

Ts

)
+

∂

∂η

(
µ′

s

∂Us

∂η

)
+

ρsU
2
s cot θ

Ts(1 + εη)
, B21

1 =
∂µs

∂η
− ρsVs,

B22
1 = −ρsUs, B24

1 =
ρsUsVs

Ts

+ µ′
s

∂Us

∂η
, B21

2 = µs.

r-momentum equation:

A31 =
ρsVs

(1 + εη)
+

2

3(1 + εη)

∂µs

∂η
, A32 =

ρsUs

(1 + εη)
,

A34 = − ρsUsVs

Ts(1 + εη)
− µ′

s

(1 + εη)

∂Us

∂η
,

B31
0 =

2

3(1 + εη)

∂2µs

∂η∂θ
− ρsVs cot θ

(1 + εη)
+

2ρsUs

ε(1 + εη)
− 2 cot θ

3(1 + εη)

∂µs

∂η
,

B32
0 = −2

∂ρsVs

∂η
− β2µs − ρsUs cot θ

(1 + εη)
, B33

0 = −βρsVs − 2β

3

∂µs

∂η
,

B34
0 =

2ρsVs

Ts

∂Vs

∂η
+

∂µ′
s

∂η

[
4

3

∂Vs

∂η
− 2

3(1 + εη) sin θ

∂Us sin θ

∂θ

]
+ µ′

s

∂

∂η

(
4

3

∂Vs

∂η
− 2

3(1 + εη) sin θ

∂Us sin θ

∂θ

)
+ V 2

s

∂

∂η

(
ρs

Ts

)
+

ρsUsVs cot θ

Ts(1 + εη)
− ρsU

2
s

εTs(1 + εη)
+

µ′
s cot θ

(1 + εη)

∂Us

∂η
,

B31
1 =

1

(1 + εη)

∂µs

∂θ
+

µs cot θ

3(1 + εη)
, B32

1 = −2ρsVs +
4

3

∂µs

∂η
,

B33
1 =

βµs

3(1 + εη)
, B34

1 = µ′
s

[
4

3

∂Vs

∂η
− 2

3(1 + εη) sin θ

∂Us sin θ

∂θ

]
+

ρsV
2
s

Ts

B35
1 = −1, B32

2 =
4

3
µs,

D31 =
µs

3(1 + εη)
.

φ-momentum equation:

A43 =
ρsUs

(1 + εη)
, A44 =

µsβUs

3Ts(1 + εη)
,

B41
0 =

µsβ

3ρs(1 + εη)

∂ρs

∂θ
− β

(1 + εη)

∂µs

∂θ
− 2βµs cot θ

(1 + εη)
, B42

0 =
µsβ

3ρs

∂ρs

∂η
− β

∂µs

∂η
,

B43
0 = −β2µs − ∂ρsVs

∂η
− 2ρsUs cot θ

(1 + εη)
,
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B44
0 =

ρsUsβ

3Ts(1 + εη)

∂

∂θ

(
µs

ρs

)
− 2µ′

sβUs cot θ

(1 + εη)

+ µ′
s

2β

3

[
∂Vs

∂η
+

1

(1 + εη) sin θ

∂

∂θ
(Us sin θ)

]
− µsβ

3ρs

∂

∂η

(
ρsVs

Ts

)
− µsβUs cot θ

3Ts(1 + εη)
,

B45
0 = β, B43

1 = −ρsVs +
∂µs

∂η
, B44

1 = −βµsVs

3Ts

, B43
2 = µs.

Energy equation:

A51 =
ρsTs

(1 + εη)
,

B51
0 =

γ − 1

γ (1 + εη)

∂ps

∂θ
− ρsTs cot θ

(1 + εη)
, B53

0 = −βρsTs,

B54
0 = µ′

s(γ − 1)M2
ref

(
∂Us

∂η

)2

− β2µs

P r
+

1

Pr

∂

∂η

(
µ′

s

∂Ts

∂η

)
,

B51
1 = 2(γ − 1)M2

refµs

∂Us

∂η
, B52

1 = −ρsTs, B54
1 =

2

Pr

∂µs

∂η
,

B54
2 =

µs

P r
.
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