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Abstract Non-homogeneous multiple scales are in-
troduced to solve the resonant problem of non-parallel
boundary-layer receptivity originating from the
quadratic mixing of environmental disturbances. The
resulting algorithm is computationally inexpensive
and can be efficiently included in industrial codes for
transition prediction. The mutual interactions between
acoustic wave, vorticity wave, wall vibration and wall
roughness are discussed in detail and the receptivity
coefficient, which relates the amplitude of the excited
wave to the amplitude of the exciting sources, is com-
puted. The largest effect is found for the interaction
between acoustic waves and wall roughness pertur-
bations. Other coupling mechanisms are less effec-
tive. By comparing parallel and non-parallel results,
it is found that flow non-parallelism can play a non-
negligible role even in Blasius’ boundary layer, al-
though the largest effects are evident for the three-
dimensional boundary layer over an infinite swept
wing. For the particular case of wall roughness—wall
vibration mixing, the velocity disturbance is shown to
be exactly equal to the velocity perturbation induced
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by wall roughness alone on a wall vibrating in the nor-
mal direction.
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1 Introduction to the problem of receptivity

Within the scope of boundary-layer stability analysis,
receptivity [49, 52] has been receiving large attention
in the last decades owing to its potential to improve
transition-prediction criteria by including the response
to external disturbances. The classical eN method, still
employed for airplane design, is based on the ansatz
that transition occurs when the total amplification of
the leading instability mode (obtained as the solution
to a homogeneous problem) attains a given value. This
is only a realistic assumption for practical situations
where both the transition threshold and the amplitude
of external sources of excitation exhibit little varia-
tion from one case to another. Here, instead, we fo-
cus on the relationship between the amplitude of the
Tollmien-Schlichting instability wave (TS wave) gen-
erated inside the boundary layer and the physical am-
plitude of the environmental disturbances that cause it.

Typical external disturbances are acoustic waves,
freestream vorticity waves and wall vibrations. Even
when their frequency is close to that of TS waves,
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these disturbances cannot resonate with TS waves be-
cause their wavelength is much larger.1 On the other
hand, resonance can be achieved if some wavelength
conversion mechanism ensures the adaptation of the
exciting wavelength [30, 31, 53]. This wavelength-
conversion effect can be provided by the rapid growth
of the boundary layer near the leading edge or by a
rapid variation of the wall boundary conditions that
induce a fast adaptation of the boundary layer. Con-
sequently, the wide range of receptivity configura-
tions analyzed in published works (see Ref. [33] for
a review on the progresses made in the 1980s and
Ref. [57] for a later review summarizing theoretical
modeling, numerical simulations, and experiments)
can ultimately be grouped as (a) leading-edge recep-
tivity, (b) sudden boundary-layer forced adjustment
receptivity and (c) distributed (surface roughness) re-
ceptivity. Here we are only interested in problem (c).

Receptivity mechanisms can also be organized ac-
cording to where the unsteadiness originates from, i.e.
receptivity to freestream disturbances (acoustic and
vorticity waves) or receptivity to disturbances at the
wall (wall vibration).

Among the first class of mechanisms, localized
receptivity to acoustic waves interacting with wall
roughness has been the most studied. Notable exper-
imental contributions are those by Kachanov [39] and
Saric et al. [55], while the theoretical problem was
first approached by Goldstein [31], Ruban [53] and
Zhigulev & Fedorov [68]. Within the triple-deck the-
ory, small roughness heights led to a linearized formu-
lation [31, 32], which was later numerically extended
to deal with larger heights that require the nonlin-
ear approach for both two-dimensional [8] and three-
dimensional [61] roughness elements. After the first
asymptotic theories, receptivity to acoustic waves was
tackled by solving an inhomogeneous OS problem in
the Fourier transform space and by determining the
amplitude of the instability wave as the residue of the
pole that corresponds to the TS eigenmode of the OS
equation. This OS approach was first applied in the
linear case (small heights) [17, 19] and later in the
non-linear one (large heights) [50]. In the study of

1This is because the phase speed of TS waves turns out to be
a fraction of the freestream velocity, whereas the phase speed
of vorticity waves is precisely the freestream velocity and the
phase speed of sound waves is even larger until the flow remains
subsonic.

receptivity to acoustic waves, other “tuning” mecha-
nisms were considered such as suction and blowing [7,
16, 24], rapid static pressure variations or marginally
separated flows [33, 34], and the descending step [2].
Also the non localized receptivity to acoustic waves
has been investigated [14, 20, 21]. The problem of re-
ceptivity to vorticity waves, on the other hand, was
studied in both localized [15, 26, 41, 42] and non local-
ized frameworks [23], and by considering the mutual
interaction with acoustic waves without resorting to a
local non-homogeneity of the mean flow [65]. Signifi-
cant and original experimental data on vortical recep-
tivity can be found in Ref. [25], which is also a good
review paper with further references. More recent the-
oretical results on local and distributed receptivity to
both acoustic and vortical disturbances were obtained
by Wu [66, 67], who compared them with the experi-
ments of Dietz [25] finding a good agreement.

Historically, the other class of mechanisms (un-
steady disturbances generated at the wall) was the first
problem considered. The typical configuration is the
vibrating ribbon, which was experimentally investi-
gated by Schubauer and Skramstad [59] and then the-
oretically, almost 20 years later, by Gaster [27]. The
first theoretical studies of boundary-layer receptivity
to wall vibration were carried by Terent’ev [54, 62,
63]; later on the problem of the vibrating ribbon was
revisited [3, 29, 60] and extended to the study of insta-
bility waves in wall boundary layers excited by vari-
ous types of Dirac sources [46–48]. More recently the
receptivity to distributed wall vibrations has been con-
sidered [40].

As far as it is known to the authors, the receptiv-
ity to structural vibration is restricted to the works of
Chiu et al. [13] and Chiu and Norton [12], who consid-
ered the receptivity to transverse structural vibration
on the leading edge.

References to three-dimensional base flows and
swept-wing boundary layers can be found in Ref. [38].

2 Multiple scales among possible modeling
approaches

Boundary-layer receptivity has been analyzed us-
ing several different theoretical approaches, such as
asymptotic expansions based on large Reynolds num-
bers, Orr-Sommerfeld (OS) formulations, parabolized
stability equation (PSE) and direct numerical simula-
tion (DNS). All these techniques can be coupled with
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an adjoint formulation, to obtain the sensitivity of the
TS waves to modifications of the base flow or bound-
ary condition [1, 35, 36, 44, 51].

Triple-deck modeling was, historically, the first ap-
proach to receptivity [30, 31, 33, 34, 53]. The solu-
tion is expanded as the sum of a steady base flow, a
steady perturbation due to wall roughness, and an un-
steady perturbation due to the unsteady source (e.g.
acoustic wave). An analytical expression for the re-
ceptivity coefficient was found in the linear case [31],
while for larger roughness heights the problem was
solved numerically [8, 61]. The main disadvantage of
this class of asymptotic methods, however, is that they
work well only for very large Reynolds numbers, in
the vicinity of the lower branch of the neutral-stability
curve, and for specific dimensions of the hump that are
on a scale specified in the formulation.

The OS approach, on the contrary, is valid for finite
Reynolds numbers, both near and away from branch I,
and allows the study of frequency effects at different
Reynolds numbers [17, 19]. The solution is the sum
of the Blasius boundary layer v0(y), independent of
x, an unsteady flow vε(x, y, t) due to the interaction
between the boundary layer and the unsteady source
(Stokes flow), a steady flow vδ(x, y) due to the inter-
action between the wall disturbance and the bound-
ary layer, and an unsteady flow vεδ(x, y, t) due to
the interaction of the previous ones. The latter is the
resonant wave. Boundary conditions are moved from
y = δh(x) (wall shape) to y = 0 using a Taylor expan-
sion. The original assumption of small hump heights
can be overcome by using an interacting boundary
layer model [50] and the parallel-flow limitation re-
laxed by introducing a Taylor expansion of the laminar
mean-flow profile at the location of the roughness and
employing a Fourier transform approach [5].

PSE can incorporate non-homogeneous initial and
boundary conditions, with the advantage of a mod-
est computational effort compared to the solution of
the Navier-Stokes equations. For this reason they have
been applied to receptivity studies and transition pre-
diction, accounting also for non-parallel effects [1,
6, 35, 51]. Unfortunately, depending on the way the
equations are implemented in a code, numerical sta-
bility problems can arise with diminishing x-step, so
that formally the method does not even converge un-
less ad-hoc stabilization techniques are added.

DNS does not assume any modeling and solves di-
rectly the unsteady Navier-Stokes equations at the ex-
pense of a heavy computational effort. The sensitivity

of the TS waves to the hump height and length, and
to the acoustic frequency, was computed [10, 11] and
verified against the linear approach [31] and available
experimental data [43, 55].

The technique we shall concentrate upon here is
the multiple-scale method [9, 28]. This is a classical
asymptotic approximation which is applied in physics
every time a problem, whose oscillating solution is
known for constant parameters, is to be solved with
those constants being replaced by slowly varying func-
tions [4, 64]. The condition for applying this method
is the existence of two separated scales of temporal
or spatial variation. This is typically the case of TS
waves, where variations of the base flow are quite slow
in the streamwise direction as compared to the TS
wavelength.

If the base flow were streamwise-constant (par-
allel flow), the fast-varying perturbation would be
described by a complex exponential. In the general
case, the solution y(x) is assumed to be of the form
A(x, ε̃)eφ(x)/ε̃ , where ε̃ is a small parameter account-
ing for the scale ratio. Function A(x, ε̃), the slowly
varying (generally complex) amplitude, is expanded in
a power series of the small parameter ε̃; a correspond-
ing expansion of the governing equations leads to a
hierarchy of problems at different orders with respect
to ε̃.

In Appendix A, the homogeneous version of mul-
tiple scales, also known as WKB approximation (after
Wentzel, Kramers and Brillouin), is reported for refer-
ence.

In fluid dynamics the leading order of the multiple-
scale expansion, as developed by [9, 28], is gener-
ally referred to as the “parallel” (or sometimes “quasi-
parallel”) approximation, whereas the subsequent term
of the expansion is the “non-parallel correction”. The
homogeneous multiple-scale technique was applied to
account for non-parallel effects in the study of the sta-
bility of a two-dimensional incompressible boundary
layer in [56], and more recently to analyse the stabil-
ity of three-dimensional incompressible boundary lay-
ers in [45]. In the theory of receptivity, multiple scales
were pioneered in Russia by Zhigulev, Tumin, Fe-
dorov and their colleagues, leading to a series of jour-
nal papers summarized in the monograph by Zhigulev
and Tumin [69].

As compared to the other approaches previously
described, multiple scales can be preferable for the
study of boundary-layer receptivity because of differ-
ent reasons. First, they allow us to naturally include
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non-parallel effects due to boundary-layer growth,
which may be important in some applications (e.g.
accelerating or decelerating boundary layers or the
boundary layer on a swept wing). Second, they yield
reasonably accurate results at moderately high Reyn-
olds number, in contrast with other asymptotic meth-
ods (e.g. triple deck) that only converge at impracti-
cally large Reynolds numbers where the flow in real-
ity is already turbulent. Finally, multiple-scale approx-
imations provide computationally inexpensive numer-
ical codes without the numerical-stability problems
that plague PSE.

The work presented here was carried out a few
years ago [70] to treat the receptivity problem in
boundary layers by developing a non-homogeneous
version of multiple scales in the amplification region,
where the boundary-layer grows slowly. The method
is used to analyse interactions between (i) acoustic
waves and wall roughness, (ii) vorticity waves and
wall roughness, and (iii) acoustic and vorticity waves.
The coupling between (iv) wall vibration and wall
roughness, which is a very common condition for an
airplane wing or for the blade of a turbo-machine, is
analyzed in Appendix C. Even though multiple scales
have been used and compared with other approaches
(for instance at CIRA, the Italian Aerospace Research
Center), their systematic description for the study of
receptivity and their suitability for industry applica-
tions have not received much attention. For this rea-
son their application to a non homogeneous, resonant
problem is here reported in detail (see, in particular,
Sects. 4 and 5).

3 Problem formulation and linearization

The problem is governed by the dimensionless, incom-
pressible Navier-Stokes equations:

ûx̂ + v̂ŷ + ŵẑ = 0

ût̂ + ûûx̂ + v̂ûŷ + ŵûẑ

= −p̂x̂ + ûx̂x̂ + ûŷŷ + ûẑẑ

R

v̂t̂ + ûv̂x̂ + v̂v̂ŷ + ŵv̂ẑ (1)

= −p̂ŷ + v̂x̂x̂ + v̂ŷŷ + v̂ẑẑ

R

ŵt̂ + ûŵx̂ + v̂ŵŷ + ŵŵẑ

Fig. 1 Possible external disturbances inducing transition to tur-
bulence in the boundary layer over a flat plate

= −p̂ẑ + ŵx̂x̂ + ŵŷŷ + ŵẑẑ

R
,

together with the relevant initial and boundary con-
ditions. Velocities are normalized with the outer ve-
locity U∗∞ (a star ·∗ denoting dimensional quanti-
ties, a hat ·̂ dimensionless ones), whereas the stream-
wise, wall-normal and spanwise coordinates x, y and
z are scaled with a typical boundary-layer thickness
δ∗

0 = √
x∗

I ν∗/U∗∞ (x∗
I being the first neutral point

of the neutral curve), and time with δ∗
0/U∗∞. The

Reynolds number is defined as R = δ∗
0U∗∞/ν∗ =

√
x∗

I U∗∞/ν∗ =
√

Rex∗
I
.

Referring to Fig. 1, we consider a general steady,
incompressible boundary layer past a flat plate. Some
disturbances can originate in the external flow (acous-
tic and vorticity waves), others at the wall (wall vi-
bration and wall roughness). Following what was al-
ready done by others [17, 19], we introduce two small
disturbances εv̂ε(x̂, ŷ, ẑ)e−iω̂ε t̂ and δv̂δ(x̂, ŷ, ẑ)e−iω̂δ t̂ ,
where v̂ε = (uε, vε,wε) and v̂δ = (uδ, vδ,wδ) are re-
spectively an unsteady wave of amplitude ε generated
by a general unsteady excitation source behaving as
e−iω̂ε t̂ , and an unsteady wave of amplitude δ due to
another general unsteady excitation source behaving
as e−iω̂δ t̂ . These two perturbations are superimposed
to a steady base flow V̂(x̂, ŷ, ẑ). Their interaction gen-
erates beat waves, respectively

εδv̂+
εδ(x̂, ŷ, ẑ)e−i(ω̂ε+ω̂δ)t̂ and

εδv̂−
εδ(x̂, ŷ, ẑ)e−i(ω̂ε−ω̂δ)t̂

at order εδ, plus other waves at higher orders. The
wavelength and frequency of the waves at orders ε

and δ, in general, are different from those typical
of TS waves. Their interaction at order εδ, however,
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could generate a resonant wave. If we assume that
the latter is εδv̂+

εδ(x̂, ŷ, ẑ)e−i(ω̂ε+ω̂δ)t̂ , allowing one
of the interacting frequencies to be negative, then
its amplitude is much larger than the amplitude of
εδv̂−

εδ(x̂, ŷ, ẑ)e−i(ω̂ε−ω̂δ)t̂ , which can be neglected. The
velocity field inside the boundary layer v̂(x̂, ŷ, ẑ, t̂ ) is
thus decomposed into different contributions originat-
ing from the steady base flow (V̂), from different en-
vironmental sources (v̂ε and v̂δ) and from their mutual
interaction (v̂εδ),

v̂(x̂, ŷ, ẑ, t̂ ) = V̂(x̂, ŷ, ẑ) + εv̂ε(x̂, ŷ, ẑ)e−iω̂ε t̂

+ δv̂δ(x̂, ŷ, ẑ)e−iω̂δ t̂

+ εδv̂εδ(x̂, ŷ, ẑ)e−i(ω̂ε+ω̂δ)t̂

+O
(
ε2) +O

(
δ2) + · · · , (2)

where v̂εδ is understood as v̂+
εδ . Of course, as a partic-

ular case one of the two frequencies might be zero.
If the velocity decomposition (2) is substituted in

the Navier-Stokes equations (1), and the latter are suit-
ably expanded, one finds three linear problems at or-
ders ε, δ and εδ.

Linearization can also be applied to the boundary
conditions at the wall. In the case of wall roughness,
the wall shape is expressed as δh(x̂), where δ is the
typical wall-roughness scale and h(x̂) is an order-one
function of the streamwise coordinate. This distur-
bance is stationary, and thus ω̂δ = 0.

On the other hand, wall vibration can generate an
unsteady motion of the wall in the streamwise, span-
wise or wall-normal direction. In the first two cases the
problem reduces to the well-known flow near an oscil-
lating flat plate (Stokes’s second problem [58]), while
in the second one the position of the wall as a func-
tion of time can be described by εe−iω̂ε t̂ where ε is
the typical amplitude of the vibration with a character-
istic frequency ω̂ε . If both disturbances (wall rough-
ness and wall vibration) are acting at the wall, the wall
shape must be described by the function H(x̂, t̂) =
δh(x̂) + εe−iω̂ε t̂ .

In Appendix C we prove that wall vibration cou-
pled with wall roughness does not lead to resonance.
This allows us to consider the effect of wall rough-
ness alone, which reduces the wall shape H(x̂, t̂) to
the steady form H(x̂) = δh(x̂).

Boundary conditions defined at ŷ = δh(x̂) can be
shifted to ŷ = 0 via linearization because δ is a small

parameter. The Taylor expansion of the velocity field
v̂ about the position ŷ = 0 leads to

v̂(x̂, ŷ, ẑ, t̂ ) = v̂(x̂,0, ẑ, t̂) + δh(x̂)
∂ v̂(x̂, ŷ, ẑ, t̂ )

∂ŷ

∣∣∣∣
ŷ=0

+ 1

2
δ2h2(x̂)

∂2v̂(x̂, ŷ, ẑ, t̂ )

∂ŷ2

∣∣∣∣
ŷ=0

+O
(
δ3) = 0. (3)

When the expansion (2) is introduced in the lineariza-
tion (3), non-homogeneous boundary conditions orig-
inate at order δ and εδ,

V̂(x̂,0, ẑ) = 0

v̂ε(x̂,0, ẑ) = 0

v̂δ(x̂,0, ẑ) = −h(x̂)
∂V̂(x̂, ŷ, ẑ)

∂y

∣∣∣∣
ŷ=0

v̂εδ(x̂,0, ẑ) = −h(x̂)
∂ v̂ε(x̂, ŷ, ẑ)

∂ŷ

∣∣∣∣
ŷ=0

.

(4)

The system of linearized Navier-Stokes equations
and boundary conditions at the wall can now be for-
mally and compactly written as

Lε(V̂,R)f̂ε = ŷε (5)

Lδ(V̂,R)f̂δ = ŷδ (6)

Lεδ(V̂,R)f̂εδ = ŷεδ. (7)

Here f̂γ = (ûγ , v̂γ , ŵγ , p̂γ ), with γ ∈ {ε, δ, εδ}, is the
vector of unknowns while Lγ (V̂,R) is a linear opera-
tor that depends on the base flow

V̂ = (
Û (x̂, ŷ, ẑ), V̂ (x̂, ŷ, ẑ), Ŵ (x̂, ŷ, ẑ)

)

and Reynolds number R. The right-hand-side (RHS)
terms ŷγ (γ ∈ {ε, δ, εδ}) at orders ε and δ originate
from the possible non homogeneous boundary condi-
tions at the wall or at infinity (see conditions (4) at the
wall). At order εδ, on the other hand, not only bound-
ary conditions contribute to the RHS but also the cou-
pling terms coming from the nonlinear part of the orig-
inal Navier-Stokes equations, i.e. ŷεδ = −[0, a, b, c]T ,
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with

a = ûε(ûδ)x + ûδ(ûε)x + v̂ε(ûδ)y

+ v̂δ(ûε)y + ŵε(ûδ)z + ŵδ(ûε)z

b = ûε(v̂δ)x + ûδ(v̂ε)x + v̂ε(v̂δ)y

+ v̂δ(v̂ε)y + ŵε(v̂δ)z + ŵδ(v̂ε)z

c = ûε(ŵδ)x + ûδ(ŵε)x + v̂ε(ŵδ)y

+ v̂δ(ŵε)y + ŵε(ŵδ)z + ŵδ(ŵε)z.

(8)

It should be noticed that equation (7) has to be satisfied
under resonant conditions and thus requires additional
care.

4 Non-homogeneous multiple-scale theory applied
to a one-dimensional resonant problem

In order to explain the use of multiple scales for the
non homogeneous and resonant problem (7), let us
focus on a simple time-dependent (one-dimensional)
system.

As known from the study of the harmonic os-
cillator driven by a sinusoidal forcing, ẍ + ω2

0x =
F0 cosωt , in the limit ω → ω0, i.e. under resonant
conditions, the particular solution xp(t), induced by
the non-homogeneous source, can be rewritten as
F0t sin(ω0t)/(2ω0). This expression emphasizes the
presence, in the case of undamped oscillations, of a
secular term that grows indefinitely (and linearly) with
time for t → ∞.

On the other hand, if an oscillator (or another
model of a physical phenomenon) shows a separa-
tion of scales, for instance in time, multiple scales
can efficiently account for it through the introduction
of a small parameter ε̃ that leads to the definition of
a new “slow” variable T = ε̃t (see Appendix A for
a simple, one-dimensional and homogeneous formu-
lation). When multiple scales are employed for the
study of resonant problems, the presence of the secular
term proportional to t leads to a solution that behaves
as T/ε̃ and still grows in time, but that provides an
O(1/ε̃) effect. Two choices are available for introduc-
ing the resonant forcing at the correct order in ε̃. If the
fundamental order in the multiple-scale expansion is
1/ε̃, then the resonant forcing should be introduced at
order ε̃0; if the leading order is ε̃0, as in the multiple-
scale theory here presented, then the forcing term must

be multiplied by ε̃1. Under these assumptions, a time-
dependent linear system forced to resonant conditions
reads

H (t)
dx(t)

dt
+ A(t)x(t) = ε̃y(t), (9)

where matrices H and A are slowly varying with time
t , x is the state vector, ε̃ is, as noticed, the small param-
eter that accounts for the slow variation with respect to
t , and y is the resonant forcing term, appearing at order
ε̃ for the reason explained above.

The solution x is assumed to be representable in the
form

x(t) = f(T ) exp
(
φ(T )/ε̃

)

= (
f0(T ) + ε̃f1(T ) + ε̃2f2(T ) + · · · )

× exp
(
φ(T )/ε̃

)
,

where the exponential is a fast varying oscillating
function, while vector f(T ) is the slowly varying part
and is expanded in series of the small parameter ε̃. Un-
der resonant conditions, on the other hand, the forcing
y(t) is also fast varying, and can be expressed as

y(t) = (
y0(T ) + ε̃y1(T ) + ε̃2y2(T ) + · · · )

× exp
(
ψ(T )/ε̃

)
.

After expressing the derivative with respect to t in
terms of T (see Appendix A) and introducing it in the
original system (9), by separating the contributions at
different orders with respect to ε̃ the following hierar-
chy of linear systems is obtained,

ε̃0
(

dφ

dT
H (T )f0(T ) + A(T )f0(T )

)
e

φ(T )
ε̃ = 0

ε̃

(
dφ

dT
H (T )f1(T ) + df0

dT
+ A(T )f1(T )

)
e

φ(T )
ε̃

= ε̃y0(T )e
ψ(T )

ε̃

... = ...

ε̃n

(
dφ

dT
H (T )fn(T ) + dfn−1

dT
+ A(T )fn

)
e

φ(T )
ε̃

= ε̃nyn−1(T )e
ψ(T )

ε̃ .

(10)

The homogeneous system at order zero (ε̃0) is a gen-
eralized eigenvalue problem
[
A(T ) + λk(T )H (T )

]
uk(T ) = 0 (11)
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where λk(T ) = φ′(T ) is the eigenvalue and
uk(T ) = f0(T ) is the right eigenvector. The latter is
not unique, i.e. f0(T ) = uk(T ) = ck(T )ũk(T ), where
ck(T ) is a multiplicative function and ũk(T ) is the
right eigenvector arbitrarily normalized.

At any other order, terms proportional to e
ψ(T )−φ(T )

ε̃

arise at the RHS when dividing by e
φ(T )

ε̃ . However,
under resonant conditions ψ ′(T ) = φ′(T ) = λk(T ) so
that the system to be solved at order ε̃ is

[
A(T ) + λk(T )H (T )

]
f1(T ) = −df0

dT
+ y0(T ), (12)

which is linear, non homogeneous, but singular be-
cause the coefficient matrix [A(T ) + λk(T )H (T )] is
the same as order ε̃0. For this reason the RHS must
satisfy the compatibility condition, i.e. the dot product
between the RHS and the left eigenvector ṽk , corre-
sponding to the eigenvalue λk that renders the system
singular, has to be zero:

ṽk(T ) ·
(

−df0

dT
+ y0(T )

)
= 0. (13)

By expanding the compatibility condition (13) and re-
calling that f0(T ) = ck(T )ũk(T ), the following first-
order non-homogeneous ordinary differential equation
for the unknown ck(T ) is derived

ṽk(T ) · ũk(T )
dck

dT
+ ṽk(T ) · dũk(T )

dT
ck

= ṽk(T ) · y0(T ). (14)

After introducing

p(T ) =
[

ṽk(T ) · dũk(T )

dT

]
/
[
ṽk(T ) · ũk(T )

]

and

q(T ) = [ṽk(T ) · y0(T )]
[ṽk(T ) · ũk(T )] ,

equation (14) reduces to

dck

dT
+ p(T )ck = q(T ),

whose closed-form solution is

ck(T ) = e
− ∫ T

T0
p(T ′) dT ′ ∫ T

T0

q
(
T ′′) e

∫ T ′′
T0

p(T ′) dT ′
dT ′′

=
∫ T

T0

q
(
T ′′) e

∫ T ′′
T p(T ′) dT ′

dT ′′.

Once ck(T ) is known, vector f0(T ) = ck(T )ũk(T ) is
retrieved. It should be noticed that f0(T ) is indepen-
dent of the normalization chosen for ũk(T ). By trun-
cating the solution at order ε̃0, the state vector x(T ) is
finally obtained as x(T ) = ck(T )ũk(T ) exp(φ(T )/ε̃)+
O(ε̃) or, after substituting the closed-form expression
for ck(T ),

x(T ) = ũk(T )

∫ T

T0

[
r
(
T ′′) ·y0

(
T ′′)]dT ′′ +O(ε̃), (15)

where

r
(
T ′′) = ṽk(T

′′)e
φ(T )

ε̃

ṽk(T ′′) · ũk(T ′′)

× exp

(∫ T ′′

T

ṽk(T
′) · dũk(T

′)/dT

ṽk(T ′) · ũk(T ′)
dT ′

)
.

Equation (15) compactly expresses the state vector x
as a function of the right eigenvector ũk (computed at
order ε̃0 and arbitrarily normalized) multiplied by the
integral of the dot product between the resonant forc-
ing source y0 and a weight r. The latter function, r, is
otherwise known as “receptivity” because it describes
the sensitivity of the solution to the forcing y0. r con-
tains the left eigenvector ṽk of the eigenvalue prob-
lem (11), and therefore can be interpreted also as the
solution of the adjoint problem derived from (11).

5 Non-homogeneous multiple scales applied to the
linearized Navier-Stokes equations

The necessity to solve the resonant problem governed
by equation (7) and the slow dependence of the linear
operator Lεδ on the streamwise coordinate suggest the
use of the multiple scales.

A small parameter ε̃, accounting for the scale sep-
aration between the streamwise variation of the base
flow and the streamwise oscillation of the perturbation
can be introduced in a number of ways. If the scale
of the oscillation is assumed to be comparable to the
boundary-layer thickness, it may seem natural to iden-
tify ε̃ with R−1/2. However, doing so leads to an in-
viscid leading-order problem, which turns out to be
non-uniformly valid across the boundary layer. This
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non-uniformity is accounted for in multiple-deck the-
ory, which eventually shows that ε̃ is not O(R−1/2).

In a different approach, which we adopt here, ε̃

and R are treated as mutually independent parameters.
This is actually the case if the base flow is embedded in
a larger class of problems, possibly including volume
forces. In such a larger class of problems the stream-
wise and normal scales of variation of the base flow
are untied to the Reynolds number (for instance, in a
truly parallel flow the streamwise scale is infinite de-
spite both the normal scale and Reynolds number are
finite), whereas the perturbation wavelength is a com-
plicated function of the Reynolds number which is im-
plicitly accounted for by keeping all the R-dependent
terms in the equations, just as would happen in truly
parallel flow. The expansion parameter ε̃ is the ra-
tio between this wavelength and the typical longitu-
dinal scale of the base flow. Of course the accuracy of
the solution cannot be harmed by keeping all the R-
dependent terms in the equations while performing an
expansion in ε̃ only.

With a, b, c being the forcing terms as defined
in (8), system (7) can be expanded similarly to (16).

(ûεδ)x̂ + (v̂εδ)ŷ + (ŵεδ)ẑ = 0

(ûεδ)t̂ + Û (ûεδ)x̂ + ûεδÛx̂ + V̂ (ûεδ)ŷ + v̂εδÛŷ

+ Ŵ (ûεδ)ẑ + ŵεδÛẑ

= −(p̂εδ)x̂ + R−1[(ûεδ)x̂x̂ + (ûεδ)ŷŷ + (ûεδ)ẑẑ
]

− ε̃a

(v̂εδ)t̂ + Û (v̂εδ)x̂ + ûεδV̂x̂ + V̂ (v̂εδ)ŷ + v̂εδV̂ŷ

+ Ŵ (v̂εδ)ẑ + ŵεδV̂ẑ (16)

= −(p̂εδ)ŷ + R−1[(v̂εδ)x̂x̂ + (v̂εδ)ŷŷ + (v̂εδ)ẑẑ
]

− ε̃b

(ŵεδ)t̂ + Û (ŵεδ)x̂ + ûεδŴx̂ + V̂ (ŵεδ)ŷ + v̂εδŴŷ

+ Ŵ (ŵεδ)ẑ + ŵεδŴẑ

= −(p̂εδ)ẑ + R−1[(ŵεδ)x̂x̂ + (ŵεδ)ŷŷ + (ŵεδ)ẑẑ
]

− ε̃c.

It should be noted that the forcing terms appear multi-
plied by ε̃, as explained for the one-dimensional reso-
nant example in Sect. 4. Boundary conditions for sys-
tem (16), which are derived from (4), provide a contri-

bution of order ε̃ and read

ûεδ(x̂,0, ẑ) = −ε̃h(x̂)
∂ûε

∂ŷ
|ŷ=0

v̂εδ(x̂,0, ẑ) = −ε̃h(x̂)
∂v̂ε

∂ŷ
|ŷ=0 (17)

ŵεδ(x̂,0, ẑ) = −ε̃h(x̂)
∂ŵε

∂ŷ
|ŷ=0.

Following the same steps as in the one-dimensional
example (see Sect. 4 or the Appendix B), new coordi-
nates are introduced, x = ε̃x̂, y = ŷ, z = ε̃ẑ, t = t̂ and
the base flow is expressed in the new reference frame
as

U(x,y, z) = Û (x̂, ŷ, ẑ)

V (x, y, z) = V̂ (x̂, ŷ, ẑ)/ε̃

W(x, y, z) = Ŵ (x̂, ŷ, ẑ).

The generic quantity q̂(x̂, ŷ, ẑ, t̂ ) (which corresponds
to û, v̂, ŵ or p̂ previously introduced) is expanded as

q̂(x̂, ŷ, ẑ, t̂ ) = (
q0(x, y) + ε̃q1(x, y)

+ · · · )e
iθ(x)

ε̃
+iβz−iωt , (18)

where θ(x) is related to the streamwise wavenumber
α by α = dθ/dx, β is the spanwise wavenumber and
ω the frequency. After introducing expression (18) to-
gether with its first and second derivatives in (16) and
boundary conditions (17), the original resonant prob-
lem (7) is recast as two linear problems at orders ε̃0

and ε̃1 (in the multiple-scale small parameter ε̃),

order ε̃0:
A(α,ω,R)f0εδ = 0

order ε̃1:

A(α,ω,R)f1εδ = −H (α,R)
df0εδ

dx

+ C(α,R)f0εδ + yεδ,

(19)

where vectors

f0εδ = [
u0εδ(x, y), v0εδ(x, y),w0εδ(x, y),p0εδ(x, y)

]

and

f1εδ = [
u1εδ(x, y), v1εδ(x, y),w1εδ(x, y),p1εδ(x, y)

]
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are the unknowns of the problem, and matrices A,
H and C are defined in Appendix B (A is the well-
known Orr–Sommerfeld operator). In what follows,
vectors and matrices will be indicated as a function
of x only, even though they do depend on y as well.
Equations (19) are the generalization of (11) and (12)
to a multi-dimensional problem.

The order-0 equation in system (19) is the classi-
cal Orr–Sommerfeld problem for the spatial-stability
analysis. Given ωTS and R, the wavenumber αTS of the
most unstable mode (TS wave) and its corresponding
eigenvector f0εδ are obtained from the dispersion rela-
tion D(α,ω,R) = 0, which is equivalent to imposing
det(A) = 0. As noticed in Sect. 4, f0εδ is not unique
and its normalization is arbitrary, i.e. f0εδ = c(x)f̃0εδ ,
where c(x) is an unknown multiplicative function to
be determined through the solvability condition at or-
der ε̃1.

At order ε̃1, the forcing yεδ has, in general, a wide
spectrum and therefore does not need to be represented
by wave packets. However, since we are interested in
the resonant problem for which the wavenumber and
frequency of the forcing tend to the TS ones, we as-
sume that the velocity disturbances at orders ε and δ

are in the form

ε
[
uε(x, y), vε(x, y),wε(x, y)

]

× exp

(
i

∫
αεdx′ − iωεt

)

and

δ
[
uδ(x, y), vδ(x, y),wδ(x, y)

]

× exp

(
i

∫
αδdx′ − iωδt

)
,

so that their coupling at order εδ provides the forcing

yεδ = −

⎛

⎜⎜
⎝

0
iαδuεuδ + iαεuδuε + vε(uδ)y + vδ(uε)y + iβwεuδ + iβwδuε

iαδuεvδ + iαεuδvε + vε(vδ)y + vδ(vε)y + iβwεvδ + iβwδvε

iαδuεwδ + iαεuδwε + vε(wδ)y + vδ(wε)y + iβwεwδ + iβwδwε

⎞

⎟⎟
⎠ . (20)

The compatibility condition required to solve the
singular system at order ε̃1 in (19) provides the equa-
tion for c

dc

dx
+ a2

a1
c = f∗ · yεδ

a1
,

similar to (14), where a1 = f∗ · H f̃0εδ and a2 = f∗ ·
Hd f̃0εδ/dx+C f̃0εδ . The solution at a final streamwise
location xf is

c(xf) =
∫ xf

x0

[
f∗(x) · yεδ(x)

a1(x)

× exp

(
−

∫ xf

x

a2(x
′)

a1(x′)
dx′

)]
dx,

where x0 is a certain initial (upstream) station. Co-
efficient a2 accounts for the non-parallel effects. In
the case of parallel-flow assumptions (U = U(y) and
V = W = 0) a2 is zero because d f̃0εδ/dx = 0 (the
vector f̃0εδ is constant), and matrix C = 0 (it con-

tains the derivatives of U with respect to x and the
V -component of the base flow).

By considering only the O(ε̃0) contribution to the
multiple-scale expansion, the solution at order εδ is
fεδ(xf) = c(xf)f̃0εδ(xf) exp(i

∫ xf
x0

α dx′) +O(ε̃), or, af-
ter substituting c(xf),

fεδ(xf) = f̃0εδ(xf)

∫ xf

x0

r(x) · yεδ(x) dx +O(ε̃), (21)

with

r(x) = f∗(x)

a1(x)
× e

i
∫ xf
x0

α dx′−∫ xf
x

a2
a1

dx′
. (22)

Vector fεδ in (21) includes the eigenvector f̃0εδ at or-
der ε̃0 and the integral of the dot product between the
resonant forcing yεδ(x) and the vector r(x), which is
the receptivity (sensitivity) of the solution to the forc-
ing. It should be kept in mind that the solution fεδ(xf),
in general, is expressed by a convolution and not by a
simple integral. The simplification to an integral orig-
inates from the fact that we are focusing on a specific
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mode selected by the TS problem. r(x) can also be
seen as a Green function, which is actually different
from zero only in a narrow band. The multiple-scale
approximation, introduced for a slowly varying flow
field as opposed to a uniform one, is contained in the
function r(x). No further hypotheses are required for
the source term yεδ(x).

6 Interacting disturbances

6.1 Acoustic wave

We assume that the free-stream acoustic wave is plane
and characterized by a streamwise velocity amplitude
ε and frequency ωε . This wave, interacting with the
boundary layer on the flat plate, induces a perturbation
that can be described by the Navier-Stokes equations
linearized about the base flow. Such a perturbation is
independent of the streamwise and spanwise coordi-
nates x and z, so that the governing equations reduce
to

(vε)y = 0

−iωεuε + (pε)x − (uε)yy/R = 0 (23)

(pε)y = 0,

with boundary conditions uε = vε = 0 at y = 0 and
uε → 1, vε → 0 for y → ∞. Being (pε)x = iωε , this
is equivalent to the well-known Stokes’s second prob-
lem (the flow near an oscillating flat plate), for which
vε = 0 and uε depends on y alone,

εvε(x, y) exp(−iωεt)

= ε
(
1 − exp(−√−iωεR y),0

)
exp(−iωεt).

The governing equations for the acoustic wave distur-
bance can also be obtained by straightforwardly re-
moving the x- and z-dependence in the OS operator
(i.e. α = 0 and β = 0). Therefore, equations (23) are
the leading-order equations of a multiple-scale expan-
sion in which the small parameter ε̃ is U∞/(ωεL) (L
being a typical length in the streamwise direction and
U∞ the outer velocity). Since U∞/ωε is on the same
order as the streamwise scale for the TS waves, α = 0
reduces the OS operator at order ε̃0 to the acoustic
wave equations. Therefore, the small parameter in the
multiple-scale expansion applied to the acoustic wave
and the small parameter in the multiple-scale for the
OS equation are on the same order of magnitude. If

L � U∞/ωε , the variation of the acoustic disturbance
in the streamwise direction induced by the boundary-
layer growth is negligible, and the multiple-scale ex-
pansion stopped at the leading order ε̃0 provides a
good approximation.

6.2 Vorticity wave

In general, both longitudinal and spanwise vorticity
can play a role in the receptivity process; here we fo-
cus on the second case. A complete three-dimensional
vorticity disturbance can be considered by extending
the present approach without any particular difficul-
ties.

Let ε be the amplitude of the streamwise velocity
disturbance and ωε its characteristic frequency. The
main difference with the acoustic wave is that the vor-
ticity wave is characterized by a certain spatial wave-
length αε different from zero. As it is well known,
vorticity waves are described by the continuous spec-
trum of the OS equation. However, in order to assign a
quantitative value to receptivity, it is necessary to de-
fine the amplitude of the perturbation through a coeffi-
cient characterizing its behavior in the outer (inviscid)
region, as detailed below.

Among the components of the continuous spec-
trum of the OS equation, we need only consider those
with αε � 1/δ∗, because perturbations with wave-
lengths comparable to the boundary-layer thickness
(αε ≈ 1/δ∗) decay over a longitudinal distance which
is of the same order as the flat-plate length, i.e. long
before reaching the leading edge. For this reason
waves with αε ≥ 1/δ∗ will not be present in practi-
cal flight conditions.

The inviscid outer flow allows non-zero vortic-
ity disturbances that behave as e−iωε t+iαεx , with
αε = ωε/U∞. This free-stream traveling disturbance
induces a perturbation in the boundary layer, where
the viscous equations are valid. The boundary condi-
tions for the boundary-layer disturbance are homoge-
neous at the wall, whereas for y → ∞ the solution
must match the asymptotic behavior of the outer flow.
Matching must be provided between the viscous and
inviscid regions.

In the inviscid (outer) region, a certain unsteady
spanwise vorticity distribution ζ = ζ(y, t) given at
x = 0 evolves in time as ζ(y, t − x/Ue). By in-
troducing the stream-function variable ψε , so that
uε = ∂ψε/∂y and vε = −∂ψε/∂x, the boundary con-
dition at the wall becomes ψε = 0. In the proximity
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of the wall, the solution behaves (in y) as ψε(y) = Cy

where C = f (t − x/Ue) or, in Fourier components,
C = eiωε(t−x/Ue). If we limit our analysis to distur-
bances of wavelengths much larger than the boundary-
layer thickness, then this is precisely the behavior that
we expect at the matching with the outer solution, and
allows us to assign a certain intensity to the pertur-
bation as a function of the coefficient C, which is, in-
deed, the velocity of the outer (inviscid) flow evaluated
at the wall. It should be noted that, in order to provide
a quantitative value of receptivity (which must be in-
dependent of multiplicative constants), it is necessary
to assign the intensity of the perturbation through a
well-determined property of the outer solution.

As an alternative to the linearized boundary-layer
equations, the matching with the viscous region can
employ the Orr-Sommerfeld equation (more suitable
for the present analysis). The solutions of the OS equa-
tion corresponding to the continuous spectrum, in the
limit y → ∞, are unique up to a multiplicative con-
stant for every pair (ω,α). Such solutions contain the
terms

e(−αy), e
√

α2+iR(αUe−ω)y,

e−
√

α2+iR(αUe−ω)y

in certain proportions and, therefore, can behave dif-
ferently as y → ∞. Also the solutions of the linearized
boundary-layer equations are unique up to a multi-
plicative constant, contain the terms

1, e
√

iR(αUe−ω)y, e−√
iR(αUe−ω)y,

and, for the same reasons as for the OS solutions, can
behave differently as y → ∞.

The dispersion relation of the outer-region waves
must now be considered. For the OS equation, the
outer dispersion relation α2 + iR(αUe − ω) = 0 en-
sures that the solution behaves (in y) as C1 + C2y +
C3e−αy , (whereas for the boundary-layer equations
the condition αUe − ω = 0 implied that the solution
behaves as C1 + C2y + C3y

2). In both cases it is pos-
sible to normalize the solution such that C2 = 1. In-
deed, this is always true for the boundary-layer case,
whereas for the OS case, in general, a wave packet de-
pending also on the spanwise wavenumber β should
be considered. However, since a disturbance can reach
the leading edge before decaying only if β is small,
the present analysis (β = 0) is satisfactory.

We consider the OS approach and compute the
wavenumber of the vorticity wave from the outer dis-
persion relation α2 + iR(αUe − ω) = 0 as

αε = −iUe + i
√

U2
e − 4iωεR−1

2R−1
. (24)

Having set C2 = 1, the asymptotic solution becomes

ψε = (
C1 + y + C3e−αεy

)
ei(αεx−ωεt),

which implies:

uε = ∂ψε

∂y
= (

1 − αεC3e−αεy
)
ei(αεx−ωεt)

vε = −∂ψε

∂x
= −iαε

(
C1 + y + C3e−αεy

)
ei(αεx−ωεt).

The boundary conditions for y → ∞, therefore, re-
duce to

uε → (
1 − αεC3e−αεy

)
ei(αεx−ωεt)

vε → −iαε

(
C1 + y + C3e−αεy

)
ei(αεx−ωεt),

(25)

with C1 and C3 free constants. It should be noted that
all of the above analysis serves only the purpose of as-
signing a precise value to the multiplicative constant,
whereas the behavior for y → ∞ is a priori deter-
mined by the OS solution corresponding to the con-
tinuous spectrum.

The governing equations for the vorticity wave are
the same as for the OS problem, with conditions (25)
replacing the classical homogeneous boundary con-
ditions at infinity. This is equivalent to solving the
leading-order equations of the multiple-scale expan-
sion. The condition that guarantees a good approxima-
tion at the leading order ε̃0 is L � U∞/ωε , where L is
the typical streamwise length on which the boundary
layer evolves and U∞/ωε = 1/αε is the typical length
on which the vorticity perturbation evolves.

Contrary to the OS case, however, the problem is
nonsingular because αε and ωε are not simultaneously
αTS and ωTS. After discretization, the governing equa-
tions and boundary conditions can formally be written
as A(αε,ωε,R)fε(x) = yε(x) exp(i

∫
αε dx′), where

A is the OS operator, fε(x) is the solution as a func-
tion of x (the y-dependence has already been consid-
ered in the discretization), and yε(x) accounts only
for the non homogeneous boundary conditions at in-
finity (25). The vorticity-wave velocity disturbance is
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ultimately expressed as

εvε(x, y) exp(−iωεt)

= ε
(
uε(y), vε(y)

)
exp

(
i

∫
αε dx′ − iωεt

)
.

6.3 Wall roughness

The wall-roughness shape is described by a func-
tion y = δh(x), where δ is the typical roughness
scale and h(x) is an order-one function. In principle,
when decomposed in Fourier series, h(x) has a wide
wavenumber spectrum. However, resonance between
the TS wave and the nonlinear mixing of disturbances
occurs only for a specific value of the wall-roughness
wavenumber. Therefore, we focus on a particular αδ ,
keeping in mind that the analysis can be performed for
different wavenumbers.

We express the steady perturbation induced in the
boundary layer by the wall roughness as a wave in the
form (u(x, y), v(x, y),w(x, y))ei

∫
αδ dx′

, where αδ is
related to the inverse of the typical roughness wave-
length. The governing equations can be obtained from
the multiple-scale approximation limited to the lead-
ing order ε̃0. A good approximation is provided as
long as L � 1/αδ , where L is the scale of boundary-
layer variation and 1/αδ is the scale on which the wall-
roughness induced perturbation varies. Formally, the
OS operator is employed, but the problem is solved
for ωδ = 0 (the perturbation is steady) and with non-
homogeneous boundary conditions originating from
the linearization at the wall:

u0δ(x,0) = −h(x)
∂U

∂y

∣∣∣∣
y=0

e−i
∫

αδ dx′

v0δ(x,0) = −h(x)
∂V

∂y

∣∣∣∣
y=0

e−i
∫

αδ dx′

w0δ(x,0) = −h(x)
∂W

∂y

∣∣∣∣
y=0

e−i
∫

αδ dx′
.

After the discretization of the equations and boundary
conditions, the problem at order δ reduces to the linear
system A(αδ,0,R)fδ(x) = yδ(x)h(x) exp(−i

∫
αδ dx′),

where A is the OS operator evaluated at α = αδ

and ω = 0, fδ(x) is the solution as a function of x

(the y-dependence has already been considered in
the discretization), and yδ(x) is nonzero only be-
cause of the terms −(∂U/∂y)|y=0, −(∂V/∂y)|y=0 and
−(∂W/∂y)|y=0 stemming from the boundary condi-
tions at the wall.

6.4 Possible disturbance interactions

The disturbances modeled in the previous sections
cannot resonate singularly with TS waves. For exam-
ple, the wavenumber of an acoustic wave, in the in-
compressible case, is zero and thus it can never be
close to αTS (the frequency, however, could be in the
range of ωTS). The same happens for the wall vibra-
tion disturbance, for which α = 0. Vorticity waves, on
the other hand, are perturbations characterized by both
wavenumber and frequency different from zero; how-
ever α = ω/U∞ is far from αTS. Wall roughness, be-
ing stationary, cannot excite TS waves, at least as long
as swept wings are not considered.

On the other hand, a resonant wave with wavenum-
ber and frequency in the TS range can originate at or-
der εδ, via nonlinear interaction between the distur-
bances at orders ε and δ. Resonance conditions require
αδ +αε ≈ αTS and ωδ +ωε ≈ ωTS, so that only specific
coupling between perturbations can effectively satisfy
them. Possible interesting interactions are the follow-
ing.

– Acoustic wave and wall roughness. The acoustic
wave is solved at order ε and the wall roughness
at order δ. αε = 0 and ωδ = 0, so that resonance is
guaranteed by αδ ≈ αTS and ωε ≈ ωTS. The bound-
ary conditions to be used at the wall, after the lin-
earization, are (4), which at order εδ include the first
derivative of the Stokes’s solution at the wall.

– Vorticity wave and wall roughness. The vorticity
wave perturbation is computed at order ε and the
wall roughness at order δ. Since the vorticity-wave
dispersion relation allows αε �= 0 and ωε �= 0, reso-
nance conditions are αδ + αε ≈ αTS and ωε ≈ ωTS.
The correct boundary conditions at the wall are still
described by the fourth equation in (4), so that the
first derivative of the vorticity wave is employed at
the wall.

– Acoustic wave and vorticity wave. The acoustic
wave, solved at order δ, is characterized by αδ = 0
and ωδ �= 0. The vorticity wave, on the contrary,
allows both αε �= 0 and ωε �= 0, so that resonance
can occur if αε ≈ αTS and ωδ + ωε ≈ ωTS. The
combination between acoustic and vorticity waves
provides homogeneous boundary conditions at the
wall.

A subsection of Appendix C is devoted to the in-
teraction between wall roughness and wall vibration.
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For this case, we prove that the velocity disturbance at
order εδ is the exact solution of the velocity perturba-
tion induced by wall roughness on a wall vibrating in
the normal direction, after introducing a new reference
frame.

6.5 Wall receptivity coefficient

When the “tuning mechanism” that allows resonance
with TS waves is due to wall roughness, the am-
plitude of the unstable perturbation can be related
directly to the wall shape h(x). Since the solution
at order δ is a linear function of h(x) (through the
boundary conditions), so is the solution at order εδ.
This allows us to rewrite the forcing vector yεδ ap-
pearing in (19) at order ε̃ as yεδ(x) = ỹεδ(x)h(x),
where ỹεδ(x) = yεδ(x)/h(x). The integral in (21) be-
comes

∫ xf
x0

r(x)·yεδ(x) dx = ∫ xf
x0

r(x)· ỹεδ(x)h(x) dx =
∫ xf
x0

rh(x)h(x) dx, where rh(x) is a scalar function de-
noting the dot product r(x) · ỹεδ(x) (it should be kept
in mind that vectors depend also on y, here omitted in
order to keep the notation lighter). Equation (21) can
now be recast in the following form, where the linear
dependence on the wall shape h(x) is emphasized,

fεδ(xf) = f̃0εδ(xf)

∫ xf

x0

rh(x)h(x) dx +O(ε̃). (26)

The reduction to a simple integral occurs because we
are focusing on a single mode selected by the TS wave.
More generally, the exciting source yεδ(x), due to
the nonlinear interaction between wall roughness and
other disturbances, can be written, using the Green
function g, as yεδ(x) = ∫ xf

x0
g(x, x′)h(x′) dx′. The so-

lution fεδ , when employing g, is

fεδ(xf) = f̃0εδ(xf)

[∫ xf

x0

∫ xf

x0

r(x)g
(
x, x′)h

(
x′)dx′ dx

]

× exp(−iωεt) +O(ε̃),

and therefore more complicated than the simple inte-
gral (26).

By introducing the x-dependent coefficient

r̂h = f∗ · ỹεδ

a1
= f∗ · ỹεδ

f∗ · [H f̃0εδ]
, (27)

and by recalling the definition of r(x) as in (22),
a1 = f∗ · H f̃0εδ and a2 = f∗ · Hd f̃0εδ/dx + C f̃0εδ (see
Sect. 5), the solution fεδ(xf) in (26) becomes

fεδ(xf) = f̃0εδ(xf)

×
∫ xf

x0

r̂h(x) e
i
∫ xf
x0

α dx′−∫ xf
x

a2
a1

dx′
h(x)dx.

(28)

If the eigensolution f̃0εδ(xf) in (28) has been
normalized in such a way that max|ũ0εδ(xf)| = 1
(f̃0εδ = [ũ0εδ, ṽ0εδ, w̃0εδ, p̃0εδ]T), then the amplitude
of fεδ(xf) (defined as the maximum absolute value of
the streamwise velocity component εδuεδ(xf, y) for
y ∈ [0;+∞[) is

A(xf) =
∣∣∣∣εδ e

i
∫ xf
x0

α dx′ ∫ xf

x0

h(x)r̂h(x)e
− ∫ xf

x

a2
a1

dx′
dx

∣∣∣∣.

By introducing the receptivity coefficient

r̄h(x) = r̂h(x) e
− ∫ xI

x

a2
a1

dx′
, (29)

the final amplitude A(xf) can be further rearranged to
emphasize its dependence on the integral between the
wall shape h(x) and the receptivity coefficient

A(xf) =
∣∣∣∣εδe

i
∫ xf
x0

α dx′
e
− ∫ xf

xI

a2
a1

dx′ ∫ xf

x0

h(x)r̄h(x) dx

∣∣∣∣.

(30)

Expression (30) is what we defined as the goal of a re-
ceptivity study because the final amplitude of the res-
onant wave A(xf) is formulated as a function of ε (the
amplitude of the acoustic wave, vorticity wave or wall
displacement due to the wall vibration), δ (the ampli-
tude of the wall roughness), and h(x) (the shape of the
wall). An essential role is played by r̄h(x), which is
the receptivity to wall roughness or, in other words,
the sensitivity of the final amplitude to the wall shape
h(x). Non-parallel flow effects in (30) are accounted
for by the integral of a2/a1 in the exponential factors,
whereas for parallel flows (a2 ≡ 0) the amplitude (30)
reduces to

Aparallel(xf) =
∣∣∣∣εδ e

i
∫ xf
x0

α dx′ ∫ xf

x0

h(x)r̂h(x) dx

∣∣∣∣.

It should be noticed that r̂h(x) (see (27) for its def-
inition) is the same receptivity coefficient computed
for parallel flows by Crouch [19], Choudhari and
Streett [17] and Hill [36] (these comparisons were car-
ried out during the code verification).



454 Meccanica (2014) 49:441–467

For the interaction between the acoustic and vor-
ticity waves h(x) ≡ 0 and the wall boundary condi-
tions are homogeneous at all orders (ε—vorticity wave
perturbation, δ—acoustic wave perturbation, and εδ—
resonant wave). The amplitude at the final station for
this interaction is

A(xf) = ∣∣εδe
i
∫ xf
x0

α dx′
e
− ∫ xf

xI

a2
a1

dx′
AI

∣∣,

where

AI =
∫ xf

x0

f∗ · yεδ

a1
e
− ∫ xf

x

a2
a1

dx′
dx.

7 Results

In this section we present the results for Blasius’
boundary layer and consider each interaction de-
scribed in Sect. 6. We systematically provide per-
turbations at order ε and δ, followed by the forcing
terms originating from their interactions at order εδ.
Only the x- and y-momentum contributions to the left
eigensolution f∗ and to the forcing ỹεδ are shown, be-
cause they are the only effective (nonzero) terms in
ỹεδ . The receptivity coefficient is eventually plotted
versus Reynolds number R for both parallel and non-
parallel flows.

The wall-normal coordinate is normalized with the
boundary-layer reference length δ0 = √

νxI/U∞. The
reference Reynolds number is RI = U∞δ0/ν = 557,
where R = √

Rex = √
U∞x/ν. The dimensionless

frequency F = ων/U2∞ has been chosen as F = 5.9 ×
10−5, because for this value the amplification reaches
a maximum with respect to F .

7.1 Acoustic wave–wall roughness interaction

Figure 2a shows the perturbation induced by the
acoustic wave that travels in the free stream. The v-
component is identically zero, whereas the u-component,
independent of x, is Stokes’s solution and becomes
constant for y/δ0 > 3. Therefore, the main contribu-
tion of the acoustic perturbation to the forcing is con-
fined within the boundary layer. Figure 2b reports the
absolute value of the perturbation induced by the wall
roughness and computed at αδ = αTS. Its main con-
tribution is clearly localized inside the boundary layer
too, with the solution going asymptotically to zero as
y/δ0 → ∞. The y-scale of the plot is limited to 10

Fig. 2 Interacting perturbations at order ε and δ.
F = ων/U2∞ = 5.9 × 10−5, RI = 557

in order to disclose the most relevant features, which
are significant only in the wall region, but the com-
putations are performed for ymax/δ0 = 180 (an outer
zoom is proposed in Sect. 7.2 for the coupling between
vorticity wave and wall roughness).

The interaction at order εδ between the previous
perturbations produces the x- and y-momentum forc-
ing terms reported in Fig. 3a (in absolute value). The
strongest effect is provided by the x-momentum com-
ponent, which is mainly localized inside the bound-
ary layer, as a direct consequence of the perturbations
shown in Fig. 2. It should be kept in mind that, at or-
der εδ, a contribution to the forcing comes also from
the non homogeneous boundary condition at the wall.
This contribution is not shown in Fig. 3a because the
whole plot would not be visible due to the different
orders of magnitude.
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Fig. 3 Interaction between acoustic wave and wall roughness
at order εδ. F = ω/(νU2∞) = 5.9 × 10−5, RI = 557

The absolute value of the left eigenfunction f∗
is reported in Fig. 3b. The x- and y-momentum
contributions, which weight respectively the x- and
y-momentum forcing, reach their maxima for y/δ0 <

5 suggesting that the receptivity coefficient originating
from f∗ · ỹεδ might be quite large.

This conjecture is confirmed by Fig. 4a, where the
absolute value of the receptivity coefficient is plot-
ted under the assumptions of parallel and non par-
allel flows. In both cases it monotonically decreases
with R. For parallel flows the coefficient reduces to
r̂h = f∗ · ỹεδ/a1, which can be directly compared with
the results carried out by Crouch [19], Choudhari and
Streett [17] and Hill [36]. For non parallel flows the
receptivity coefficient is r̄h = r̂h exp(− ∫ xI

x
a2
a1

dx′),
where a2 �= 0 accounts for non-parallel effects. Since

Fig. 4 Receptivity characteristics for the interaction between
acoustic wave and wall roughness. F = ων/U2∞ = 5.9 × 10−5,
RI = 557

the integral in r̄h is referred to the first neutral point,
the values of the receptivity coefficients coincide at
RI = 557.

In order to better appreciate the contribution
of the multiple scales in accounting for the boundary-
layer growth, Fig. 4b shows the ratio r̄h/r̂h =
exp(− ∫ xI

x
a2
a1

dx′) between the non-parallel and par-
allel cases. Differences are on the order of 10 %, with
peaks of 15 %, meaning that non-parallel flow effects
introduced by this formulation play a non-negligible
role even in Blasius’ boundary layer. It should be no-
ticed that for F = ων/U2∞ = 5.9 × 10−5 non-parallel
effects are not as strong as at higher frequencies (e.g.
F = 22 × 10−5). For a more detailed discussion on
non-parallel effects see Sect. 8.
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Fig. 5 Interacting perturbations. F = ων/U2∞ = 5.9 × 10−5,
RI = 557

7.2 Vorticity wave–wall roughness interaction

The perturbation induced by a vorticity wave, at the
first neutral point, is plotted in Fig. 5a. For the con-
ditions considered (F = 5.9 × 10−5 and RI = 557),
the wavenumber of TS waves (normalized with δ0)
is αTSδ0 = 0.1. The value of the spatial wavenumber,
αεδ0 = 0.0329, to be used for the computation of the
vorticity wave perturbation, is provided by (24). The
wavenumber of the wall roughness perturbation is thus
αδδ0 = αTSδ0 − αεδ0 = 0.067.

Figure 5a reveals that a very large value of y/δ0 is
required to achieve the asymptotic values of u and v.
As y/δ0 → ∞, the u-component reaches a constant
value equal to 1 and the v-component behaves as a
linear function of y/δ, as imposed by the boundary
conditions (25). The main contribution of the vortic-

Fig. 6 Interaction between vorticity wave and wall roughness
at order εδ. F = ω/(νU2∞) = 5.9 × 10−5, RI = 557

ity wave perturbation is outside the boundary layer,
as it was observed by Wu [65], confirming the “shear
sheltering” mechanism described by Hunt [37]. On
the contrary, the perturbation due to wall roughness,
which is reported in Fig. 5b, is mainly localized inside
the boundary layer (this figure differs from Fig. 2b for
the choice of the wavenumber αδ).

The forcing terms caused by the interaction be-
tween vorticity wave and wall roughness are shown
in Fig. 6a. In contrast with the interaction between
acoustic wave and wall roughness, here the forcing
is mainly localized outside the boundary layer. The
x-momentum excitation peaks at about y/δ0 = 8,
whereas the y-momentum reaches its maximum at
about y/δ0 = 20. This is clearly due to the behavior
of the velocity profiles induced by the vorticity wave,
which do not go to zero as y/δ0 → ∞. The pertur-
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Fig. 7 Receptivity characteristics for the interaction between
vorticity wave and wall roughness. F = ων/U2∞ = 5.9 × 10−5,
RI = 557

bation due to the wall roughness, on the contrary, ex-
ponentially decays with the distance from the wall,
driving the forcing term to zero as y/δ0 → ∞. This
exponential decay of ỹεδ , however, is much slower
than the decay observed for the interaction between
an acoustic wave and wall roughness, so that a much
larger distance from the wall is needed in order for it
to vanish. The left eigenfunction f∗ in Fig. 6b has the
same characteristics as that in Fig. 3b, except to the
y scale.

Parallel and non parallel receptivity coefficients are
reported in Fig. 7. They monotonically decreases with
R, just as in the acoustic wave–wall roughness in-
teraction, and their ratio is the same as in Fig. 4b.
Here, however, the slope of the curves is larger than
in the previous case and the absolute values of the co-
efficients are about one order of magnitude smaller.
Clearly, this is due to the fact that now the absolute
value of the exciting terms in ỹεδ is one order of mag-
nitude smaller than before, and to the fact that the
forcing and the left eigenfunction peak at completely
different distances from the wall (compare Figs. 6a
and 6b). This feature could lead us to think that the
interaction between vorticity wave and wall roughness
is a negligible phenomenon (shear sheltering [37]). It
can be true, but the final amplitude has to be yet mul-
tiplied by ε, the amplitude of the vorticity wave in the
free-stream, and δ, the amplitude of the wall rough-
ness. Therefore, the relative importance of one phe-
nomenon with respect to the other depends on the ac-
tual level of the environmental disturbances involved.

Fig. 8 Interacting perturbations. F = ων/U2∞ = 5.9 × 10−5,
RI = 557

7.3 Acoustic wave–vorticity wave interaction

As for the previous interactions, we consider F =
5.9 × 10−5 and RI = 557 obtaining αTSδ0 = 0.1.
Since resonance occurs at αε = αTS, the wavenum-
ber for the vorticity wave is αε = 0.1 whereas its
frequencyωε is computed from equation (24),
ωε = (α2

ε + iαεUeR)/(iR). Resonance imposes also
ωε + ωδ = ωTS, that gives the frequency of the acous-
tic wave ωδ = ωTS − ωε .

The velocity perturbation due to the acoustic wave
is shown in Fig. 8a. It should be noticed that this is
not the same as in Fig. 2a because the frequency of the
acoustic wave is different in the two cases. The gen-
eral shape of the profile remains, however, unchanged.
The vorticity wave perturbation in Fig. 8b shows a
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Fig. 9 Interaction between acoustic wave and vorticity wave at
order εδ. F = ω/(νU2∞) = 5.9 × 10−5, RI = 557

quite remarkable difference compared with Fig. 5a. In
the present case, the u-velocity component reaches the
asymptotic value at y/δ0 ≈ 60, while u = 1 was previ-
ously reached at y/δ0 ≈ 140 (Fig. 5a).

The nonlinear interaction between the two distur-
bances of Fig. 8 is shown in Fig. 9a. The main differ-
ence with the previous cases is that the forcing does
not vanish for y/δ0 → ∞, as a consequence of the
interacting-disturbances profiles, but behaves almost
as the vorticity wave perturbation (a part from the
scale).

On the contrary, the left eigenfunction f∗ (Fig. 9b)
reaches its maximum where the forcing term is very
small and goes exponentially to zero where the forcing
behaves as a constant (x-momentum) or linearly (y-
momentum). For this reason the effects of the forcing
are very limited.

8 A brief discussion on non-parallel effects

As mentioned in the introduction (see Sect. 2), dur-
ing the historical development of receptivity theory,
approaches different from multiple scales have been
proposed in order to account for non-parallel ef-
fects. Among those, PSE has been successfully em-
ployed [1, 6, 35, 51] because this nonlinear partial dif-
ferential equation incorporates the effects of stream-
wise divergence associated with boundary-layer non-
parallelism. The aim of this brief discussion is to prove
that results here obtained with multiple scales (MS)
including non-parallel effects agree with PSE (when
PSE converges) and other OS approaches.

Figure 10a reproduces Fig. 7 of Ref. [20], in which
the OS formulation was employed and the hypothesis
of parallel flow was relaxed by introducing the deriva-
tive of the disturbance amplitude with respect to the
streamwise direction. The effective branch I ampli-
tude AI is reported as a function of the wall-roughness
wavenumber αw for F = ων/U2∞ = 5.6 × 10−5, and
R = 550 (these conditions are slightly different from
those in Sect. 7). Full symbols refer to present cal-
culations (MS), while empty symbols are data gath-
ered from Ref. [20]. Only one point is, however, avail-
able for the PSE, AI = 51.7 at αw = 0.174236. From
Fig. 10a it is clear that the quasi-parallel-flow ap-
proach introduced by Crouch [20] (empty squares)
provides results that are much closer to the paral-
lel, rather than non-parallel, computations carried out
with the present multiple-scale approach. More specif-
ically, without non parallel corrections to the ampli-
tude (parallel-flow case, full squares), the maximum
error is within 2.6 % and the optimal wavenumber αw

(for which the maximum of AI is achieved) is about
αw = 0.1714, the same obtained by Crouch.

When non-parallel effects are accounted for (full
circles in Fig. 10a), on the other hand, results differ
from the quasi-parallel-flow approach, but agree very
well with the values reported by Crouch [20] regard-
ing the PSE, i.e. AI = 51.7 at αw = 0.174236. Unfor-
tunately, from the data available in literature it is al-
most impossible to gather enough information for re-
constructing a curve to plot in Fig. 10a for the PSE.
However, it can be concluded that non-parallel effects
influence the optimal αw but not the value of the max-
imum AI, which is quite insensitive.

In Fig. 10b we compare MS and PSE by plotting
the N -factor (with non-parallel effects) as a function
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Fig. 10 Comparison with previously published results account-
ing for non-parallel effects. (a) Comparison with Crouch [20]:
variation of the effective branch I amplitude AI with αw for
F = ων/U2∞ = 5.6 × 10−5, R = 550. (b) Comparison with
Bertolotti et al. [6]: amplification curves as a function of R for
F = ων/U2∞ = 22 × 10−5, where non-parallel effects are very
strong

of R for F = ων/U2∞ = 22 × 10−5, which represents
the worst-case scenario. In fact, Bertolotti et al. [6]
showed that at high frequency non-parallel-flow ef-
fects play a non-negligible role in the Blasius’ bound-
ary layer (see Fig. 3a, p. 416, in Ref. [6]), whereas in
the usual range of frequencies (i.e. for F = 5 × 10−5),
linear stability theory, PSE and DNS agree extremely
well (Fig. 3b, p. 416, in Ref. [6]). Therefore, results are
here compared directly at F = 22 × 10−5 for which,
however, no direct comparison with DNS is avail-
able. Figure 10b reports PSE results by Bertolotti et
al. [6] (solid line) and the MS results computed with
the present method (dashed line), showing a very
good agreement, with a maximum error on the order
of 1.5 %.

This discussion suggests the potential of multiple
scales as a promising tool to improve transition predic-
tion methods, including receptivity calculations and
non-parallel effects. In fact, in addition to PSE, mul-
tiple scales provide the correct representation of an
arbitrary initial condition, a more satisfactory theory,
and a simpler numerical implementation (no numeri-
cal stability problems).

9 Comparison with three-dimensional results

In this section we compare our results, with or without
non-parallel flow corrections, with those obtained by
Crouch [22] who studied the receptivity of a three-
dimensional boundary layer to cross-flow vortices
in the parallel-flow framework. We consider the in-
compressible three-dimensional boundary-layer flow
over an infinite swept wing modeled using the two-
parameter family of similarity solutions for yawed
wedge flows given by Cooke [18]. The first param-
eter, m, describes the intensity of the pressure gra-
dient, whereas the second, Λ, is the sweep angle.
The Hartree parameter βH = 2m/(1 + m), associated
with a wedge angle of βH π/2, can be used instead of
m. Following [22], we consider the reference frame
x∗y∗x∗ such that x∗ is the chordwise coordinate (nor-
mal to the leading edge), y∗ is normal to the wing
(pointing upwards) and z∗ is the spanwise coordinate
(parallel to the leading edge). The reference frame is
set at a certain distance x∗

0 from the leading edge. If
Qc denotes a constant free-stream velocity, then its
components normal and parallel to the leading edge
are, respectively,

Uc = Qc cosΛ and Wc = Qc sinΛ.

We introduce a reference length c∗ such that the global
Reynolds number is Rc = √

(Qcc∗)/ν. All velocities
are normalized with Qe and all lengths with

δr =
√

ν(x∗
0 + x∗)
Ue

,

where Ue = UcX
m is the chordwise velocity com-

ponent at the edge of the boundary layer and X =
(x∗

0 +x∗)/c∗ is the normalized distance from the lead-
ing edge. If We denotes the constant velocity compo-
nent parallel to z∗ at the edge of the boundary layer,
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We = Wc, then the total edge velocity Qe is

Qe(X) =
√

U2
e (X) + W 2

e

= Qc cosΛ
√

X2m + tan2 Λ.

We introduce the normalized normal-wall coordinate

y = y∗

δr

= y∗
√

Ue

ν(x∗
0 + x∗)

such that the three boundary-layer velocities compo-
nents normalized with Qe(X) are

U(X,y) = Ue(X)

Qe(X)
f ′(y)

V (X,y) = Ue(X)

Qe(X)

1 − m

2

√
ν

Ue(X)X

[
yf ′(y)

− m + 1

1 − m
f (y)

]

W(X,y) = We

Qe(X)
g(y),

where f (y) and g(y) are the Falkner-Skan-Cooke
(FSC) family of profiles solutions of the two differ-
ential equations [18]

f ′′′ + m + 1

2
ff ′′ + m

(
1 − f ′2) = 0 (31)

g′′ + m + 1

2
fg′ = 0 (32)

supplemented by the boundary conditions

f (0) = f ′(0) = g(0) = 0 and f ′(∞) = g′(∞) = 1.

Hereafter we focus on the same conditions used by
Crouch [22]:

Rc = 1000, Λ = 30◦, βH = 0.6.

The dimensionless Navier-Stokes equation depend on
the local Reynolds number

R = Qeδr

ν
,

which is related to the global Reynolds number Rc by
the equation

R = R2
c

Qe

Qc

X

x0 + x
= R2

c

Qe

Qc

δr

c∗ .

As opposed to the two-dimensional case, the surface
perturbation depends on both x and z. If we assume
a Fourier series expansion in z, then for a particular
wavenumber βn there is a corresponding receptivity
coefficient (see its definition given by (29)) r̄hn(x).
Crouch [22] observed that the conservation of phase
imposes that the physical spanwise wavenumber

b = βn

Rc

R

Qe

Qc

= βn

1

Rc

c∗

δr

remains constant with changing chordwise position.
Since

c∗

δr

= Rc

√
cosΛ

X1−m
,

the physical spanwise wavenumber reads

b = βn

√
cosΛ

X1−m
.

Here we focus on the coupling between an acoustic
disturbance which is grazing the boundary layer in the
chordwise direction with amplitude εQe ,

εQe

[
(1 − exp(−√−iωεR y),0,0

]
exp(−iωεt),

where ωε = ωTS, and a disturbance of order δ origi-
nated by the wall roughness. The latter disturbance is
obtained by employing the OS operator (see Sect. 6.3)
with ωδ = 0 and non-homogeneous boundary condi-
tions stemming from the linearization at the wall. By
recalling that the spanwise and wall-normal compo-
nents of the acoustic perturbation are zero, the cou-
pling of the disturbances at order εδ defined by equa-
tion (20) reduces to

yεδ = −

⎛

⎜⎜
⎝

0
iαδuεuδ + vδ(uε)y

iαδuεvδ

iαδuεwδ

⎞

⎟⎟
⎠ , (33)

where αδ = αTS.
Figure 11a reproduces Fig. 6 of Ref. [22] and re-

ports the amplitude ratio A(X)/A(XI ) as a function
of the chordwise position X, A(XI ) being the am-
plitude of the resonant disturbance at the first neu-
tral point. Parallel results obtained in the present work
(solid line) match very well those of Ref. [22] (empty
circles) whereas non-parallel results (dashed line) dif-
fer quite remarkably from the parallel ones for increas-
ing chordwise position. This confirms the importance
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Fig. 11 Comparisons between parallel (solid line) and non-
parallel (dashed line) results obtained in the present work and
those reported in Ref. [22] obtained in the parallel framework,
F = ων/Q2

c = 3 × 10−5 and b = 0.45. (a) Chordwise variation
of the amplitude ratio A(X)/A(XI ), A(XI ) being the amplitude
at the first neutral point. (b) Chordwise variation of the recep-
tivity coefficient as defined in (29)

of including non-parallel corrections when consider-
ing cross-flow instabilities.

Figure 11b reproduces Fig. 9 of Ref. [22] and
shows the chordwise variation of the receptivity co-
efficient as defined by (20). Parallel results (solid
line) match again those of Ref. [22] (empty circles).
When parallel corrections are introduced (dashed
line), the receptivity coefficient increases quickly with
the chordwise position and at X = 0.8 it becomes ap-
proximately 7 times larger than in the parallel case.
This amplification is much greater than what was ob-
served for the 2D boundary layer past a flat plate (see
Fig. 4), where the maximum difference in the ampli-
tude of the receptivity coefficient, when comparing

parallel and non-parallel cases, was on the order of
only 10–15 %.

10 Summary and conclusions

Multiple scales are employed to account for non-
parallel effects in the study boundary-layer recep-
tivity to the quadratic mixing of environmental dis-
turbances. This technique is introduced in its non-
homogeneous formulation because of the intrinsically
non-homogeneous nature of the receptivity problem.

Environmental disturbances are acoustic waves and
vorticity waves, which travel in the free-stream, and
wall vibration and wall roughness, which are localized
at the wall. Since each of these disturbances alone can-
not resonate with the TS wave, the resonant values of
frequency and wavenumber are provided by the non-
linear mixing of at least two interacting disturbances.
The receptivity coefficient, which relates the ampli-
tude of the unstable wave to the physical amplitude of
the disturbances from which it originated, is computed
accounting for non-parallel flow effects and compared
for different cases.

Results show that the acoustic wave and wall
roughness perturbations can propagate deeply into
the boundary layer, generating a forcing term that is
mainly localized in the proximity of the wall and that
leads to a quite large receptivity coefficient.

The vorticity wave interacting with wall roughness,
on the contrary, provides a coupling that is confined
mostly outside the boundary layer. This is caused by
the asymptotic behavior of the streamwise and wall-
normal velocity perturbations induced by the free-
stream vorticity (they do not vanish at infinity). The
forcing term originating from this interaction, which
is one order of magnitude smaller than for the acoustic
wave–wall roughness interaction, is therefore shifted
far away from the wall and the dot product with
the left eigenfunction, which reaches its maximum in
the boundary layer, makes the receptivity coefficient
smaller than in the previous case.

The acoustic and vorticity waves mixing shows a
forcing that does not vanish far from the wall, but this
is compensated by the left eigenfunction, which expo-
nentially decay in y.

The interaction between a vibration of the wall (in
the wall-normal direction) and wall roughness cannot
lead to resonance with TS waves. This is proven by
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the fact that the velocity disturbance at order εδ is the
exact solution of the velocity perturbation induced by
wall roughness on a wall vibrating in the normal di-
rection.

By comparing the present approach with different
approaches presented in previously published works to
treat the flow non-parallelism, it is shown that multiple
scales reproduce the results obtained with parabolized
stability equations, but in addition they offer several
advantages. The multiple-scale method does not suf-
fer from numerical instability problems, is computa-
tionally inexpensive, its formulation is general, allows
the correct representation of an arbitrary initial con-
dition, and can be applied to any base flow obtained
from computations or experimental data.

When the three-dimensional boundary layer over
an infinite swept wing is considered, results show the
important role played by the flow non-parallelism.

Appendix A: Homogeneous multiple-scale theory

Multiple scales are here briefly introduced in their
homogeneous formulation, utilizing a simple one-
dimensional example. Let

B(t)
dx(t)

dt
+ C(t)x(t) = 0

be the evolution equation of a generic time-dependent
linear system. If B is non singular, the previous ex-
pression can be written in a simpler form as

dx(t)

dt
= A(t)x(t) (34)

where A = −B−1C. If the coefficient matrix A(t) is
evaluated at a certain time t = t0, the solution x(t) can
be expressed as a function of the eigenvalues λk(t0)

and right eigenvectors uk(t0),

x(t) =
N∑

k=1

ckuk(t0)e
λk(t0)t , (35)

with N arbitrary coefficients ck to be determined us-
ing the initial conditions. If the matrix A is not calcu-
lated at a certain time t0 but varies in such a way that
a long time (with respect to the typical characteristic
time) is required in order to appreciate a variation of
the eigenvalues λk and eigenvectors uk , then A is said
to be slowly varying with t . In this case, a new time

scale T = ε̃t can be introduced so that an order-one
variation of T occurs for a long variation of t , if ε̃ is a
small parameter that accounts for the slow dependence
of A on t . With the substitution T = ε̃t , equation (34)
reads

ε̃
dx(T )

dT
= A(T )x(T ) (36)

and expression (35) becomes

x(T ) =
N∑

k=1

ckuk(T0)e
λk(T0)T /ε̃ . (37)

The asymptotic solution of (36), in the limit ε̃ → 0,
can be assumed to maintain the form (37), but with
λk(T ) and uk(T ) replacing λk(T0) and uk(T0), and
with ck no more constant but depending on T and ε̃,
and expandable in power series of the parameter ε̃.
A single term in the summation (37) (the complete so-
lution can be reconstructed by superimposition), in the
case of a constant coefficient matrix A = A(T0), reads
x(T ) = uk(T0)eλk(T0)T /ε̃ . If the coefficient matrix A is
slowing varying, the corresponding term can be writ-
ten as x(T ) = f(T , ε̃)eφ(T )/ε̃ so that in the constant-
coefficient case f(T , ε̃) and φ(T ) respectively reduce
to f(T , ε̃) = uk(T0) and φ(T ) = λk(T0)T . We now as-
sume that the vector f(T , ε̃) is expandable in power
series of ε̃ as

f(T , ε̃) =
∞∑

n=0

fn(T )ε̃n,

which implies

x(T ) = f(T , ε̃)eφ(T )/ε̃

= (
f0(T ) + ε̃f1(T ) + ε̃2f2(T ) + · · · )eφ(T )/ε̃ .

(38)

The term ε̃dx/dT needed in (36) can now be com-
puted from expression (38),

ε̃
dx(T )

dT

= ε̃

[(
df0(T )

dT
+ ε̃

df1(T )

dT
+ · · ·

)
eφ(T )/ε̃

+ 1

ε̃

dφ(T )

dT

(
f0(T ) + ε̃f1(T ) + · · · )eφ(T )/ε̃

]
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=
[
dφ(T )

dT
f0(T ) + ε̃

(
dφ(T )

dT
f1(T ) + df0(T )

dT

)

+O
(
ε̃2)

]
eφ(T )/ε̃ ,

so that by introducing this derivative and the expansion
(38) in the original system (36), collecting terms at dif-
ferent orders with respect to ε̃, and dividing by the ex-
ponential factor, the following hierarchy of equations
is found:

dφ

dT
f0(T ) = A(T )f0(T )

ε̃

(
dφ

dT
f1(T ) + df0

dT

)
= ε̃A(T )f1(T )

... = ...

ε̃n

(
dφ

dT
fn(T ) + dfn−1

dT

)
= ε̃nA(T )fn.

The first equation reduces to the eigenvalue problem

[
dφ

dT
I − A(T )

]
f0(T ) = 0 (39)

and admits a non trivial solution if dφ/dT = λk(T ).
The solution f0(T ) is the right eigenvector but it is de-
fined up to a multiplicative factor, because
the normalization of f0(T ) is not unique, i.e.
f0(T ) = ck(T )ũk(T ), where the coefficient ck(T ) is
unknown and ũk(T ) is the right eigenvector arbitrarily
normalized.

The second equation, at order ε̃, can be recast in the
form

[
λk(T )I − A(T )

]
f1(T ) = df0

dT
, (40)

which is a singular problem since the coefficient ma-
trix [λk(T )I − A(T )] is the same as the one at order
zero. The presence of a right-hand-side term (RHS),
however, requires the “compatibility condition” to be
satisfied, i.e. the orthogonality between the RHS and
the left eigenvector ṽk(T ) corresponding to the van-
ishing eigenvalue λk(T ),

ṽk(T ) · df0

dT
= 0. (41)

By expanding this condition and recalling that
f0(T ) = ck(T )ũk(T ), an equation for the unknown co-

efficient ck(T ) is derived,

ṽk(T ) · ũk(T )
dck

dT
+ ṽk(T ) · dũk(T )

dT
ck = 0. (42)

Equation (42) is a first-order, homogeneous ordinary
differential equation, for which a closed-form solution
exists. Its solutions provides the coefficient ck(T ) so
that the product ck(T )ũk(T ) = f0(T ) can eventually
be computed. It is important to remark that the latter
vector is unique, independently of the normalization,
whereas the right eigenvector ũk(T ) is not.

The same compatibility problem found at order
ε̃ is found also at next orders because the generic
equation contains always the same singular matrix
[λk(T )I − A(T )]. Conditions like (41) have thus to
be imposed at each order. Once the equation for f1(T )

has been made compatible, the solution is still deter-
mined up to a factor that multiplies uk(T ) and that can
be used to satisfy the compatibility condition at second
order. The same procedure is repeated at each order.

In practical applications the solution is usually
truncated at order zero, so that the state vector is

x(T ) = ck(T )ũk(T )e
φ(T )

ε̃ +O(ε̃).

Appendix B: Details of the multiple-scale
derivation for the
Navier–Stokes equations

Given a small parameter ε̃ that accounts for the slow
variations in streamwise and spanwise directions, we
introduce a new reference frame x = ε̃x̂, y = ŷ,
z = ε̃ẑ, t = t̂ and rescale the base flow accordingly,
U(x,y, z) = Û (x̂, ŷ, ẑ), V (x, y, z) = V̂ (x̂, ŷ, ẑ)/ε̃,
W(x,y, z) = Ŵ (x̂, ŷ, ẑ). Because of the new scal-
ing, the derivatives become (·)x̂ = ε̃(·)x , (·)ŷ = (·)y ,
(·)ẑ = ε̃(·)z, (·)t̂ = (·)t , and the derivatives of the
base flow reduce to Ûx̂ = ε̃Ux , Ûŷ = Uy , V̂x̂ = ε̃2Vx ,

V̂ŷ = ε̃Vy , Ŵx̂ = ε̃Wx , and Ŵŷ = Wy . The general
quantity q̂(x̂, ŷ, ẑ, t̂ ) (which corresponds to û, v̂, ŵ or
p̂ previously introduced) in the multiple-scale frame-
work is expanded as

q̂(x̂, ŷ, ẑ, t̂ )

= (
q0(x, y) + ε̃q1(x, y) + · · · )e

iθ(x)
ε̃

+iβz−iωt , (43)

where q0(x, y) and q1(x, y) are weak functions of the
streamwise and wall-normal coordinates x and y, θ(x)
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is related to the streamwise wavenumber (which is a
function of x), β is the spanwise wavenumber and ω

the frequency. By introducing expansion (43) in the
first derivatives expressed in the new reference frame,
one obtains

(q̂)x̂ = ε̃
(
(q0)x + ε̃(q1)x + · · · )e

iθ(x,z)
ε̃

− iωt

+ iα

ε̃
(q0 + ε̃q1 + · · · )e iθ(x)

ε̃
+iβz−iωt

= ε̃

(
iα

ε̃
q0 + (q0)x + iαq1

+ ε̃(q1)x + · · ·
)

e
iθ(x)

ε̃
+iβz−iωt

= (
iαq0 + ε̃(q0)x + ε̃iαq1

+ ε̃2(q1)x + · · · )e iθ(x)
ε̃

+iβz−iωt

= [
iαq0 + ε̃

[
iαq1 + (q0)x

]

+O
(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt

(q̂)ŷ = [
(q0)y + ε̃(q1)y +O

(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt

(q̂)ẑ = [
iβq0 + ε̃iβq1 +O

(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt

(q̂)t̂ = −iωt
[
(q0) + ε̃(q1) +O

(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt ,

where the streamwise wavenumber α is defined as α =
∂θ/∂x. For the second derivatives, one gets

(q̂)x̂x̂ = ε̃2
(

−α2

ε̃2
+ 2iα

ε̃
(q0)x − α2

ε̃
q1 + iαx

ε̃
q0

+ (q0)xx + 2iα(q1)x + iαxq1

+ ε̃(q1)xx + · · ·
)

e
iθ(x)

ε̃
+iβz−iωt

= [−α2q0 + ε̃2iα(q0)x − ε̃α2q1 + ε̃iαxq0

+O
(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt

= [−α2q0 + ε̃
[−α2q1 + 2iα(q0)x + iαxq0

]

+O
(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt

(q̂)ŷŷ = [
(q0)yy + ε̃(q1)yy +O

(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt

(q̂)ẑẑ = [−β2q0 − ε̃β2q1 +O
(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt ,

so that the Laplacian in the new reference frame is

∇2q̂ = [−(
α2 + β2)q0 + (q0)yy

+ ε̃
[−(

α2 + β2)q0 + (q0)yy + 2iα(q0)x

+ iαxq0
] +O

(
ε̃2)]e

iθ(x)
ε̃

+iβz−iωt .

The base flow (U,V,W), the perturbations (u, v,w,p),
the derivatives of the base flow and the derivatives
of the perturbations are then introduced in the lin-
earized Navier-Stokes equations (16) and boundary
conditions (17), obtaining different systems of equa-
tions at different ε̃-orders (19).

Matrices A, H and C in equations (19) are respec-
tively

A(α,ω,R) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

iα (·)y iβ 0

T Uy 0 iα

0 T 0 (·)y

0 Wy T iβ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

H (α,R) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

H̄ 0 0 1

0 H̄ 0 0

0 0 H̄ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= −i
∂A

∂α

C(α,R) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0

C1 0 0 0

0 C2 0 0

Wx 0 C2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where H̄ = U −2R−1iα, C1 = Ux +V (·)y −R−1iαx ,
C2 = Vy +V (·)y −R−1iαx , T = [i(αU +βW −ω)+
R−1(α2 + β2 − (·)yy)]. Incidentally, matrix A is the
well-known Orr–Sommerfeld operator.

Appendix C: Interaction between wall vibration
and wall roughness

The perturbation originating from the interaction be-
tween wall vibration and wall roughness deserves a
special remark because it can be proved that it does
not result in a resonant wave. A structural rigid vibra-
tion of the wall may be of different forms; the sur-
face can be finite or infinite and the vibration can be
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parallel or normal to the wall. If an infinite surface is
considered, the vibration parallel to the wall is a well-
known problem with a closed-form solution (Stokes’s
second problem [58]) and is treated as the acoustic
disturbance. Let us therefore concentrate on the prob-
lem of a rigid wall vibrating in the normal direction.
If the wall is finite, a wall-normal vibration produces
an induced flow in both parallel and normal directions
with respect to the wall. The problem is thus decom-
posed into the known Stokes’s second problem and
the wall normal rigid-vibration problem (on an infinite
surface).

The wall displacement is described by a func-
tion of time y(t) = εe−iωε t , where ε is the ampli-
tude of the wall vibration and ωε is its frequency.
It can be proved that the Navier–Stokes equations
are invariant with respect to a coordinate transfor-
mation Y = y − εe−iωε t , which means that the so-
lution in the reference frame moving with the wall
is the solution obtained with the wall at rest and
expressed as a function of y − εe−iωε t rather than
as a function of y. In order to prove it, we intro-
duce a new reference frame X = x, Y = y − εe−iωε t ,
Z = z,T = t , so that the new unknowns are U = u,
V = v + εiωεe

−iωε t , W = w, P = p, and the deriva-
tives, as a function of the variables in the new refer-
ence frame, read (·)t = (·)T + εiωεe

−iωε t ,

(·)x = (·)X, (·)y = (·)Y , (·)z = (·)Z . By substituting
these expressions in the Navier–Stokes equations, one
gets:

UX + VY + WZ = 0

UT + εiωεe
−iωεT UY + UUX

+ (
V − εiωεe

−iωεT
)
UY + WUZ

= −PX + R−1(Uxx + Uyy + Uzz)

VT + εiωεe
−iωεT VY + UVX + (

V − εiωεe
−iωεT

)

× VY + WVZ

= −PY + R−1(Vxx + Vyy + Vzz)

WT + εiωεe
−iωεT WY + UWX

+ (
V − εiωεe

−iωεT
)
WY + WWz

= −Pz + R−1(Wxx + Wyy + Wzz).

These equations can be simplified as

UX + VY + WZ = 0

UT + UUX + V UY + WUZ

= −PX + R−1(Uxx + Uyy + Uzz)

VT + UVX + V VY + WVZ

= −PY + R−1(Vxx + Vyy + Vzz

WT + UWX + V WY + WWz

= −Pz + R−1(Wxx + Wyy + Wzz),

which are the incompressible Navier–Stokes equations
in the common form.

Let us now go back to the original transformation
Y = y − εe−iωε t . Since the quantity εe−iωε t is very
small, it is possible to linearize the solution v(x, y −
εe−iωε t , z) about y via a Taylor expansion:

v
(
x, y − εe−iωε t , z

)

= v(x, y, z) − εvy(y)e−iωε t +O
(
ε2). (44)

When wall roughness is introduced on a wall at rest,
the solution is in the form

v(x, y, z) = V(x, y, z) + δvδ(x, y, z) +O
(
δ2), (45)

where V is the base flow and vδ is the disturbance ve-
locity induced by wall roughness. If the effects of wall
roughness and wall vibration are coupled, the equa-
tions can be written in the reference frame y −εe−iωε t .
By doing so, and substituting expression (45) in the
Taylor expansion (44), one gets

v
(
x, y − εe−iωε t , z

)

= V(x, y, z) − εVy(x, y, z)e−iωε t + δvδ(x, y, z)

− εδ
∂vδ(x, y, z)

∂y
e−iωε t +O

(
ε2) +O

(
δ2). (46)

Expression (46) can now be compared with the ve-
locity decomposition (2), carried out in Sect. 3. In the
case of wall roughness – wall vibration interaction,
ωδ = 0 (the disturbance due to wall roughness is sta-
tionary) so that equation (2) reduces to

v(x, y, z) = V(x, y, z) + εvε(x, y, z)e−iωε t

+ δvδ(x, y, z) + εδvεδ(x, y, z)e−iωε t

+O
(
ε2) +O

(
δ2). (47)
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By comparing terms at order ε and εδ in equa-
tions (46) and (47) it is clear that

vε(x, y, z) = −∂V(x, y, z)

∂y

vεδ(x, y, z) = −∂vδ(x, y, z)

∂y
.

(48)

Therefore, the velocity disturbance at order εδ is not
originating from the interaction between the two dis-
turbances at order ε and δ but is the exact solution of
the velocity perturbation induced by wall roughness
on a wall vibrating in the normal direction.
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