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Momentum of vortex tangles by weighted area information
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Here we show how to apply a recently introduced method based on the geometric interpretation of linear
momentum of vortex lines to determine dynamical properties of a network of knots and links. To show how
the method works and to prove its feasibility, we consider the evolution of quantum vortices governed by the
Gross-Pitaevskii equation. Accurate estimates of the momentum of interacting and reconnecting vortex rings,
links, and knots are determined. The method is of general validity and it proves particularly useful in practical
situations where no analytical information is available. It can be easily adapted to situations where morphological
information can be extracted from experimental or computational data, thus providing a powerful tool for real-
time diagnostics of vortex filaments or other networks of filamentary structures.
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I. INTRODUCTION

The results obtained by direct application of a technique in-
troduced recently by one of us [1,2] to determine the impulse
associated with vortex motion are presented. The method is
based on the geometric interpretation of linear and angular
momentum of vortex filaments in terms of weighted area
of projected graphs. An accurate estimate of the momentum
is obtained by computing the individual momentum compo-
nents from direct measurements of the area regions of planar
graphs obtained by planar projections of the vortex lines. By
assigning appropriate weights to each graph region one can
thus compute the momentum components directly from data
analysis.

The method proves particularly useful when we cannot
rely on analytical description of vortex line evolution, or
when dynamical information has high computational costs. In
these cases direct implementation of the method provides real-
time estimates of three-dimensional (3D) dynamical proper-
ties of interacting filaments under continuous reconnections
and restructuring [3,4]. Moreover, the method can be readily
employed by direct analysis of two-dimensional images from
laboratory experiments, as in the case of the production of
defects in solid state physics [5] and vortex knots in water
[6], or from natural observations, as in the case of eruption
of plasma loops in the solar corona and localized, strong
magnetic fields in astrophysical flows [7,8].

To illustrate how the method works we consider the evo-
lution of reconnecting vortex links, rings, and knots governed
by the Gross-Pitaevskii equation. Since the dynamics of these
objects is obtained by postprocessing of direct numerical
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simulations, the method is particularly well suited. For this
we rely on data obtained by previous numerical simulations
[9,10] and new results of vortex knots evolution. The method
has been already applied in some simple cases [11], but a de-
tailed physical justification and an accurate description of its
implementation is provided here. In Sec. II we briefly review
how the momentum of a physical system of filaments can be
related to the concept of projected area. In Sec. III we provide
a physical justification of the weighted area concept, and in
Sec. IV we discuss its numerical implementation. In Sec. V
we apply the method to the case of interacting vortex links
[10], reconnecting rings [9], and evolution of vortex knots
(trefoil and cinquefoil). Final remarks on possible refinements
and extensions of this method are presented in Sec. VI.

II. LINEAR MOMENTUM IN TERMS OF
PROJECTED AREA

Let us consider the evolution of quantum vortices governed
by the 3D Gross-Pitaevskii equation (GPE) [12,13], given in
nondimensional form by

∂ψ

∂t
= i

2
∇2ψ + i

2
(1 − |ψ |2)ψ (1)

for the complex wave function ψ , with background unit
density ρ = |ψ |2 → 1 as |x| → ∞. It is well known [14] that
by using the Madelung transformation ψ = √

ρ exp(iθ ) the
real and imaginary parts of (1) give rise to a momentum and
a continuity equation of a fluidlike medium of density ρ and
velocity u = ∇θ , providing a hydrodynamic interpretation of
GPE in terms of macroscopic quantities. Quantum vortices
are thus zero-density lines embedded in a unit density fluid
medium. Hence density is not constant everywhere. How-
ever, to a good approximation, the density profile reaches
a plateau in a region of the order of a few healing lengths
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from the defect line [15]. We can thus think of a two-fluid
region, one in the tubular neighborhood of a nodal line, where
compressible (acoustic) effects dominate, and one outside this
tubular neighborhood, essentially incompressible. Since the
healing length ξ of a defect is several orders of magnitude
smaller than the typical length scale, we can assume that
compressible effects remain localized within such a tubular
region, considering this as an “excluded volume” associated
with the defect. For the present purpose, however, we will
omit this artificial decomposition, regarding the whole fluid
region as incompressible.

During evolution GPE is known to conserve total mass,
energy, and momentum [16]. From a hydrodynamic perspec-
tive quantum vortices move according to Eulerian dynamics
[17–19], and are subject to long-distance interactions by the
Biot-Savart law and change of topology by local reconnec-
tions. Several dynamical features can thus be inferred from
a classical viewpoint, such as the linear momentum (per unit
density) of a vortex [20]. For localized vorticity this can be
written as

P = 1

2

∫
V (ω)

X × ω dV, (2)

where V = V (ω) is the volume of the domain of definition
of vorticity and X the position vector. For quantum defects
vorticity is localized on nodal lines χ of the wave function
ψ ; hence, we can identify ω with the unit tangent to χ , with
X = X(s) (s arc-length on χ ) [21]; thus, we have

P = 1

2
�

∮
χ

X × dX
ds

ds = 1

2
�

∮
χ

X × dX, (3)

where � = 2π is the quantized circulation. In general an
analytic expression for P is not available. A method can be
developed on the basis of a geometric interpretation of the last
integrand in terms of elementary area: since X × dX = 2 dA,
where dA is an elementary area of unit normal êA, we have

P = � êP

∫
A

dA, (4)

where now A denotes the area of the region bounded by χ

projected along the unit vector êP = P/|P|. The vortex line(s)
projected along êP will form a planar, oriented graph �
 with
orientation induced by ω. If defects are given by knots and
links in space [as shown in Fig. 1(a)] the projected graph �
i

along the direction of projection êi (where i = x, y, z denotes
the relative direction of a principal axis) will be made by a
finite collection of regions—the faces of �
i—denoted by Rj

( j = 1, 2, . . . , n). Hence, if P = (Px, Py, Pz ), we can write

Pi = �êP · êi

∫
A( �
i )

dA = �Ai, i = x, y, z, (5)

where Ai = Ai(
i ) denotes the area of the region bounded
by 
i. There is no difficulty to interpret Ai as standard area
when the projected graph is given by a collection of simple,
non-self-intersecting, plane curves. If, however, �
i is a graph
whose diagram has self-intersections [as in Fig. 1(b)], an
appropriate definition of area is needed.

FIG. 1. (a) Two defects of same circulation � = 2π forming a
Hopf link in space (arrows denote vorticity direction). (b) Graph �
i

obtained by the planar projection of the Hopf link along the direction
êi: each region, R1, R2, and R3, is pierced by the streamlines due
to the circulation of all vortex strands. (c) The index I j = I j (Rj )
( j = 1, 2, 3) is given by the algebraic sum of the signed intersections
ρ̂ ∩ �∂Rj . (d) I1(R1) = +1, I2(R2) = +1, I3(R3) = +2.

III. WEIGHTED AREA OF ORIENTED GRAPH

From a physical viewpoint, Eq. (5) relates the momentum
component Pi to the flux of circulation through Ai. The
streamlines associated with such flux pierce each face of the
graph �
i. Since each region Rj is bounded by an oriented
boundary �∂Rj made by arcs carrying their own circulation,
each face will thus contribute to the momentum with area and
flux determined by multiplying the standard area Aj = Aj (Rj )
by the total flow of circulation given by the neighboring arcs
[note that these in general need not be congruently oriented;
see Fig. 1(b)]. Since any point of Rj is subject to the same total
flux, the sum of the individual circulations will contribute to
an index I j = I j (Rj ) that is a topological invariant of Rj . This
can indeed be identified with the Gauss linking number of the
streamlines with the oriented boundary �∂Rj . This index is the
intersection number of Rj [22,23], and it is given by

I j =
∑

r∈{ρ̂ ∩�∂Rj}
εr, (6)

where εr = ±1 denotes the algebraic sign of each intersection
r ∈ {ρ̂ ∩ �∂Rj} determined by the following procedure: (i)
from an arbitrarily chosen point of Rj draw a director line in
any arbitrary direction ρ̂; (ii) determine the intersection(s) r ∈
{ρ̂ ∩ �
i} of this line with �
i and consider the base pair {ρ̂, t̂}
at each r (t̂ being the local unit tangent to �∂Rj); (iii) assign
to each intersection the value ±1 according to the right-hand
rule. The algebraic sum of all ±1’s thus obtained for each
Rj is the index I j (Rj ). We can then define the weighted area
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FIG. 2. Application of the geometric method to the evolution of Hopf link defects, just before (t = 35) and after (t = 37) a reconnection
event. Top row: (left) 3D configuration of defects in space; (right) numerical values of standard area and index of the individual graph regions
identified in the projection planes z = 0, y = 0, x = 0. Bottom row: graph regions color-coded (online) according to the values of I j = 0, ±1
[magenta (dark gray): I = +1; white: I = 0; cyan (light gray): I = −1].

Ai = A( �
i ) by

Ai =
∑

j

I jA ji, (7)

where Aji = Aji(Rj ) denotes the standard area of Rj .
For a tangle of N knots and links of different circula-

tions �k (k = 1, . . . , N) we can then extend the above result
straightforwardly. Thus, we have the following.

Theorem 1. The linear momentum components Pi of a
tangle of N vortices of circulation �k (k = 1, . . . , N) can be
written in terms of weighted areas by

Pi =
∑

j

�̄ jA ji, with �̄ j =
∑

r

εr�r,k, (8)

where �̄ jA ji denotes the weighted circulation of the standard
area Aji of Rj , and �r,k the circulation �k at each intersection
site r ∈ {ρ̂ ∩ �
i}.

IV. IMPLEMENTATION OF NUMERICAL DIAGNOSTICS

Given the numerical solution ψ at each grid point in space
and time, the first step consists of retrieving the vortex cen-
terlines. Instead of using previous methods [9,10], we found
it computationally convenient to exploit the fact that the GPE
isophases are Seifert surfaces of the vortex lines [24]. These
latter can be obtained by extracting the boundary points from
the arbitrary isophase surface computed numerically. This
approach reduces considerably the computational cost of data
extraction. Since the vortex lines are given computationally
by polygonal curves, the number of nodal points in projected
graphs increases quadratically with the number of polygonal
segments [25]. Loops relatively dense in space require a finer
discretization, something that can be achieved by automated
diagnostics. The next step is to obtain “good projections”: this
is done by ensuring that all nodal points in the projected graph
are double points, i.e., points of intersection given by at most
two self-intersecting arcs. If a nodal point has degree m > 2,
it can be split into m double points by numerical perturbation

of the projection map, so as to ensure a required goodness of
the graph.

The most difficult task is represented by the numerical
identification of the individual loops present in the planar
projection (see, e.g., the diagrams of Fig. 2) and the correct
assignment of the arcs to the appropriate vortex line. If the
coordinates of each node are not difficult to be determined,
the reconstruction of the individual loops and the correct
identification of the appropriate areas and weights require
some careful analysis. This is a delicate, crucial step of the
procedure, so any local grid refinement should be aimed at
optimizing this task in particular. An appropriate algorithm
has thus been developed and implemented for complex config-
urations made, however, of a quite limited number of closed
loops. Application to highly complex networks of filaments
has not been done and at this stage of things it might be
extremely time-consuming.

V. MOMENTUM OF RECONNECTING LINKS, RINGS,
AND KNOTS

The numerical scheme has been applied to determine the
linear momentum associated with the evolution of (i) the Hopf
link of Fig. 1(a), (ii) a pair of interacting and reconnecting
rings (Fig. 4), and (iii) two vortex knot types (Fig. 5), all with
same circulation � = 2π .

Hopf link. At t = 0 the two rings both have radius R = 8,
and are placed on mutually orthogonal planes centered at
(0.5,4.5,0) in the plane z = 0, and at (0,−4, 0) in the plane
x = 0. The computational domain is given by [−20; 20] ×
[−25; 25] × [−20; 30] with the same spatial discretization
in each direction � = ξ/3, and time step 0.0125 units. For
illustration purposes we show (Fig. 2) details of the applica-
tion of the method at two instances, immediately before and
after a reconnection event. For this we rely on data extracted
from the simulation studied in [10]. For each time step we
show (top) the space configuration of defects and the values
of standard area and index of the individual graph regions
identified in each projection plane z = 0, y = 0, x = 0, and
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FIG. 3. Top row: plots of the momentum components Px , Py,
and Pz against time t . Bottom row: direction and intensity of the
linear momentum [big arrow (blue online)] just before and after the
reconnection event.

(bottom) the relative color-coded graphs. Areas with index
I = +1 (color-coded online by magenta) indicate contribu-
tion to the relative momentum component along the positive
axis direction, whereas areas with index I = 0 (color-coded
by white) provide no contribution. Note that small areas
with large index may contribute to the momentum more
than large areas with small index, consistently with physi-
cal intuition. The algebraic index attributed to given areas
may thus considerably influence the resulting momentum.
In particular, dominant contributions from negative indices
may even reverse motion [26]. Direct implementation of this
method allows one to determine time-dependent information
of each momentum component, which is useful for assessing
relative contributions (as shown in the top diagrams of Fig. 3,
where |Py| results are negligible with respect to the other
two components). Real-time visualization of direction and
intensity of total momentum is shown by the big arrow in the
two diagrams at the bottom of Fig. 3.

Planar rings. Figure 4 shows the interaction and recon-
nection of two planar rings as studied in [9]. At time t = 0

FIG. 4. Top row: interaction and reconnection of two planar rings
(from [9]). Bottom row: direction and intensity of the linear momen-
tum [big arrow (blue online)] just before and after the reconnection
event.

FIG. 5. Top row: initial configuration of (a) trefoil knot T2,3 and
(b) cinquefoil T2,5. Bottom row: direction and intensity of linear
momentum shown by the big arrow (blue online) immediately after
simultaneous reconnections.

the two rings are initially unlinked, centered at (0; ±10; 0),
with radius R = 8 and mutually inclined by an angle α =
±π/10 with respect to the plane z = 0. Since the initial
condition is highly symmetric, the momentum remains es-
sentially oriented along a single direction. Particularly inter-
esting is the case of the head-on collision of two parallel,
coaxial vortex rings (not studied here), where upon interaction
and subsequent reconnections a regular crown of ringlets is
formed [27,28]. Since the system is perfectly axially sym-
metric, crude estimates based on weighted area information
have allowed one to predict [2] qualitative and quantitative
features, such as the production of oppositely directed ringlets
through the redistribution of (zero) total momentum and
the follow-up dynamics immediately after the reconnection
stage.

Torus knots. Figure 5 shows two torus knots Tp,q given by
the parametric equations

X :

⎧⎨
⎩

x(t ) = cos(pt )[R + r cos(qt )],
y(t ) = sin(pt )[R + r cos(qt )],
z(t ) = r sin(qt ),

(9)

where p and q denote, respectively, the number of wraps along
the longitudinal and meridian direction of the torus of large
radius R and small radius r. The initial condition is prescribed
as follows. Given p, q, R, and r, for each point P in the
numerical domain we look for the closest point Q ∈ Tp,q so

that
−→
QP is in the cross-sectional plane normal to the local

tangent to Tp,q at Q. By taking (d, θ ) the polar coordinates

of P with respect to Q, where d = |−→QP| and θ the angle
between the unit principal normal and

−→
QP, the initial condi-

tion is given by ψ0 = √
ρ0 exp (iθ0), where ρ0 is given by a

new, higher-order Padé approximation (see [29] for details).
The computational domain is set to [−20; 20] × [−20; 20] ×
[−25; 15], with number of grid points 1503, spatial resolution
� = (4/15)ξ , and time step 0.0125 units. At t = 0 the torus
knot is centered at x = y = z = 0. For both knots T2,3 and T2,5

we take R = 6 and r = 2. Since during evolution the initial
symmetry is preserved, the direction of the total momentum
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remains unchanged before and after reconnection, as shown
by the big arrow in the plots of Fig. 5 (bottom row).

VI. CONCLUDING REMARKS

The geometric method presented provides real-time esti-
mates of the linear momentum and represents a useful tool
for diagnostics and predictive analysis of dynamical aspects
of networks of filamentary structures, especially when no
analytical information is available. The examples given here
are based on data analysis of the evolution of GPE defects,
and they serve the purpose to illustrate how the method can
be applied to complex systems. The relationship between
linear momentum and weighted area, upon which the method
relies, is exact in the limit of thin filaments in incompressible
fluid.

The method could also provide useful information in the
compressible case too, where, as in the GPE case, one can use
it to compare incompressible information with known conser-
vation of momentum to obtain acoustic emission estimates.
In such cases, since compressible effects remain localized
in defect regions, we conjecture that vortex lines could be
artificially endowed with virtual tubes (by making use of Padé
approximation), whose volume would play a similar role of
the excluded volume of polymers. These tubular regions could
then be removed from the projected areas, so as to have more
accurate estimates from the incompressible part. We believe
this technique could be easily implemented in future work.
Another matter is direct comparison with conservation of

momentum in GPE. This is a very delicate issue, since we
know that various factors may influence the result, one for
all the relative size of the defects compared to the size of the
numerical box. This issue is probably resolved by very high
computational power.

The methodology used here, in any case, proves robust and
can be equally applied to networks of filamentary structures
in superfluid, classical, or magnetic systems, where localized
fields are present. Data can be obtained from laboratory ex-
periments as well as numerical simulations. In the former case
data extraction and processing may vary according to context.
In the case of vortex filaments in water or in superfluid helium,
the reconstruction of vortex morphology can be achieved by
collecting volumetric data from laser illuminated slices of
vortex core regions and then by postprocessing the raw data by
fast-marching algorithms for tracing the vortex lines in space.
This technique, which was successfully employed for the
postprocessing analysis of vortex knots in water [6] and in su-
perfluid helium [30], can be readily implemented for our pur-
pose. Other techniques based on photoemission spectroscopy
measurements (for defects in crystals), electron microscopy
and sound propagation (for vortices in superconductors and
condensates), or filtered image analysis (for coronal loops in
solar physics) can well provide equally similar information.
More obvious is the implementation of our method in direct
numerical simulations of complex vortex tangles in fluid flows
(classical or superfluid), where one new route to explore may
be represented by the use of quantum trajectory methods in
the hydrodynamical formulation of quantum dynamics [31].
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