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Abstract
In this paper we show that twist, defined in terms of rotation of the phase
associated with quantum vortices and other physical defects effectively
deprived of internal structure, is a property that has observable effects in terms
of induced axial flow. For this we consider quantum vortices governed by the
Gross–Pitaevskii equation (GPE) and perform a number of test cases to
investigate and compare the effects of twist in two different contexts: (i) when
this is artificially superimposed on an initially untwisted vortex ring; (ii) when
it is naturally produced on the ring by the simultaneous presence of a central
straight vortex. In the first case large amplitude perturbations quickly develop,
generated by the unnatural setting of the initial condition that is not an ana-
lytical solution of the GPE. In the second case much milder perturbations
emerge, signature of a genuine physical process. This scenario is confirmed by
other test cases performed at higher twist values. Since the second setting
corresponds to essential linking, these results provide new evidence of the
influence of topology on physics.
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1. Introduction

Quantum vortices are physical realizations of phase singularities that emerge in a disparate
variety of physical systems, including superfluid Helium, Type-II superconductors, photon
fields (optical vortices) and atomic gases such as Bose–Einstein condensates (Nelson 2002).
In this paper we investigate twist effects by focusing on quantum vortices that evolve under
the 3D Gross–Pitaevskii equation (GPE) (Pitaevskii 1961, Gross 1963)
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for the complex wave function ψ with background unit density (y ∣ ∣ 12 as  ¥∣ ∣x ). It is
well-known that these defects are actually one-dimensional phase singularities in the order
parameter of the ambient space, carrying angular momentum. They can be thought of as
infinitesimally thin, empty tubes centered on a space curve (the tube centerline). These tubes
are regions effectively deprived of internal structure, having zero density and vorticity given
by a delta-function on the axis. Hence, a mathematical definition of twist seems lacking of
physical interpretation. However, our recent work on helicity change due to interaction and
reconnection of quantum vortex loops (Zuccher and Ricca 2015, 2017) has shown that twist,
appropriately defined, has physically observable effects. Scope of the present paper is to
clarify and investigate further the origin of twist and its physical manifestation in the context
of GPE quantum vortex interactions and to extend these new findings to other physical phase
defects.

Twist is a fundamental ingredient in the kinetic helicity of classical vortex filaments.
Helicity  is a conserved quantity of ideal fluid mechanics (Moreau 1961) given by the
volume integral of the scalar product of velocity u and vorticity w =  ´ u. When vorticity
is confined to n vortex tubes of equal circulation Γ (as in the case of quantum vortices) can
be simplified and reduced to a sum of linking numbers (Moffatt 1969, Moffatt and
Ricca 1992, Ricca and Moffatt 1992). By taking  = G¯ 2, we have
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where Lkij denotes the Gauss linking number between vortices i and j, and SLi denotes the
Călugăreanu–White self-linking number of the single i-vortex. For closed filaments Lk and SL
are both topological invariants given by pure integers; moreover, SL can be written as sum of
writhe Wr and twist Tw, two global geometric quantities given by real numbers (see
section 2.1 for definitions). Detailed study of these geometric and topological quantities
provides insight into the dynamics and energetics of complex systems and are therefore useful
to understand and interpret physical aspects as well (Ricca and Berger 1996, Moffatt 2014).

As we shall see, writhe is a geometric property of the vortex axis, so it is well-defined as
long as one can identify the geometry of the tube centerline. Twist, however, is not a
geometric property of a single space curve, but rather of a ribbon defined by a pair of
neighboring curves winding one around the other. In the case of a classical vortex one can
think of twist as the result of the winding of any pair of vortex lines in a coherent bundle of
vorticity. Not so for quantum vortices, where there are no field lines to refer to. On the basis
of the mathematical definitions given below (section 2.1) we propose to define twist in terms
of the winding of the phase of the wave function around the defect line and explore the
physical implications that this twist has in the dynamics of the system. This investigation is
carried out by a series of numerical simulations based on different initial conditions
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(section 3) and analysis of the corresponding evolution. The results are presented in section 4
and concluding remarks are drawn in section 5.

2. Governing equations, basic definitions and twist interpretation

The GPE (1) is commonly employed to model and study quantum vortex reconnection
(Koplik and Levine 1993, Zuccher et al 2012, Allen et al 2014) under conservation of the
Hamiltonian = +E K I , given by the sum of kinetic energy *ò y y = ·K xd1

2
3 and

interaction energy ò y= -( ∣ ∣ )I x1 d1

4
2 2 3 (where *y denotes the ψ complex conjugate). By

using the Madelung transformation y r q= ( )exp i , where θ is the phase of the wave-
function, equation (1) admits fluid mechanical interpretation in terms of the standard con-
tinuity equation and momentum equation. By taking real and imaginary parts we have
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where r y= ∣ ∣2 is fluid density, q=u velocity, r=p 42 pressure and t r= r¶
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( =k l, 1, 2, 3) the so-called quantum stress. This latter term is negligible with respect to the
quantum pressure term at length scales much larger than the healing length ξ, that is of the
order of the vortex core radius (Zuccher et al 2012). According to the normalization used in
equations (3) and (4) we take x = 1 and quantum of circulation pG = 2 .

2.1. Standard definitions of geometric and topological properties

As physical singularities of vorticity, quantum vortices can be regarded as zero density lines
where phase is ill-defined. We identify the phase singularity with the vortex centerline C.
Let’s briefly recall the standard definition of the topological and geometric quantities present
in equation (2). The linking number between vortex i and j is given by the double integral
over the centerlines Ci and Cj, given by
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where Xi and Xj denote the position vectors of two points, respectively on Ci and Cj ( ¹i j).
Lkij is a topological invariant of the link. It takes only integer values and provides a measure
of the degree of linking of two (or more) components, contributing to the ‘external’ helicity of
a link of two or more vortices.

The writhing number Wri contributes to the ‘internal’ helicity through the self-linking
number = +SL Wr Twi i i of each individual vortex. The writhe is defined by
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where Xi and Yi denote two distinct points on the same curve Ci. Wri is a global geometric
property of Ci, taking real values. A plane curve has writhe always zero, but sometimes even
fully twisted space curves may have writhe equal to zero, when positive and negative writhe
contributions compensate. Since writhe takes into account distortion, in general it is a good
indicator of three-dimensional folding.
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Total twist Twi is the other global geometric ingredient of SLi. Its definition is based on
the concept of ribbon. A mathematical ribbon *= ( )R R C C, of width ò is defined by pre-
scribing a baseline curve C (one edge of the ribbon) of vector equation ( )sX and a second
curve *C (the other edge of R) of vector equation *( )sX given by * = +( ) ( ) ˆ ( )s s sX X U ,
where s is arc-length and Û denotes a normal unit vector to X. Hence, for the i vortex of
centerline Ci and ribbon Ri, the total twist number is defined by the rate of rotation of Û
around the base curve Ci , i.e.
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Total twist can be further decomposed = +Tw T Ni i i in terms of normalized total torsion Ti
and intrinsic twist Ni (Moffatt and Ricca 1992, Ricca and Moffatt 1992), given respectively
by
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where t t= ( )s is torsion of Ci, and Q = Q( )s the angle between Û and the principal unit
normal N̂ to Ci. Ti takes real values and is evidently zero for straight lines and planar curves;
Ni is an integer (if Ci is a closed curve) measuring the total number of full turns of Û all along
Ci relative to the Frenet triad on Ci; it can be visualized by a twisted straight ribbon whose
axis has zero torsion.

Since GPE vortices (and other physical phase defects) have no internal structure and are
fibered by smooth iso-phase surfaces (Seifert surfaces), we can unambiguously evaluate twist
by using directly equation (7) (rather than (8) and (9)). This is done by identifying the rotation
of Û with the rotation of one of these iso-phase surfaces around the defect line. By intro-
ducing the concept of ribbon we implement a technique introduced in earlier work (Zuccher
and Ricca 2015) and applied again recently (Zuccher and Ricca 2017). A reference ribbon Ri

is defined by taking the vortex axis Ci as the baseline curve of Ri and a second curve *Ci on
the given iso-phase surface q q= ¯ of our choice. The ribbon is then identified by the points of
constant phase that lie on the ò-portion of this iso-phase surface q q= ¯ bounded by Ci and *Ci .
Twist is then measured by the full rotation of this ribbon around Ci, that by construction
amounts to the full rotation of Û around the defect line. A phase contour associated with a
planar vortex ring withWr = 0 and = = =T N Tw 0 is visualized in the (y, z)-plane at x=0
in figure 1. The phase discontinuity between q p= - and q p= , where the value jumps
(from blue to red, online) due to the multiple-connectivity of the ambient space, is visible in
the region exterior to the ring. Any choice of framing, provided for example by Û in the
q q= =¯ 0 direction is independent of both the geometry of the curve and the intrinsic Frenet
triad on Ci. The use of these iso-phase Seifert surfaces allows computation of helicity via
direct computation of its geometric and topological ingredients and provides an alternative
route to the computation of helicity based on regularization techniques and high-order deri-
vatives (Clark di Leoni et al 2016).
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2.2. Physical interpretation of twist

Since defects have topological charge (circulation) quantized, phase can only take discrete,
integer values, so that twist, defined in terms of phase rotation through θ, can only take integer
values as well. This is a first, fundamental difference between classical and quantum systems.
Moreover when N quantum vortices are simultaneously present, they would normally have
unit circulation (normalized in terms of Planck constant and particle mass), a necessary
condition for stability. This poses an additional, global constraint on the whole system.
Hence, phase values are not only individually locked to discrete values, but these values
cannot vary arbitrarily, and this is a second fundamental difference between classical and
quantum systems.

Twist has physical implications through its phase definition and the relation of phase with
velocity q=u . First, note that any choice of q q= ¯ is uninfluential in twist computation,
since only gradients of phase matter. The effect of twist is made clear if we interpret it in
terms of the corresponding velocity decomposed locally in cylindrical polar coordinates

f( )r z, , centered on a straight vortex axis C. If the iso-phase surface q q= ¯ is not twisted, it
simply coincides with the coordinate plane f q= ¯ . The gradient, normal to this surface, gives
rise to the velocity = f( )uu 0, , 0 with p= Gfu r2 (r distance from the tube axis), in analogy
with the classical rectilinear vortex filament solution. In the stationary case the family of iso-
phase surfaces fiber the ambient space by a fan of straight planes hinged on C, with
streamlines given by concentric plane circles. Hence, by construction local twist is non-zero
only when the gradient of the phase has a component directed along C, and since q=u
twist is directly related to the axial component of the velocity along C. This makes twist
effects observable and measurable. Physical effects associated with phase are therefore all

Figure 1. Planar vortex ring with Wr = 0, = =T N 0 (hence Tw = 0) and phase
contour in the (y, z)-plane at x=0. The arrow indicates the vorticity direction. Values
of phase change according to color, with an evident phase discontinuity from q p= -
to q p= (from blue to red, online). In the interior region the vortex is spanned by the
iso-phase surface q = 0 (not visualized), that is a Seifert surface given by the circular
disk D bounded by the ring axis = ¶C D. Any given iso-phase surface provides a well-
defined framing on C.
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important and cannot be neglected by simply reducing the evolution of a quantum vortex, or
indeed of any phase defect, to the motion of a line singularity. Particularly so, for instance, in
relation to helicity computation. Moreover, as in the classical case, the simultaneous presence
of a number of vortices determine a superimposition of the induced effects that in the
quantum case is evidenced by phase rotations. This has been investigated by considering the
simultaneous presence of two linked, planar vortex rings (constituting a Hopf link) that
determine a mutually induced phase twist on each individual vortex as signature of the
complex topology of the system (Zuccher and Ricca 2017).

3. Numerical method

GPE(1) is integrated numerically by employing the well-known second-order Strang splitting
Fourier spectral method (Koplik and Levine 1993), that has been consistently used for
numerical simulations of vortex reconnection (Zuccher et al 2012, Allen et al 2014, Zuccher
and Ricca 2015, Caliari and Zuccher 2017). Its main advantages are that mass conservation is
enforced exactly and efficiency is guaranteed by fast Fourier transform algorithms. Exact
mass conservation will be particularly important in the diagnostics and interpretation of the
results presented below. The main drawback is that non-periodic initial conditions must be
made triply periodic by doubling the computational domain in each direction by introducing
mirror vortices, a technique that has been extensively employed in literature (Koplik and
Levine 1993).

3.1. Initial conditions

We want to study the effect of twist under different initial conditions in the simplest possible
scenario in order to understand and explore the dynamical response of the system to natural or
artificial settings. For this purpose a planar vortex ring of radius R=8, circulation pG = 2
and zero twist is placed parallel to the (x, y)-plane. As was done in Zuccher and Ricca (2017),
the density distribution in the plane orthogonal to the vortex central axis is prescribed by the
high-order Padé approximation r = + + +

+ + + +
( )r a r a r a r a r

b r b r b r a r0 1
1

2
2

4
3

6
4

8

1
2

2
4

3
6

4
8 (see Caliari and Zuccher 2016

for details), and the initial phase is eventually let to change by p2 in that plane (see figure 1).
At t=0 the resulting wave function is thus given by y r q= ( )exp i0 0 0 . Since the ring
travels in the positive z-direction (upward), the ring is initially placed below the plane z=0.

The computational domain is given by - ´ - ´ -[ ] [ ] [ ]15; 15 15; 15 15; 15 and it is
chosen to optimize the observed vortex evolution. The spatial discretization is the same in
each direction (as in former simulations by Zuccher and Ricca 2015, 2017), with resolution

xD = D = D =x y z 3, 903 grid points in the physical domain (before mirroring) and time
step D = =t 1 80 0.0125.

To superimpose twist on the ring of figure 1, we make rotate uniformly the phase through
θ by p2 along C. The result is shown in figure 2(a), where the jump in phase between p- and
π rotates uniformly around C, all along C. This twist prescription, however, results rather
unphysical, because it is inconsistent with the uniform, initial density distribution, left
unchanged. Careful data analysis and close inspection of the phase relaxation show that the
constraints imposed by r y= =∣ ∣ 12 and the exact mass conservation enforced by the
numerical code determine a forced adaptation of the background density with subsequent
generation of a secondary, central phase defect and an induced change of θ by p2 along the z-
axis. This is accompanied by the production of spurious waves that propagate away from the
vortex towards the boundaries, bouncing back to the numerical domain.
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All this suggests to test a different initial condition given by a vortex ring with Tw = 0
(as in figure 1) and a rectilinear vortex placed along the central axis of the ring with vorticity
pointing in the negative direction of the z-axis (downwards). The phase contour is shown in
figure 2(b) together with the vortex tubes. In this case we have
y r r q q= +[ ( )]exp i0 01 02 01 02 (subscripts refer to the vortex ring and the straight vortex,
respectively). The density distribution of the straight vortex is calculated by using the high-
order Padé approximation mentioned above, with the phase change obtained by rotating q2

around the z-axis. This rotation is measured by the winding number w, so that
y r q= ( )wexp i0 0 0 . The density distribution of a straight vortex with >w 1 must be
computed numerically by solving the nonlinear boundary value problem

 + ¢ + - - =
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )f r

r
f r f r

w

r
f r

1
1 0, 102

2

2

with boundary conditions =( )f 0 0, ¥ =( )f 1 and r= +( ) ( )f r x y2 2 . An efficient
method for solving(10) is described in Caliari and Zuccher (2016). Note that the iso-density
surface of the core radius of the straight vortex increases with the winding number w.

4. Results

Figure 3 shows initial condition and solution at t=20 for the case of a twisted vortex ring
obtained by superimposing a full turn of the phase ( = =Tw N 1) on the initial ring. A
straight, central vortex is immediately produced from the first time step, as a result of a
competition between barotropic and quantum pressure (see equation (4)). At the beginning
the diameter of this vortex (in terms of density distribution) is quite small, but then it adjusts

Figure 2. Phase contours in the (y, z)-plane for a planar (T= 0) vortex ring with Tw
= =( )N 1. (a) Twist is artificially superimposed by rotating the phase by p2 uniformly
all along the vortex centerline. (b) The same twist Tw = 1 is naturally induced by the
presence of a rectilinear vortex with vorticity along the negative z-direction
(downwards). The vortex tubes of core radius a are visualized by iso-density surfaces,
with r = 0.1 and x»a 2.
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to the value given by the Padé approximation. Perturbations develop quickly by corrugating
the iso-density surfaces of the ring and the central vortex with growing amplitude (see
figure 3(b)). Further tests confirm that the observed irregularities are due to artificial condi-
tions and the perturbations persist till a complete, progressive relaxation of any density
inhomogeneity. Test cases (not shown here) have been run by placing an initially straight
phase defect in a uniform background density r = 1, so as to reproduce the same phase
distribution given by a straight vortex. As discussed earlier, a real vortex emerges showing an
irregular iso-density surface from the very first time step. We believe that this irregularity is
due to the artificial forcing of the numerical solution to the GPE equation. Evidently this
forcing generate perturbations that, similarly to sound emission, propagate away from the
phase singularity and by nonlinear interaction with other perturbations produce widespread
density fluctuations.

Figure 4 shows initial condition and solution at t=20, when a vortex ring and a straight,
central vortex are prescribed as initial conditions. In this case we observe much milder and
regular perturbations that most likely are ascribed to real physical effects due to the presence
of axial flow. The induced perturbations due to the action of an axial flow is a well-known
mechanism that has been subject of intense study in the context of classical vortex filament
dynamics (Widnall and Bliss 1971, Moore and Saffman 1972, Fukumoto and Miya-
zaki 1991). We believe that the oscillations of figure 4(b) are indeed due to the action of
axial flows.

It is interesting to compare the intensity of the induced axial velocity ua evaluated at
points on the vortex ring core with the propagation speed U of the vortex ring, and provide a
crude estimate on possible instabilities based on direct inspection of figure 4(b). In our case
we have pG = 2 , vortex ring radius R=8 and core radius x» =a 2 1 2. The axial
velocity ua is that due to the straight central vortex at points on the vortex ring core placed at
distance = -r R a from the z-axis; thus

Figure 3. (a) Initial condition t=0: twist Tw = 1 is superimposed on the vortex ring by
artificially rotating around the vortex axis the iso-phase surface q q= ¯ by p2 . (b)
t=20: a central, straight vortex is instantly produced from the very first time-step. The
iso-density surfaces (r = 0.1 and x»a 2) appear highly corrugated.
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Thus, the axial flow velocity is approximately half of the translation velocity of the vortex
ring, not a small contribution. From figure 4(b) we identify n=4 crests, so we can estimate a
wavelengthl p p= =R n2 4 and a wavenumber p l= =k 2 1 2. From equation (2.17) of
Windnall and Bliss (1971), we have instability if

= > -
q

( ) ( )K ka
u

u
2 1, 14a 1 2

where p= Gqu a2 is the swirl velocity of the vortex ring. Since =ka 1 4 and
= - =q

-( )u u R a 1 1 15a
1 , we have = K 1 60 1, hence we have no instability.

Higher twist values effects have been investigated too: results for Tw = 2 for different
initial conditions are shown in figures 5 and 6. These results are in good agreement with
similar behavior observed previously: for large computational times the initially twisted ring
develops perturbations of larger amplitude, that appear to be proportional to the superimposed
twist values. Test cases of straight vortices with = = -( )Tw N 1 and = = -( )Tw N 2 (with
winding number w= 1 and w= 2, respectively) and opposite vorticity directions (see

Figure 4. (a) Initial condition t=0: a vortex ring and a straight central vortex are
initially present; both vortices have zero initial twist. The central vortex induces a unit
twist on the ring (see the contour plot of figure 2(b)). (b) t=20: in this case the iso-
density surfaces (r = 0.1 and x»a 2) are rather regular.
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Figure 5. (a) Initial condition t=0: twist Tw = 2 is superimposed on the vortex ring by
rotating the iso-phase surface q q= ¯ by p4 around the vortex axis. (b) t=20: a
straight, central vortex is instantaneously generated from the very first time-step. In this
case the iso-density surfaces with r = 0.1, and x= ( )a O are quite irregular.

Figure 6. (a) Initial condition t=0: a vortex ring and a central straight vortex are
initially present; the ring has no twist, whereas the straight vortex has winding number
w=2. The central vortex induces a twist Tw = 2 on the ring (see the contour plot of
figure 2(b)). (b) t=20: the iso-density surfaces with r = 0.1 and x= ( )a O appear to
be more regular.
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figure 7) have also been studied, confirming the present analysis. Note that when >w 1 the
vortex core tends to get thicker, but it remains of the order of the healing length ξ.

5. Concluding remarks

In this paper we have shown that twist, defined purely in terms of the rotation of the iso-phase
surface around the defect centerline, is a property of the system that produces physical,
observable effects. These have been explored by implementing two alternative ways to
generate twist. In the first case a uniform rotation of the phase has been superimposed on a
planar vortex ring axis with the consequent instantaneous generation of a central straight
vortex from the very first time step. The superimposed twist amounts to an axial flow acting
along the ring centerline. Such an initial condition, however, seems to be quite unnatural,
producing very distorted and corrugated iso-density surfaces that seem to loose coherency
during time evolution. We argue that this is due to an artificial adjustment of the phase
distribution, followed by a forced relaxation to a uniform background density. This state does
not represent an analytical solution to the governing equation, producing irregular pertur-
bations in the numerical solution. In the second case we consider an initially untwisted planar
vortex ring with a second straight vortex placed on the central axis. The angular velocity of
the straight vortex induces a uniform twist in the ring due to the natural propagation of density
and phase through the ambient space. The same twist, due to the action of the vortex ring
swirling flow, is also present on the straight vortex. In this case iso-density surfaces show
some oscillations, but the irregularity is now typical of low amplitude and long wavelength
perturbations. We show that the velocity of the induced axial flow on the vortex ring core is
about half of the ring propagation velocity, with oscillations consistent with neutral stability
results. This behavior has been found consistently by similar test cases analyzed for different
initial conditions and twist values. Given that twist effects are evidently related to mutual

Figure 7. Evolution of a vortex ring and a central, straight vortex with w=1 and
w=2 and vorticity upwards. Iso-density surfaces (r = 0.1) for the two cases at
t=80: (a) = = -Tw N 1, x= ( )a O 2 ; (b) = = -Tw N 2, x= ( )a O .
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induction effects, one can argue that the direct relation that has been established between the
nonlinear Schrödinger equation and the Biot-Savart operator (Bustamante and Nazar-
enko 2015) can be equally extended to the GPE employed here.

One other interesting aspect is the interplay of topology and physics. Since defects have
no internal structure, twist cannot be associated with any internal winding of material lines.
However it can be related to the uniform rotation of the iso-phase surface that, in agreement
with a recent analysis (Salman 2017), influences the physics of the system. Computational
evidence (Zuccher and Ricca 2015, 2017) and theoretical work (Sumners 1987, Ruzmaikin
and Akhmetiev 1994, Sumners and Ricca 2017) demonstrate that defects fibered by iso-phase
surfaces (Seifert surfaces) have total linking number (i.e. helicity) =Lk 0tot . With reference
to the case of figure 3 we see that the initial twist condition Tw = 1 artificially superimposed
on the planar vortex ring (with Wr = 0) leads to an inconsistency given by

= ¹ + =Lk Wr Tw0 1tot . In this case the emergence of the second straight vortex (of
=Wr 02 and =Tw 12 ) is therefore a necessary condition: the infinitely long straight vortex

being effectively linked with the vortex ring (of =Wr 01 and =Tw 11 ) contributes to total
linking with = = -Lk Lk 112 21 (according to relative orientation), so that by making use of a
result demonstrated in Laing et al (2015), we have then

= = + = + + + = - + ( )Lk Wr Tw Wr Wr Lk Tw0 2 2 2. 15tot tot tot 1 2 12 tot

We should point out that induced twist does not necessarily imply generation of additional
phase singularities, as is evident when we consider the folding process of a single quantum
vortex loop, where the generation of new twist is naturally compensated by the spontaneous
production of writhe (see for instance Zuccher and Ricca 2017). In summary, we provide
evidence that not only twist is a physically relevant quantity associated with a velocity field in
the system, but since twist provides an imprint of linking, the topological condition of zero
helicity for the Seifert framing of phase defects implies the presence of an additional kinetic
potential, in analogy with the Aharonov–Bohm effect of quantum mechanics, where the
complex phase of a charged particle’s wave function is invariably associated with the physical
effects of an electromagnetic potential.

ORCID iDs

Simone Zuccher https://orcid.org/0000-0002-9057-6892
Renzo L Ricca https://orcid.org/0000-0002-7304-4042

References

Allen A J, Zuccher S, Caliari M, Proukakis N P, Parker N G and Barenghi C F 2014 Vortex
reconnections in atomic condensates at finite temperature Phys. Rev. A 90 013601

Bustamante M D and Nazarenko S 2015 Derivation of the Biot-Savart equation from the nonlinear
Schrödinger equation Phys. Rev. E 92 053019

Caliari M and Zuccher S 2016 Reliability of the time splitting Fourier method for singular solutions in
quantum fluids (arXiv:1603.05022)

Caliari M and Zuccher S 2017 INFFTM: fast evaluation of 3d Fourier series in MATLAB with an
application to quantum vortex reconnections Comput. Phys. Commun. 213 197–207

Clark di Leoni P, Mininni P D and Brachet M E 2016 Helicity, topology, and Kelvin waves in
reconnecting quantum knots Phys. Rev. A 94 043605

Sumners De W L 1987 Knots, macromolecules and chemical dynamics Graph Theory and Topology in
Chemistry ed R B King and D Rouvray (Amsterdam: Elsevier) pp 3–22

Fluid Dyn. Res. 50 (2018) 011414 S Zuccher and R L Ricca

12

https://orcid.org/0000-0002-9057-6892
https://orcid.org/0000-0002-9057-6892
https://orcid.org/0000-0002-9057-6892
https://orcid.org/0000-0002-7304-4042
https://orcid.org/0000-0002-7304-4042
https://orcid.org/0000-0002-7304-4042
https://doi.org/10.1103/PhysRevA.90.013601
https://doi.org/10.1103/PhysRevE.92.053019
http://arxiv.org/abs/1603.05022
https://doi.org/10.1016/j.cpc.2016.12.004
https://doi.org/10.1016/j.cpc.2016.12.004
https://doi.org/10.1016/j.cpc.2016.12.004
https://doi.org/10.1103/PhysRevA.94.043605


Sumners De W L and Ricca R L 2017 Zero-linking, helicity, integrability and isophase surfaces in fluid
systems in preparation

Fukumoto Y and Miyazaki T 1991 Three-dimensional distortions of a vortex filament with axial
velocity J. Fluid Mech. 222 369–416

Gross E P 1963 Hydrodynamics of a superfluid condensate J. Math. Phys. 4 195–207
Koplik J and Levine H 1993 Vortex reconnection in superfluid helium Phys. Fluids 9 1375–8
Laing C E, Ricca R L and Sumners De W L 2015 Conservation of writhe helicity under anti-parallel

reconnection Sci. Rep. 5 9224
Moffatt H K 1969 The degree of knottedness of tangled vortex lines J. Fluid Mech. 35 117–29
Moffatt H K 2014 Helicity and singular structures in fluid dynamics PNAS USA 111 3663–70
Moffatt H K and Ricca R L 1992 Helicity and the Călugăreanu invariant Proc. R. Soc. A 439 411–29
Moore D W and Saffman P G 1972 The motion of a vortex filament with axial flow Phil. Trans. R. Soc.

A 272 403–29
Moreau J J 1961 Constantes dunîlot tourbillonnaire en fluid parfait barotrope Acad. Sci. Paris 252

2810–2
Nelson N R 2002 Defects and Geometry in Condensed Matter Physics (Cambridge: Cambridge

University Press)
Pitaevskii L P 1961 Vortex lines in an imperfect Bose gas Sov. Phys. JETP 13 451–4
Ricca R L and Berger M A 1996 Topological ideas and fluid mechanics Phys. Today 49 24–30
Ricca R L and Moffatt H K 1992 The helicity of a knotted vortex filament Topological Aspects of the

Dynamics of Fluids and Plasmas ed H K Moffatt et al (Dordrecht: Kluwer) pp 225–36
Ruzmaikin A and Akhmetiev P 1994 Topological invariants of magnetic fields, and the effect of

reconnections Phys. Plasmas 1 331–6
Salman H 2017 Helicity conservation and twisted Seifert surfaces for superfluid vortices Proc. R. Soc. A

473 20160853
Sullivan I S, Niemela J J, Herschberger R E and Bolster D 2008 Dynamics of thin vortex rings J. Fluid

Mech. 609 319–47
Widnall S E and Bliss D B 1971 Slender-body analysis of the motion and stability of a vortex filament

containing an axial flow J. Fluid Mech. 50 335–53
Zuccher S, Caliari M, Baggaley A W and Barenghi C F 2012 Quantum vortex reconnections Phys.

Fluids 24 125108
Zuccher S and Ricca R L 2015 Helicity conservation under quantum reconnection of vortex rings Phy.

Rev. E 92 061001
Zuccher S and Ricca R L 2017 Relaxation of twist helicity in the cascade process of linked quantum

vortices Phy. Rev. E 95 053109

Fluid Dyn. Res. 50 (2018) 011414 S Zuccher and R L Ricca

13

https://doi.org/10.1017/S0022112091001143
https://doi.org/10.1017/S0022112091001143
https://doi.org/10.1017/S0022112091001143
https://doi.org/10.1063/1.1703944
https://doi.org/10.1063/1.1703944
https://doi.org/10.1063/1.1703944
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1038/srep09224
https://doi.org/10.1017/S0022112069000991
https://doi.org/10.1017/S0022112069000991
https://doi.org/10.1017/S0022112069000991
https://doi.org/10.1073/pnas.1400277111
https://doi.org/10.1073/pnas.1400277111
https://doi.org/10.1073/pnas.1400277111
https://doi.org/10.1098/rspa.1992.0159
https://doi.org/10.1098/rspa.1992.0159
https://doi.org/10.1098/rspa.1992.0159
https://doi.org/10.1098/rsta.1972.0055
https://doi.org/10.1098/rsta.1972.0055
https://doi.org/10.1098/rsta.1972.0055
https://doi.org/10.1063/1.881574
https://doi.org/10.1063/1.881574
https://doi.org/10.1063/1.881574
https://doi.org/10.1063/1.870835
https://doi.org/10.1063/1.870835
https://doi.org/10.1063/1.870835
https://doi.org/10.1098/rspa.2016.0853
https://doi.org/10.1017/S0022112008002292
https://doi.org/10.1017/S0022112008002292
https://doi.org/10.1017/S0022112008002292
https://doi.org/10.1017/S002211207100260X
https://doi.org/10.1017/S002211207100260X
https://doi.org/10.1017/S002211207100260X
https://doi.org/10.1063/1.4772198
https://doi.org/10.1103/PhysRevE.92.061001
https://doi.org/10.1103/PhysRevE.95.053109

	1. Introduction
	2. Governing equations, basic definitions and twist interpretation
	2.1. Standard definitions of geometric and topological properties
	2.2. Physical interpretation of twist

	3. Numerical method
	3.1. Initial conditions

	4. Results
	5. Concluding remarks
	References



