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Abstract. In this paper we show that twist, defined in terms of rotation of the

phase associated with quantum vortices and other physical defects effectively deprived

of internal structure is a property that has observable effects in terms of induced axial

flow. For this we consider quantum vortices governed by the Gross-Pitaevskii equation

(GPE) and perform a number of test cases to investigate and compare the effects of

twist in two different contexts: (i) when this is artificially superimposed on an initially

untwisted vortex ring; (ii) when it is naturally produced on the ring by the simultaneous

presence of a central straight vortex. In the first case large amplitude perturbations

quickly develop, generated by the unnatural setting of the initial condition that is

not an analytical solution of the GPE. In the second case much milder perturbations

emerge, signature of a genuine physical process. This scenario is confirmed by other

test cases performed at higher twist values. Since the second setting corresponds to

essential linking, these results provide new evidence of the influence of topology on

physics.

Keywords: twist, vortex rings, quantum vortices, phase defects, Bose-Einstein

condensates, helicity.

1. Introduction

Quantum vortices are physical realizations of phase singularities that emerge in

a disparate variety of physical systems, including superfluid Helium, Type-II

superconductors, photon fields (optical vortices) and atomic gases such as Bose–Einstein

condensates (BECs) [1]. In this paper we investigate twist effects by focusing on

quantum vortices that evolve under the 3D Gross-Pitaevskii equation (GPE) [2, 3]

∂ψ

∂t
=

i

2
∇

2ψ +
i

2

(

1− |ψ|2
)

ψ , (1)

‡ Corresponding author: simone.zuccher@univr.it
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Twist effects in quantum vortices and phase defects 2

for the complex wave function ψ with background unit density (|ψ|2 → 1 as |x| → ∞).

It is well-known that these defects are actually one-dimensional phase singularities in

the order parameter of the ambient space, carrying angular momentum. They can be

thought of as infinitesimally thin, empty tubes centered on a space curve (the tube

centerline). These tubes are regions effectively deprived of internal structure, having

zero density and vorticity given by a delta-function on the axis. Hence, a mathematical

definition of twist seems lacking of physical interpretation. However, our recent work

on helicity change due to interaction and reconnection of quantum vortex loops [4, 5]

has shown that twist, appropriately defined, has physically observable effects. Scope of

the present paper is to clarify and investigate further the origin of twist and its physical

manifestation in the context of GPE quantum vortex interactions and to extend these

new findings to other physical phase defects.

Twist is a fundamental ingredient in the kinetic helicity of classical vortex filaments.

Helicity H is a conserved quantity of ideal fluid mechanics [6] given by the volume

integral of the scalar product of velocity u and vorticity ω = ∇× u. When vorticity is

confined to n vortex tubes of equal circulation Γ (as in the case of quantum vortices)

H can be simplified and reduced to a sum of linking numbers [7, 8, 9]. By taking

H̄ = H/Γ2, we have

H̄ =
n
∑

i 6=j

Lkij +
n
∑

i

SLi , (2)

where Lkij denotes the Gauss linking number between vortices i and j, and SLi denotes

the Călugăreanu-White self-linking number of the single i-vortex. For closed filaments

Lk and SL are both topological invariants given by pure integers; moreover, SL can be

written as sum of writhe Wr and twist Tw, two global geometric quantities given by

real numbers (see section §2.1 for definitions). Detailed study of these geometric and

topological quantities provides insight into the dynamics and energetics of complex

systems and are therefore useful to understand and interpret physical aspects as

well [10, 11].

As we shall see, writhe is a geometric property of the vortex axis, so it is well-

defined as long as one can identify the geometry of the tube centerline. Twist, though,

is not a geometric property of a single space curve, but rather of a ribbon defined by

a pair of neighboring curves winding one around the other. In the case of a classical

vortex one can think of twist as the result of the winding of any pair of vortex lines in a

coherent bundle of vorticity. Not so for quantum vortices, where there are no field lines

to refer to. On the basis of the mathematical definitions given below (§2.1) we propose

to define twist in terms of the winding of the phase of the wave function around the

defect line and explore the physical implications that this twist has in the dynamics of

the system. This investigation is carried out by a series of numerical simulations based

on different initial conditions (§3) and analysis of the corresponding evolution. The

results are presented in section §4 and concluding remarks are drawn in section §5.

Page 2 of 13AUTHOR SUBMITTED MANUSCRIPT - FDR-100237.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Twist effects in quantum vortices and phase defects 3

2. Governing equations, basic definitions and twist interpretation

The Gross–Pitaevskii equation (1) is commonly employed to model and study quantum

vortex reconnection [13, 14, 15] under conservation of the Hamiltonian E = K + I,

given by the sum of kinetic energy K = 1

2

∫

∇ψ · ∇ψ∗ d3x and interaction energy

I = 1

4

∫

(1 − |ψ|2)2 d3x (where ψ∗ denotes the ψ complex conjugate). By using the

Madelung transformation ψ =
√
ρ exp(iθ), where θ is the phase of the wavefunction,

equation (1) admits fluid mechanical interpretation in terms of the standard continuity

equation and momentum equation. By taking real and imaginary parts we have

∂ρ

∂t
+
∂(ρuk)

∂xk
= 0 , (3)

ρ

(

∂uk
∂t

+ ul
∂uk
∂ul

)

= − ∂p

∂xk
+
∂τkl
∂xl

, (4)

where ρ = |ψ|2 is fluid density, u = ∇θ velocity, p = ρ2/4 pressure and τkl =
1

4
ρ ∂2 ln ρ

∂xk∂xl

(k, l = 1, 2, 3) the so-called quantum stress. This latter term is negligible with respect

to the quantum pressure term at length scales much larger than the healing length ξ,

that is of the order of the vortex core radius [14]. According to the normalization used

in equations (3)-(4) we take ξ = 1 and quantum of circulation Γ = 2π.

2.1. Standard definitions of geometric and topological properties

As physical singularities of vorticity, quantum vortices can be regarded as zero density

lines where phase is ill-defined. We identify the phase singularity with the vortex

centerline C. Let’s briefly recall the standard definition of the topological and geometric

quantities present in equation (2). The linking number between vortex i and j is given

by the double integral over the centerlines Ci and Cj, given by

Lkij =
1

4π

∫

Ci

∫

Cj

Xi −Xj

‖Xi −Xj‖3
· ( dXi × dXj) , (5)

where Xi and Xj denote the position vectors of two points, respectively on Ci and Cj

(i 6= j). Lkij is a topological invariant of the link. It takes only integer values and

provides a measure of the degree of linking of two (or more) components, contributing

to the “external” helicity of a link of two or more vortices.

The writhing number Wri contributes to the “internal” helicity through the self-

linking number SLi = Wri + Twi of each individual vortex. The writhe is defined

by

Wri =
1

4π

∫

Ci

∫

Ci

Xi −Yi

‖Xi −Yi‖3
· ( dXi × dYi) , (6)

where Xi and Yi denote two distinct points on the same curve Ci. Wri is a global

geometric property of Ci, taking real values. A plane curve has writhe always zero,

but sometimes even fully twisted space curves may have writhe equal to zero (when

positive and negative writhe contributions compensate). Since writhe takes into account

distortion, in general it is a good indicator of three-dimensional folding.
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Twist effects in quantum vortices and phase defects 4

Total twist Twi is the other global geometric ingredient of SLi. Its definition is

based on the concept of ribbon. A mathematical ribbon R = R(C,C∗) of width ǫ is

defined by prescribing a baseline curve C (one edge of the ribbon) of vector equation

X(s) and a second curve C∗ (the other edge of R) of vector equation X∗(s) given by

X∗(s) = X(s) + ǫÛ(s), where s is arc-length and Û denotes a normal unit vector to X.

Hence, for the i vortex of centerline Ci and ribbon Ri, the total twist number is defined

by the rate of rotation of Û around the base curve Ci, i.e.

Twi =
1

2π

∫

Ci

(

Û× dÛ

ds

)

· dXi . (7)

Total twist can be further decomposed Twi = Ti + Ni in terms of normalized total

torsion Ti and intrinsic twist Ni [8, 9], given respectively by

Ti =
1

2π

∫

Ci

τ(s) ds , (8)

and

Ni =
1

2π

∫

Ci

dΘ(s)

ds
ds =

[Θ]Ci

2π
, (9)

where τ = τ(s) is torsion of Ci, and Θ = Θ(s) the angle between Û and the principal

unit normal N̂ to Ci. Ti takes real values and is evidently zero for straight lines and

planar curves; Ni is an integer (if Ci is a closed curve) measuring the total number of

full turns of Û all along Ci relative to the Frenet triad on Ci; it can be visualized by a

twisted straight ribbon whose axis has zero torsion.

Since GPE vortices (and other physical phase defects) have no internal structure

and are fibered by smooth iso-phase surfaces (Seifert surfaces), we can unambiguously

evaluate twist by using directly eq. (7) (rather than 8–9). This is done by identifying the

rotation of Û with the rotation of one of these iso-phase surfaces around the defect line.

By introducing the concept of ribbon we implement a technique introduced in earlier

work [4] and applied again recently [5]. A reference ribbon Ri is defined by taking the

vortex axis Ci as the baseline curve of Ri and a second curve C∗
i on the given iso-phase

surface θ = θ̄ of our choice. The ribbon is then identified by the points of constant phase

that lie on the ǫ-portion of this iso-phase surface θ = θ̄ bounded by Ci and C
∗
i . Twist

is then measured by the full rotation of this ribbon around Ci, that by construction

amounts to the full rotation of Û around the defect line. A phase contour associated

with a planar vortex ring with Wr = 0 and T = N = Tw = 0 is visualized in the

(y, z)-plane at x = 0 in Figure 1. The phase discontinuity between θ = −π and θ = π,

where the value jumps (from blue to red, online) due to the multiple-connectivity of

the ambient space, is visible in the region exterior to the ring. Any choice of framing,

provided for example by Û in the θ = θ̄ = 0 direction is independent of both the

geometry of the curve and the intrinsic Frenet triad on Ci. The use of these iso-phase

Seifert surfaces allows computation of helicity via direct computation of its geometric

and topological ingredients and provides an alternative route to the computation of

helicity based on regularization techniques and high-order derivatives [12].
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Twist effects in quantum vortices and phase defects 6

phase has a component directed along C, and since u = ∇θ twist is directly related

to the axial component of the velocity along C. This makes twist effects observable

and measurable. Physical effects associated with phase are therefore all important and

cannot be neglected by simply reducing the evolution of a quantum vortex, or indeed

of any phase defect, to the motion of a line singularity. Particularly so, for instance,

in relation to helicity computation. Moreover, as in the classical case, the simultaneous

presence of a number of vortices determine a superimposition of the induced effects that

in the quantum case is evidenced by phase rotations. This has been investigated by

considering the simultaneous presence of two linked, planar vortex rings (constituting a

Hopf link) that determine a mutually induced phase twist on each individual vortex as

signature of the complex topology of the system [5].

3. Numerical method

GPE (1) is integrated numerically by employing the well-known second-order Strang

splitting Fourier spectral method [13], that has been consistently used for numerical

simulations of vortex reconnection [4, 14, 15, 16]. Its main advantages are that mass

conservation is enforced exactly and efficiency is guaranteed by Fast Fourier Transform

(FFT) algorithms. Exact mass conservation will be particularly important in the

diagnostics and interpretation of the results presented below. The main drawback

is that non-periodic initial conditions must be made triply periodic by doubling the

computational domain in each direction by introducing mirror vortices, a technique

that has been extensively employed in literature [13].

3.1. Initial conditions

We want to study the effect of twist under different initial conditions in the simplest

possible scenario in order to understand and explore the dynamical response of the

system to natural or artificial settings. For this purpose a planar vortex ring of radius

R = 8, circulation Γ = 2π and zero twist is placed parallel to the (x, y)-plane. As was

done in [5], the density distribution in the plane orthogonal to the vortex central axis is

prescribed by the high-order Padé approximation ρ0(r) =
a1r

2+a2r
4+a3r

6+a4r
8

1+b1r2+b2r4+b3r6+a4r8
(see [17]

for details), and the initial phase is eventually let to change by 2π in that plane (see

Figure 1). At t = 0 the resulting wave function is thus given by ψ0 =
√
ρ0 exp (iθ0).

Since the ring travels in the positive z-direction (upward), the ring is initially placed

below the plane z = 0.

The computational domain is given by [−15; 15] × [−15; 15] × [−15; 15] and it is

chosen to optimize the observed vortex evolution. The spatial discretization is the same

in each direction (as in former simulations [4, 5]), with resolution ∆x = ∆y = ∆z = ξ/3,

903 grid points in the physical domain (before mirroring) and time step ∆t = 1/80 =

0.0125.

To superimpose twist on the ring of Figure 1, we make rotate uniformly the phase
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Twist effects in quantum vortices and phase defects 9

ring. A straight, central vortex is immediately produced from the first time step, as a

result of a competition between barotropic and quantum pressure (see eq. 4). At the

beginning the diameter of this vortex (in terms of density distribution) is quite small,

but then it adjusts to the value given by the Padé approximation. Perturbations develop

quickly by corrugating the iso-density surfaces of the ring and the central vortex with

growing amplitude (see Figure 3b). Further tests confirm that the observed irregularities

are due to artificial conditions and the perturbations persist till a complete, progressive

relaxation of any density inhomogeneity. Test cases (not shown here) have been run

by placing an initially straight phase defect in a uniform background density ρ = 1, so

as to reproduce the same phase distribution given by a straight vortex. As discussed

earlier, a real vortex emerges showing an irregular iso-density surface from the very

first time step. We believe that this irregularity is due to the artificial forcing of the

numerical solution to the GPE equation. Evidently this forcing generate perturbations

that, similarly to sound emission, propagate away from the phase singularity and by

nonlinear interaction with other perturbations produce widespread density fluctuations.

Figure 4 shows initial condition and solution at t = 20, when a vortex ring and

a straight, central vortex are prescribed as initial conditions. In this case we observe

much milder and regular perturbations that that most likely are ascribed to real physical

effects due to the presence of axial flow. The induced perturbations due to the action of

an axial flow is a well-known mechanism that has been subject of intense study in the

context of classical vortex filament dynamics [18, 19, 20]. We believe that the oscillations

of Figure 4(b) are indeed due to the action of axial flows.

It is interesting to compare the intensity of the induced axial velocity ua evaluated

at points on the vortex ring core with the propagation speed U of the vortex ring,

and provide a crude estimate on possible instabilities based on direct inspection of

Figure 4(b). In our case we have Γ = 2π, vortex ring radius R = 8 and core radius

a ≈ ξ/2 = 1/2. The axial velocity ua is that due to the straight central vortex at points

on the vortex ring core placed at distance r = R− a from the z-axis; thus

ua ≡ uφ =
Γ

2π(R− a)
. (11)

The speed U is given by [21]

U =
Γ

4πR

(

ln
8R

a
− 1

2

)

. (12)

Hence, we have
ua
U

=
2

(

1− a

R

)

(

ln
8R

a
− 1

2

) ≈ 0.49 . (13)

Thus, the axial flow velocity is approximately half of the translation velocity of the

vortex ring, not a small contribution. From Figure 4(b) we identify n = 4 crests, so we

can estimate a wavelength λ = 2πR/n = 4π and a wavenumber k = 2π/λ = 1/2. From
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Twist effects in quantum vortices and phase defects 12

show some oscillations, but the irregularity is now typical of low amplitude and long

wavelength perturbations. We show that the velocity of the induced axial flow on the

vortex ring core is about half of the ring propagation velocity, with oscillations consistent

with neutral stability results. This behavior has been found consistently by similar test

cases analyzed for different initial conditions and twist values. Given that twist effects

are evidently related to mutual induction effects, one can argue that the direct relation

that has been established between the Non-Linear Schrödinger equation (NLSE) and

the Biot-Savart operator [22] can equally be extended to the Gross-Pitaeskii equation

employed here.

One other interesting aspect is the interplay of topology and physics. Since defects

have no internal structure, twist cannot be associated with any internal winding of

material lines. However it can be related to the uniform rotation of the iso-phase

surface that, in agreement with a recent analysis [23], influences the physics of the

system. Computational evidence [4, 5] and theoretical work [24, 25] demonstrate that

defects fibered by iso-phase surfaces (Seifert surfaces) have total linking number (i.e.

helicity) Lktot = 0. With reference to the case of Figure 3 we see that the initial twist

condition Tw = 1 artificially superimposed on the planar vortex ring (of Wr = 0) leads

to an inconsistency given by Lktot = 0 6= Wr+Tw = 1. In this case the emergence of the

second straight vortex (ofWr2 = 0 and Tw2 = 1) is therefore a necessary condition: the

infinitely long straight vortex being effectively linked with the vortex ring (of Wr1 = 0

and Tw1 = 1) contributes to total linking with Lk12 = Lk21 = −1 (according to relative

orientation), so that by making use of a result demonstrated in [26], we have then

Lktot = 0 = Wrtot + Twtot = Wr1 +Wr2 + 2Lk12 + Twtot = −2 + 2 . (15)

We should point out that induced twist does not necessarily imply generation of

additional phase singularities, as is evident when we consider the folding process of a

single quantum vortex loop, where the generation of new twist is naturally compensated

by the spontaneous production of writhe (see for instance [5]). In summary, we provide

evidence that not only twist is a physically relevant quantity associated with a velocity

field in the system, but since twist provides an imprint of linking, the topological

condition of zero helicity for the Seifert framing of phase defects implies the presence of

an additional kinetic potential, in analogy with the Aharonov-Bohm effect of quantum

mechanics, where the complex phase of a charged particle’s wave function is invariably

associated with the physical effects of an electromagnetic potential.
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