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Abstract
We compute simultaneously the translational speed, the magnitude and the
phase of a quantum vortex ring for a wide range of radii, within the
Gross–Pitaevskii model, by imposing its self preservation in a co-moving ref-
erence frame. By providing such a solution as the initial condition for the
time-dependent Gross–Pitaevskii equation, we verify a posteriori that the ring’s
radius and speed are well maintained in the reference frame moving at the com-
puted speed. Convergence to the numerical solution is fast for large values of
the radius, as the wavefunction tends to that of a straight vortex, whereas a con-
tinuation technique and interpolation of rough solutions are needed to reach
convergence as the ring tends to a disk. Comparison with other strategies for
generating a quantum ring reveals that all of them seem to capture quite well
the translational speed, whereas none of them seems to preserve the radius with
the accuracy reached in the present work.

Keywords: Gross–Pitaevskii equation, dark structures, quantum vortex rings,
self-preserving wavefunction, nonliner Schrödinger equation

(Some figures may appear in colour only in the online journal)

1. Introduction

Vortex rings have fascinated physicists since the times of Helmholtz [1] and Kelvin [2] and are
among the most important and most studied objects of fluid mechanics [3–6]. They are central
to superfluidity [7] and to the study of superfluid turbulence [8]. Rings have been observed
experimentally in superfluid helium [9, 10] as well as in Bose–Einstein condensates (BECs)
[11], whereas vortex-ring solutions and their dynamics have been obtained numerically in
trapped BECs [12–15].
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Figure 1. Different reference frames.

To complement the studies briefly outlined above, here we focus on the generation and
dynamics of dark quantum vortex rings free from trapping potentials, in a background super-
fluid that extends up to infinity and whose density goes to 1 as |x| →∞. As a model for
superfluidity we employ the Gross–Pitaevskii equation

Ψt =
i
2
∇2Ψ+

i
2

(
1 − |Ψ|2

)
Ψ, (1)

where Ψ is the wavefunction and |Ψ|2 its density. Other approaches have been used to study
vortex rings dynamics, for instance the vortex filament method [16] and the regularized
Biot–Savart law [17].

It is well-known that the only time-independent (nontrivial) solution of the Gross–Pitaevskii
equation (1) is the straight vortex, whose two-dimensional numerical approximation can be
computed quite easily and for which high-order Padé approximations exist [18].

With reference to figure 1, we aim at computing the wavefunction Ψ(x, t) that describes
a vortex ring of radius R whose axis passes through the origin of a Cartesian reference
frame x = (x1, x2, x3) and that travels along the direction x3 in a superfluid at constant
speed U.

Even though vortex rings are not stationary solutions of (1), they feature a constant speed
U which depends only on the radius R and thus the magnitude and phase of their wavefunction
remain constant in a reference frame that moves with the ring at speed U. According to [19],
when equation (1) is used, the speed U of a circular vortex line in a Bose condensate is

U(R) =
κ

4πR

[
ln

(
8R
ξ

)
− 0.615

]
, (2)

where κ is the quantum of circulation and ξ is the healing length, a measure of the vor-
tex core dimension. This result has to be regarded as the leading term in the asymptotic
expansion of the speed U(R) as R/ξ →∞ where the value 0.615 was obtained by numerical
integration. With the normalizations employed to derive (1), κ = 2π and ξ = 1, thus the ring
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speed U(R) is simply

U(R) =
ln (8R) − 0.615

2R
. (3)

As first proposed in [20], we change the reference frame to the one moving at constant speed
U with the vortex ring and introduce the change of variables

ψ(x1, x2, z) = Ψ(x1, x2, x3, t), z = x3 − Ut.

By doing so the ring lays in the plane z = 0 and since

∂

∂t
= −U

∂

∂z
and

∂

∂x3
=

∂

∂z

GPE (1) in the moving reference frame x′ = (x1, x2, z) becomes

−Uψz =
i
2
∇2ψ +

i
2

(
1 − |ψ|2

)
ψ (4)

and the ring is its (stationary) solution. We recall that, by Madelung transformation
ρ = |ψ|2 = f2 and u =∇ arg (ψ) =∇g, equation (1) can be formally recast in terms of the stan-
dard continuity equation and momentum equation of classical fluid dynamics for the unknowns
density ρ and velocity field u.

2. Possible approaches

The first attempt to compute numerical solutions of axisymmetric disturbances that are form-
preserving as they move through a Bose condensate and vanish with distance in all directions
from the center of the wave was carried out by Jones and Roberts [20]. As far as rings are con-
cerned, they obtained a continuous family of self-preserving solutions by imposing the speed U
in the range 0.4 � U < 0.69 and discovered that rings exist only for U < 0.62. In their study,
they were able to obtain reliable results for U � 0.4, whereas for U < 0.4, i.e. for large rings,
their number of degrees of freedom needed to be too large, and thus unaffordable, to obtain
results correct to three figures. Despite this remarkable work, the numerical generation of ini-
tial conditions made of rings in quantum fluids have never resorted to the approach reported in
[20], to the best of our knowledge.

Indeed, in the context of superfluids, researchers who needed the wavefunction of a vor-
tex ring of radius R to feed as initial condition to the GPE (1) have frequently adopted
naïve approaches based on the known three-dimensional extension along direction x3 of the
two-dimensional wavefunction of a single straight vortex [21], ΨSV(x) = fSV(s)eiθ, where

s =
√

x2
1 + x2

2, θ = arg(x1 + ix2), and fSV(s) =
√
ρSV(s) can be computed numerically or via

Padé approximations [18]. This approach has then become the most common [22]. In their
seminal work, Koplik and Levine [21] at any point x considered the plane passing through
the point and containing the axis of the ring. The ring then intersects this plane at two points
x±, once in the positive and once in the negative sense. With reference to figure 1, vectors
x, x+ and x− belong to the plane spanned by axes s and x3. The initial condition is then
Ψ(x, 0) = ΨSV(x− x+)Ψ∗

SV(x− x−), where Ψ∗ denotes the complex conjugate of the wave-
function. This effective two-dimensional system is a so called ‘vortex’ dipole and has been
investigated both numerically and experimentally [23]. Koplik and Levine observed that a sin-
gle vortex ring produced from this initialization translated indefinitely along its central axis
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due to its self-induced velocity field but the core oscillated slightly in time. According to their
comments, this was due to the fact that the initial wave function was only approximate and
did not have exactly the correct energy. In any case they verified that the value of the ring’s
velocity was in good agreement with the analytic result of Roberts and Grant [19]. We name
this approach ‘KL’ as it was first used by Koplik and Levine [21].

Something more sophisticated was proposed by [24] and recently applied to test a GPE
solver on an infinite domain [25]. With the goal of generating the initial wavefunction of a
ring, one can first compute the velocity field u(x) induced by a general vortex filament at each
position x by employing the Biot–Savart integral along the vortex centerline C

u(x) =
Γ

4π

∫
C

d�× r
|r|3 , (5)

where r is the vector from a generic position on the vortex centerline to the position x and
d� = t̂d	 is locally tangent to the vortex centerline and parallel to the local vorticity (according
to the right-hand rule that relates vorticity and circulation). Given the velocity field u(x), by
Madelung transformation, one can then integrate the equation u =∇g to get the phase g(x).
As far as the magnitude of the wavefunction is concerned, in absence of more sophisticated
strategies, this approach assumes fSV, that is the square of the density distribution of a single
straight vortex. For some specific tests on vortex rings see [25]. This approach is indeed very
time-consuming because of the Biot–Savart integral. However, for the case of a single vortex
ring, simplifications owing to the axisymmetric nature of the problem allow a fast determina-
tion of the phase, as detailed in section 3. We name this approach ‘BS’, as it is based on the
Biot–Savart law.

Caplan et al [26], although working with an equation slightly different from (1), namely

Ψt = i
[
A∇2Ψ+ S|Ψ|2Ψ

]
, (6)

determined analytically the phase of a steady-state solution and solved a stationary PDE for
the magnitude of the wavefunction in a co-moving frame [0,∞) × (−∞,∞) in direction z.
The differential equation was discretized in space by central finite differences along with the
modulus-squared Dirichlet boundary conditions, and the resulting nonlinear system was solved
by a Newton–Krylov method. The authors have published some quantitative results such as the
ring speed as a function of its radius and have made the code [27] freely available1. The healing
length corresponding to the normalizations employed to derive equation (6) is ξ =

√
−Ω/A,

where Ω plays the role of the frequency and is tantamount to the system’s chemical potential
[26]. Therefore, equation (6) reduces to (1) in the particular case A = 1/2, S = −1/2 and
Ω = −1/2.

In all the papers cited above, the translational speed of the vortex ring is in very good agree-
ment with the asymptotic value by Roberts and Grant (3). What we find surprising is that none
of the works reports a measure of the radius of a ring as a function of time as a check of
the preservation of the wavefunction in a reference frame moving with the ring. From some
preliminary tests, we have realized that the radius of the ring can change considerably in time,
when evolving through the GPE, even though its translational speed remains in good agreement
with (3).

Here we aim at obtaining a very accurate wavefunction for a vortex ring such that both the
radius and the speed are maintained in time. Moreover, we check the goodness of the method

1 NLSEmagic3D v013, a package of C and MATLAB script codes which simulate the nonlinear Schrödinger equation
in one, two, and three dimensions http://nlsemagic.com/
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by comparing sections of the magnitude and phase of the wavefunction in a reference frame
moving with the ring.

3. Phase of the ring wavefunction according to the Biot–Savart law

In this section we derive the phase of the wavefunction for a ring of radius R that at time
t = 0 belongs to the plane x3 ≡ 0 and whose center is at x = (0, 0, 0). We exploit the axisym-
metric nature of a vortex ring (see figure 1), to first compute the velocity field u(x) by the
Biot–Savart integral (5), and then the phase from ∇g(x) = u(x). We discover that, according
to this model, the phase is a universal function of the spatial variables made dimensionless by
R. Such a phase, complemented by a density distribution ρ(x) = [ f (x)]2, provides the initial
wavefunctionψ(x) = f(x)eig(x) of the vortex ring at time t = 0 to feed as initial condition for the
GPE (1).

Let us consider one plane of symmetry, say the plane (s, x3) with s =
√

x2
1 + x2

2, of the

reference frame x′′ = (s, y, x3) where the second coordinate y is orthogonal to both s and x3

(see again figure 1). The velocity induced by the ring at a point P(s, 0, x3) has three components
u = (u1, u2, u3). However, owing to the symmetry, we expect u2 to be zero (this is indeed proved
below, see (8c)). Since we consider a vortex ring of radius R centered at the origin, the points
of the vortex line are described in x′′ by x′′ = (s, y, x3) = (R cosα, R sinα, 0) and the local tan-
gential vector to the vortex ring is t̂ = (− sinα, cosα, 0). The general vector r from a generic
position on the vortex centerline to the position (s, 0, x3) is r = (s − R cosα,−R sinα, x3), thus

|r| = Rr̃,

where

r̃ =

√( s
R
− cosα

)2
+ sin2 α+

( x3

R

)2

=

√( s
R

)2
+
( x3

R

)2
+ 1 − 2

( s
R

)
cosα.

Moreover,

t̂ × r = (x3 cosα, x3 sinα, R − s cosα).

After observing that d� = t̂d	 = t̂Rdα and that Γ = 2π, the Biot–Savart integral (5) becomes

u(s, 0, x3) =
Γ

4π

∫
C

d�× r
|r|3 =

1
2

∫ π

−π

(x3 cosα, x3 sinα, R − s cosα)
R3r̃3

R dα. (7)

By recasting component-wise and by observing that r̃(α) is an even function of the angle α,
and thus cosα/r̃3 is even whereas sinα/r̃3 is odd with respect to α, we get

u1(s, 0, x3) =
1
2

∫ π

−π

x3 cosα
R2r̃3

dα =
x3

R2

∫ π

0

cosα
r̃3

dα (8a)

u2(s, 0, x3) =
1
2

∫ π

−π

x3 sinα
R2r̃3

dα = 0 (8b)

u3(s, 0, x3) =
1
2

∫ π

−π

R − s cosα
R2r̃3

dα =
1
R

∫ π

0

1 − s
R cosα
r̃3

dα. (8c)
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These velocity components can be evaluated, by a numerical quadrature formula, on an arbi-
trary fine grid in (s, x3) ∈ [0,+∞)2. In fact, s � 0 and u1 is odd with respect to x3, whereas u3

is even with respect to x3. This integration can be performed once and for all, and stored in a
file.

The phase g(s, 0, x3) is then obtained by integrating u3 along direction x3, i.e.

g(s, 0, x3) = g(s, 0, 0) +
∫ x3

0
u3(s, 0, x̃3)dx̃3. (9)

Since u1(s, 0, 0) ≡ 0 (see (8a)), from

g(s, 0, x3) = g(0, 0, x3) +
∫ s

0
u1(̃s, 0, x3)ds̃, s < R

we have g(s, 0, 0) ≡ g(0, 0, 0) for s < R and we fix g(0, 0, 0) = 0. Then,

g(s, 0, x3) = g(s →∞, 0, x3) −
∫ ∞

s
u1(̃s, 0, x3)ds̃, s > R

and therefore g(s, 0, 0) ≡ g(s →∞, 0, 0) for s > R and we fix g(s →∞, 0, 0) = π, due to the
jump at s = R, where the phase defect occurs. At x3 = 0 we thus have

g(s, 0, 0) =

{
0 if 0 � s < R

π if s > R.
(10)

In practice, given the conditions (10), one can integrate (9) in dx̃3 at every s 
= R.
If we introduce the dimensionless variables

s′ =
s
R

and x′3 =
x3

R
,

and integrate in direction x′3 to get the phase, we have

g(s′, 0, x′3) =
∫ x′3

0
u3(s′, 0, x̃′3)R dx̃′3 =

∫ x′3

0

∫ π

0

1 − s′ cosα[
r̃′(α, s′, x̃′3)

]3 dα dx̃′3,

being

r̃′(α, s′, x′3) =
√

s′2 + x′23 + 1 − 2s′ cosα.

This means that the phase g computed by employing the Biot–Savart law is a universal
function of the dimensionless variables s′ and x′3, independent of the ring radius R. Clearly
g(s′, 0,−x′3) = −g(s′, 0, x′3), thus only data for s′ � 0 and x′3 � 0 has to be computed and
stored. Figure 2 reports contour lines of the universal function g(s′, 0, x′3).

Once g(s′, 0, x′3) is known numerically, we can compute g(x1, x2, x3) at each point of the
original domain by interpolation, after observing that

s′ =

√
x2

1 + x2
2

R
and x′3 =

x3

R
.

We notice that even though the phase of the wavefunction determined by Biot–Savart integral is
a universal function of the dimensionless variables s′ and x′3, the amplitude of the wavefunction
remains to be determined.
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Figure 2. Phase g(s′, 0, x′3) of the wavefunction of a vortex ring as computed by
employing the Biot–Savart law. The core of the vortex is located at s′ = 1, that is s = R.

4. A new approach for the simultaneous determination of the translational
speed, magnitude and phase of the ring wavefunction

With the goal of determining the wavefunction ψ = feig, we consider an axisymmetric plane
(see figure 1), and rewrite equation (4) in cylindrical coordinates (s,φ, z) after noticing that
ψφφ/s2 ≡ 0 because the geometry is axisymmetric and thus there is no dependence on the
angle φ

−Uψz =
i
2

[
ψss +

1
s
ψs + ψzz + (1 − |ψ|2)ψ

]
. (11)

Owing to this axisymmetry, we seek the solution of a stationary vortex ring in the form
ψ(s, z) = f(s, z)eig(s,z), where both functions f (s, z) =

√
ρ(s, z) � 0 and g(s, z) are real and

unknown. By inserting ψ = feig into (11), we end up with

−U fz − iU f gz =
i
2

[
f ss + 2i f sgs + i f gss − f g2

s +
1
s

( f s + i f gs)

+ f zz + 2i f zgz + i f gzz − f g2
z + (1 − f 2) f

]
.

(12)

Equation (12) is complex and after rearranging it in the form

2U f gz − 2iU fz + f ss + 2i f sgs + i f gss − f g2
s +

1
s

( f s + i f gs)

+ f zz + 2i f zgz + i f gzz − f g2
z + (1 − f 2) f = 0,

(13)

we can split the equation into real and imaginary parts obtaining

7
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2U f gz + f ss − f g2
s +

f s

s
+ f zz − f g2

z + (1 − f 2) f = 0 (14a)

− 2U fz + 2 f sgs + f gss +
f gs

s
+ 2 f zgz + f gzz = 0. (14b)

We recall that the two scalar equations (14a) and (14b) are in the unknowns f and g, thus the
system is well posed. Since s � 0 is the radial variable, we expect both f and g to be even with
respect to s, whereas we expect f even with respect to z and g odd with respect to z because
the GPE is time-reversible, i.e. when time is reversed the ring cannot be distinguished from the
ring moving with opposite velocity. This is in agreement also with the asymptotic expansions
of axisymmetric waves reported in [20], where the real part of the wavefunction is even and
the imaginary part is odd with respect to the direction of motion. Due to these symmetries, we
can solve equations (14a) and (14b) in the domain (s, z) = (0,+∞)× [0,+∞), where s cannot
be zero as it appears in some denominators of the equations. Moreover, the same symmetries
allow us to impose conditions on the derivatives at s = 0 and z = 0. In order to set the vortex
core correctly, we impose a phase defect, i.e. a change in the phase g(s, 0) at s = R, but instead
of imposing f(R, 0) = 0 (as it is usually done in these cases) we let f(R, 0) free to take whatever
value and verify a posteriori that f(R, 0) is indeed the global minimum of f. More specifically
we have the following mixed Dirichlet–Neumann boundary conditions

f (s →∞, z) = f (s, z →∞) = 1

f s(s → 0, z) = f z(s, 0) = 0, (15a)

and

g(s, 0) =

{
0 if 0 < s < R

π if s > R
, g(s →∞, z) = g(s, z →∞) = π,

gs(s → 0, z) = 0. (15b)

After a spatial discretization by fourth-order finite differences, equations (14a) and (14b), sub-
ject to boundary conditions (15a) and (15b), become a nonlinear system of algebraic equations
in the form {

F1( f , g; U) = 0

F2( f , g; U) = 0
(16)

and it can be solved by an iterative method once the translational speed U is provided. Clearly,
in (16) with abuse of notation the unknowns f and g are vectors which approximate the corre-
sponding functions at the grid points. After providing an initial guess for both f and g derived
from that of the straight vortex, it is possible to start the exact Newton iteration on the cou-
pled nonlinear system (16). During this process the ring speed U remains constant. We have
observed that very small changes in the values of U can move the minimum of f(s, 0) in the
neighborhood of s = R. From the physical point of view, the vortex core is correctly modeled
if the density ρ = f2 tends to zero where the phase defect is located. For this reason, we opti-
mize the process by finding also the value of U which makes the position of the minimum of
ρ to coincide with the phase defect, again up to a certain tolerance. The optimal ring speed
is found by a simple bisection method. This procedure allows us to fix the ring radius R and
find its translational speed together with the magnitude f and the phase g of its wavefunction

8
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Figure 3. Magnitude f(s, z) (left) and phase g(s, z) (right) of the wavefunction for dif-
ferent values of radius R. For a better understanding, colors and scales are not consistent
through the plots: in the left column, dark is a value close to 0 and bright is a value close
to 1, in the right column, dark is a value close to 0 and bright is a value close to π.

ψ = feig. More details on the numerical solution of system (16) are reported in appendix A.
The code is freely available upon request to the corresponding author.

5. Results

We implemented the method described above in GNU Octave and tested a wide range of radii
and verified that our code converges in all case. However, convergence is faster for R� 6 as
in this range the solution does not differ much from that obtained from a straight vortex. For
R � 6 convergence was slower and harder to achieve, because the initial guess was far from
the solution. To accelerate the process, we applied a continuation method over the value R
and we gradually decreased the radius feeding as initial guess for the Newton iteration the

9



J. Phys. A: Math. Theor. 54 (2021) 015301 S Zuccher and M Caliari

Figure 4. Radius (left) and vertical position (right) of the vortex ring as a function of
time for different approaches, comparisons for R = 8 (top row) and R = 4 (bottom row).

Figure 5. R = 8, comparison between present approach (circles) and Caplan et al [26]
(squares), t = 0 (red), t = 30 (blue).

converged solution with a slightly larger radius. We were also able to achieve any desired
spatial resolution, by initially solving on a coarse grid and gradually refining and interpolating
the previous solution.

Figure 3 shows the magnitude f and the phase g of the wavefunction ψ = feig obtained for
decreasing values of the radius from R = 8 to R = 1, in the plane (s, z) for z � 0. It is clear that
for large R the magnitude resembles that of a straight vortex whereas the phase is deformed
as seen in figure 2 for the Biot–Savart approach. Notice that the phase as a function of the
dimensionless variables s/R and z/R is not a universal function as one might conclude on the
basis of the Biot–Savart integral (see section 3). As the radius decreases, however, the ring
tends to a disk (see the case R = 1), i.e. the magnitude f(s, 0) is very small for 0 < s � R and
the isolines of f tend to become almost parallel to the s-axis. We were able to compute ‘rings’
up to R = 0.35, however we consider the cases R < 1 not physical as the healing length, which
is a measure of the vortex core size, in our cases is ξ = 1.

10
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Figure 6. R = 4, comparison between present approach (circles) and Caplan et al [26]
(squares), t = 0 (red), t = 30 (blue).

Table 1. Translational speed U of the vortex ring as a function of the radius R,
comparison between present results and Jones and Roberts (1982) [20].

R U, present U, reference [20]

3.36 0.403 19 0.40
2.31 0.500 71 0.50
1.82 0.551 08 0.55
1.06 0.600 49 0.60
1.00 0.602 76 —
0.50 0.614 03 —
0.40 0.615 15 —
0.35 0.615 19 —

Figure 7. Translational speed U of the vortex ring as a function of the radius R, com-
parison between present results (empty circles) and the asymptotic values (3) (solid
line).

Figure 4 summarizes comparisons between the different approaches described in section 2
for R = 8 and R = 4. As mentioned above, while the translational speed of the ring is gener-
ally well-captured by any method, especially for large values of time t, the radius as a function
of time can change considerably. According to figure 4, our approach guarantees the best
preservation of both radius and ring speed as a function of time.

Since both the approach and the results by Caplan et al [26] are the closest to ours, in
figures 5 and 6 we compare specific profiles of the magnitude f of the wavefunction at t = 0

11
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Figure 8. Comparison of the evolution of f2 (isosurface of value 0.01) corresponding
to different initial approximations of two linked rings originally placed in orthogonal
planes. Zuccher and Ricca (2017) [30], left column; present, right column.
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and t = 30. Results by Caplan et al were obtained with the package NLSEmagic3D [27], by
setting with A = 1/2, S = −1/2 and Ω = −1/2 and spatial resolution Δ = 0.25 comparable
with our mean spatial resolution, and leaving all the other parameters of the code unchanged.
We marched in time with the method described in [25], which is a time splitting finite differ-
ence method in an unbounded domain mapped to (−1, 1)3. Again, our approach guarantees a
better preservation of the initial condition independently of the radius R, whereas the approach
employed in [26] seems to behave relatively well only for large R.

It is worth to outline the main differences between these two approaches. As explicitly
described in [28], Caplan et al were not able to fix exactly the ring radius at the desired value,
being it simply given by the initial iterate, and this explains why their average value of R(t) in
figure 4 for the case R = 4 is slightly below 4. Moreover, they solved the problem in a truncated
domain and imposed modulus-squared Dirichlet boundary condition (see [29]), thus the abso-
lute value of the solution on the numerical boundaries remains fixed with time. This explains
also the reason why our profiles f(0, z) differs from theirs, reaching values greater than 1.
Values of the density larger than one along the ring axis were found also by other authors (see
figure 1 in [20]).

We were able to reproduce table 1 of [20] and to find rings of radius smaller than 1.06, as
reported in table 1. Notice that we set a target radius and find U, whereas in [20] they set U and
find R. Moreover, they provide at maximum three significant digits and do not show results for
U < 0.4, i.e. for large rings. Despite these little differences, the agreement with previous data is
very good. Notice that for R < 1.06 we still find rings whose speed, however, seems to reach an
upper limit around Umax ≈ 0.6152 above which no rings seem to exist. This is indeed in com-
plete agreement with the findings of Jones and Roberts (1982) [20], who did not find rings for
U � 0.62.

By changing the speed of the ring so as to fix the radius at the desired value, with our code
we are able to obtain the function U = U(R), which is reported in figure 7. We observe very
good agreement with (3) for R� 6, an acceptable agreement in the range 2 < R < 6, whereas
our results depart from the asymptotic ones as R → 0.35. This was expected as they was derived
in the limit case R →∞.

In order to check possible differences in the time evolution of initial conditions generated by
different strategies in a full three-dimensional simulation, in figure 8 we compare, at different
simulation times, the results presented in [30] (left column) with the initial condition generated
by multiplying the wavefunction of two orthogonal rings obtained with the present approach
(right column). The initial setting is the same as in [30], i.e. two rings of radius R0 = 8 are
placed on mutually orthogonal planes, one centered at (0.5, 4.5, 0) in the x–y plane and one
at (0,−4, 0) in the y–z plane. This asymmetric initial configuration is used to avoid possible
simultaneous reconnections. From figure 8 it is clear that the general picture of the physics of
the reconnection process with a successive cascade of smaller rings seems unchanged, however
the time-scale and the details of the phenomenon are different. In particular, the dynamics of
the approaching and departing phases of vortex lines [31] might be affected by the use of the
correct initial condition.

6. Concluding remarks

We have developed a numerical procedure to compute the magnitude and phase of a quantum
ring such that its translational speed and radius remain constant in time. This is a long-standing
issue and many authors have tackled the problem. Despite the different approaches developed,
none of the previous works have shown whether the quantum ring is preserved when provided
as initial condition to the Gross–Pitaevskii equation. In the present study we have proved that
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our numerical solution is self-preserving in time. While in previous literature the smallest val-
ues of the ring radius were around R ≈ 1, we have been able to reach R = 0.35 and have found
that as R → 0.35 the translational speed seems to reach an upper limit Umax ≈ 0.6152, above
which no rings exist. The code is freely available and usable upon request to the corresponding
author.

Appendix A. Mapping

The physical domain extends up to infinity, both in s and z. In order to numerically impose the
correct boundary conditions at infinity, we map the domain [0,+∞]2 into [0, 1]2 by a change
of variable. Let be ϕ(σ, ζ) = f(s, z) and γ(σ, ζ) = g(s, z), with

σ =
4

3π
arctan

( s
R
− 1

)
+

1
3

(A.1)

and

ζ =
z

R + z
, (A.2)

such that

s = R

(
1 + tan

(
3
4
πσ − π

4

))
(A.3)

and

z = R
ζ

1 − ζ
. (A.4)

With this change of variables, the vortex core is located in (1/3, 0), independently of the radius
R. Therefore, the derivatives of the mapping and of the unknowns become

σs =
4

3πR
cos2

(
3
4
πσ − π

4

)
, (A.5)

σss = − 8
3πR2

sin

(
3
4
πσ − π

4

)
cos3

(
3
4
πσ − π

4

)

= −σs

R
sin

(
2

(
3
4
πσ − π

4

))
, (A.6)

ζz =
(1 − ζ)2

R
, (A.7)

ζzz = −2
(1 − ζ)3

R2
= − 2

R
ζz(1 − ζ), (A.8)

f s = ϕσσs, f ss = ϕσσσ
2
s + ϕσσss, (A.9)

gz = γζζz, gzz = γζζζ
2
z + γζζzz, (A.10)

whereas equations (14a) and (14b) become
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2Uϕγζζz + ϕσσσ
2
s + ϕσσss − ϕ(γσσs)2 +

ϕσσs

R
(
1 + tan

(
3
4πσ − π

4

))
+ ϕζζζ

2
z + ϕζζzz − ϕ

(
γζζz

)2
+ (1 − ϕ2)ϕ = 0 (A.11a)

and

− 2Uϕζζz + 2ϕσσsγσσs + ϕ
(
γσσσ

2
s + γσσss

)
+

ϕγσσs

R
(
1 + tan

(
3
4πσ − π

4

))
+ 2ϕζζzγζζz + ϕ

(
γζζζ

2
z + γζζzz

)
= 0, (A.11b)

with boundary conditions

ϕ(1, ζ) = ϕ(σ, 1) = 1,

ϕσ(σ → 0, ζ) = ϕζ (σ, 0) = 0 (A.12a)

and

γ(σ, 0) =

⎧⎪⎨
⎪⎩

0 if 0 < σ <
1
3

π if σ >
1
3

, γ(1, ζ) = γ(σ, 1) = π,

γσ(σ → 0, ζ) = 0. (A.12b)

After setting a grid in (0, 1] × [0, 1] with step sizes hσ and hζ , respectively, the derivatives of
the unknowns are discretized by fourth-order finite differences. Dirichlet boundary conditions
are imposed by the penalty method, while homogeneous Neumann boundary conditions are
imposed by the introduction of ghost nodes at σ = 0 and ζ = −hζ . The values of the unknowns
at the ghost nodes are recovered in terms of values at the grid points, by imposing that the
approximated first derivatives are zero. Those values are then inserted into the stencils defining
of the finite differences employed in the discretization of the differential operators in (A.11a)
and (A.11b). Finally, the arising nonlinear system{

Φ1(ϕ, γ; U) = 0

Φ2(ϕ, γ; U) = 0
(A.13)

is solved by the exact Newton method. The first guess ϕ0 for the magnitude is simply obtained
from that of the straight vortex. A first guess γ0 is not needed in Φ1(ϕ, γ; U) = 0, indeed its
derivatives γ0

σ and γ0
ζ appear in equation (A.11a) and as their guess we use the results of the

Biot–Savart approach (see (8a) and (8c)), i.e.

γ0
σσs = g0

s =
z

R2

∫ π

0

cosα[(
s
R − cosα

)2
+ sin2 α+

(
z
R

)2
]3/2 dα, (A.14)

γ0
ζ ζz = g0

z =
1
R

∫ π

0

1 − s
R cosα[(

s
R − cosα

)2
+ sin2 α+

(
z
R

)2
]3/2 dα. (A.15)
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In any case, we name γ0 the phase whose derivatives are γ0
σ and γ0

ζ . Therefore, we solve
equationΦ1(ϕ, γ0; U) = 0 in (A.13) (nonlinear inϕ) for the unknownϕ, thus gettingϕ1. Then,
we insert it into equation Φ2(ϕ1, γ; U) = 0 in (A.13) (linear in γ) and solve it for the unknown
γ, thus getting γ1. In this way we have a first guess (ϕ1, γ1) for the coupled system (A.13).

The discretization grid is chosen so as to have the phase defect located in the middle of two
grid points. In this way, it is possible to check at each nonlinear iteration whether the minimum
of the density along ζ = 0, which should correspond to the phase defect, occurs in the middle
of the two grid points 1/3 − hσ/2 and 1/3 + hσ/2, up to a certain tolerance. If it is not the
case, the speed U is corrected, taking into account that the speed is a decreasing function of
the radius of the ring and the system with the new speed is solved.
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