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We describe the first DNS-based measurement of the complete mean response of a turbulent channel
flow to small external disturbances. Space-time impulsive perturbations are applied at one channel
wall, and the linear response describes their mean effect on the flow field as a function of spatial and
temporal separations. The turbulent response is shown to differ from the response of a laminar flow
with the turbulent mean velocity profile as the base flow. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2409729�

Even though a turbulent flow is a nonlinear phenom-
enon, a linear response �either in the frequency or the time
domain� can be defined if perturbations are small enough.
We discuss in this paper the linear response of the velocity
vector in the whole flow field and in time to small external
perturbations applied at one wall. The vectorial nature of
wall perturbations makes the response a tensorial quantity,
that we denote with Hij to indicate the ith component of the
response to an impulsive wall forcing in the jth direction.
Wall-based forcing is particularly meaningful if the response
has to be used in the context of turbulent flow control, which
is the background of the present study; applying the required
control at the wall is indeed the easiest configuration in a
realistic flow-control setup. In view of the flow-control pos-
sibilities offered by modern MEMS technology, the linear
response function can help considerably in controller design,
by answering such a basic question as which effects are to be
felt here and now if a wall actuator has been moved there
and a given time ago.

The important role of linear processes in the self-
sustaining �nonlinear� turbulence cycle which takes place
near the wall has been recently emphasized.1 Linear control
has already proven itself successful in turbulent flows.2 Be-
wley and co-workers are among the most active groups in
the field of linear optimal controller design for turbulent
flows.3–5 They employ Kalman filters and matrix Riccati
equations, which require the state equations of the system to
be known. The �mean� state equations are not available,
however, for a turbulent flow, and must be replaced by a
linearized laminar model; in addition, the “system noise” is
treated as white noise by their control design method, and the
available information about the actual turbulence statistics
does not enter the model. Hence these results, encouraging as
they are, build on an essentially linearized laminar analysis.
Replacing the parabolic Poiseuille velocity profile with the
turbulent mean profile, as done by Högberg, Bewley, and
Henningson,4 certainly improves the effectiveness of the
controller, but the �mean� effects of turbulent mixing, which
we aim at describing via the response function, still remained
unaccessible to controller designers. The laminar linearized
response has been recently illustrated with full detail.6 The

differences between this laminar response and the mean
input/output response of an actual turbulent flow will be dis-
cussed further down here.

Unfortunately, the obvious definition of an instantaneous
linear response is not as useful as might be hoped in the
context of turbulence; such a response is bound to exhibit
temporal divergence, owing to the chaotic nature of the flow.
A mean response can however be given a precise meaning
and measured, either experimentally or numerically. One pa-
per which pioneered the approach is that by Hussain and
Reynolds,7 where the response was experimentally measured
in the frequency domain at a given separation and for a few
frequencies.

A few years ago, Quadrio and Luchini8 proposed a
method to compute the linear impulse response function of a
wall-bounded fully developed turbulent channel flow to per-
turbations applied at one wall. Following that successful
proof-of-principle, we proceed here to describe and charac-
terize the complete response function tensor, measured
through a set of purposefully carried out direct numerical
simulations �DNS� of a turbulent channel flow. The impact
that the availability of such response function will have in
the field of turbulence control is the subject of ongoing work,
and it has been preliminarily addressed by Luchini, Quadrio,
and Bewley,9 who have been able to demonstrate a controller
based on Wiener filtering and the present response function.

Let us consider an indefinite plane channel, bounded by
two walls parallel to the homogeneous directions x1 �stream-
wise� and x3 �spanwise� and located at x2=0 and x2=2h. The
velocity components are u1, u2, and u3. To define an impulse
response tensor, we input to the system an infinitesimal wall
velocity perturbation wj�x1 ,x3 , t��uj�x1 ,0 ,x3 , t� given by

wj�x1,x3,t� = � j��x1���x3���t�, j = 1,2,3 �1�

with � denoting Dirac’s delta function. The output to be mea-
sured is the mean effect of this perturbation on the velocity
field throughout the channel at all subsequent times. The
impulse-response tensor Hij so obtained relates the mean lin-
ear response of the turbulent flow to a generic input wj via
the convolution
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ui�x1,x2,x3,t� =� Hij�x1 − x1�,x2,x3 − x3�,t − t��

�wj�x1,x3,t�dx1�dx3�dt�. �2�

Since turbulence fluctuations are large compared to the
amplitude � j of the external perturbation, which must be
small enough for the response to be linear and the relation
�2� to be valid, the definition of H cannot be of direct use for
its actual measurement. However, an ensemble average can
be used conceptually to define the mean response over re-
peated applications of the impulsive forcing.

Our first attempt to calculating H has been similar to that
employed by Hussain and Reynolds,7 i.e., working in the
frequency domain: a DNS of a turbulent channel flow is
performed, where the boundary condition is

wj�x1,x3,t� = � j sin�k1x1�sin�k3x3�sin��t�, j = 1,2,3.

Once a suitably small amplitude12 � j is chosen �which in
general depends on the forced component�, and frequency �
and wave numbers k1 and k3 are given, a phase-locked aver-
age allows the deterministic effect of the perturbation to be
separated from the turbulent noise with reasonable values of
the signal to noise ratio �S/N�. However this numerical ex-
periment only yields the response function in a single point
of the 3D space �k1 ,k3 ,��, and we soon realized that the
repetition of the computation for a number of frequencies
and wave numbers large enough to yield a reasonably com-
plete characterization of Hij would have been impractical.

Then we turned our attention to the direct use of �1� as a
boundary condition, with a suitably small amplitude � j. From
a computational viewpoint, the ensemble average can be re-
placed by an average over periodic repetitions well separated
in time, and the complete response function is obtained at
once. We again realized early that this too was going to be an
unaffordable simulation, whereas impulsive forcing provides
in one shot the same amount of information as many sinu-
soidal simulations; it does so at the expense of larger nonlin-
ear effects. The correspondingly smaller allowed � j implies a

smaller S/N ratio, and the averaging time required to bring
S/N within reasonable limits becomes unforgivably long.

We eventually realized that the best of both worlds could
be obtained by resorting to statistical correlation as a method
for the measurement of the impulsive response. It is well
known from signal theory that, when a white noise �i.e., a
delta-correlated signal� is passed through a linear system, the
correlation between input and output is proportional to the
impulse response of the system. We thus adopted an indepen-
dently generated random signal as our wall forcing, and ob-
tained at once the whole space-time dependence of the im-
pulse response by computing such a correlation.

In our method a DNS is performed with a zero mean
white-noise signal �the output of a random-number genera-
tor� as the boundary condition and the space-time correlation
between this boundary condition �input� and the whole flow
field �output� is accumulated. Since the applied random sig-
nal is uncorrelated to the turbulent fluctuations, the latter will
be averaged out just as in phase-locking, and the determin-
istic response will progressively emerge while the simulation
runs. Moreover, the forcing power is uniformly distributed
over time and space, as opposed to what occurs in impulsive
forcing, and the amplitude can be as large as with sinusoidal
forcing.

The numerical simulations are carried out with our DNS
pseudospectral solver, whose characteristics have been de-
scribed elsewhere.10 Of particular relevance here is the abil-
ity of the code to run in parallel with high efficiency. The
Reynolds number is Re�=180 based on the friction velocity
and half the channel width. The domain size is Lx=4�h and
Lz=4.2h, so that 192 and 128 Fourier modes �before dealias-
ing� in the streamwise and spanwise directions, respectively,
as well as 128 point in the wall-normal direction, are re-
quired to match the commonly employed spatial resolution.11

Peculiar to the present simulations is the extremely long in-
tegration time, about 105 viscous time units, required to ex-
tract the deterministic response from the turbulent noise.
This time interval is more than one order-of-magnitude
larger than what is typically employed to obtain converged
low-order statistics of the turbulent flow. The correlation is
computed from products in spectral space whenever pos-

FIG. 1. �Color online� Effect of the white-noise power spectral densities � j

on the mean friction coefficient Cf, for different components of the wall
random forcing wj. Cf ,0 is the friction coefficient of the reference flow with
no-slip boundary conditions.

FIG. 2. �Color online� Variation with x2 /h of the absolute-value maximum
of H12/�2 in wall-parallel planes. The figure refers to H12 at t+=30.
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sible; its full y behavior, as well as 81 time separations from
t+=0 to t+=64 are recorded. To minimize disk space require-
ments, a slightly reduced set of 64 streamwise and 84 span-
wise Fourier modes is analyzed.

A key step towards the measurement of Hij is the choice
of the amplitude � j of the white noise applied at the wall,
which must be empirically determined based on the require-
ment that it may yield a linear response. A preliminary esti-
mate can be obtained by observing whether or not the forc-
ing alters the time-mean value of the wall friction. This is
shown in Fig. 1. Starting from the largest � j for which �sepa-
rately for each forcing component� numerical stability is pre-
served, we progressively halve the amplitude, and observe
how the modifications of the mean friction induced by the
nonhomogeneous boundary condition becomes negligible;
this happens only for the smallest values of � j included in the
figure.

An actual linearity check is shown in Fig. 2, where for a
time delay of t+=30 the maximum absolute value of H12/�2

in wall-parallel planes is plotted as a function of x2 /h. Lin-
earity requires the curves at different �2 to overlap. This is
the case for the two smallest values of �2, at least in the
region of maximum response. At larger x2 /h the curves do
not collapse anymore but this is expected, since the back-
ground noise overwhelms the deterministic part of the re-
sponse and the noise level is different for the various simu-
lations �run for the same averaging time�.

Having assessed linearity, and before turning to illustrate
the spatio-temporal behavior of Hij, we devote a last prelimi-
nary consideration to the response at t=0. The impulse re-
sponse to w2 includes a potential component, that can be
computed analytically by solving the Laplace equation for
the kinetic potential ��x1 ,x2 ,x3� between two indefinite
plane walls. The wall-normal derivative �2� has the bound-
ary condition �2��x1 ,0 ,x3�=��x1���x3�. After Fourier-
transforming, the problem separates into one-dimensional
problems for each pair of wave numbers k1 and k3. Its ana-
lytical solution reads

�̂�x2� =
cosh���2 − x2��

� sinh�2��
, �3�

where �2=k1
2+k3

2.
In Fig. 3 the analytical solution �3�, represented in physi-

cal space, is compared with H12 measured in the turbulent
flow via the correlation method and shown at t=0. A sub-
stantially good quantitative agreement can be remarked, ex-
cept for the lowest contour levels, where the residual noise
becomes apparent in the turbulent response. Despite the sin-
gular nature of the potential component of the response,
which manifests itself in a spike in the numerically measured
correlation, this singular component is faithfully reproduced
by our DNS, in which a delta-correlated boundary condition
is used for w2, and the correlation between this boundary
condition and the whole velocity field is accumulated over
time.

FIG. 3. �Color online� Streamwise derivative �1� at x2 /h=0.1 �shaded con-
tours� of the kinetic potential, given by Eq. �3�, compared to H12 at t=0 �line
contours�. Levels at ±0.02%, 0.01%, 0.005%, and 0.0025% of the
maximum.

FIG. 4. �Color online� Decay rate of the absolute maximum value of H12.
Comparison between the full turbulent response, the laminar response based
on the turbulent mean profile, and the laminar response based on the Poi-
seuille parabolic profile.

FIG. 5. Side-by-side comparison of
H12 for the laminar response �top�, the
pseudoturbulent response �middle�,
and the full turbulent response �bot-
tom�. Isosurfaces at ±0.7% of the
maximum, negative values in light
gray �enhanced online�.
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We now move on to consider the spatio-temporal struc-
ture of the full tensor Hij. We shall try to emphasize the
differences between the computed turbulent response and the
“laminar” response employed until now in feedback flow-
control optimization. To be precise, two kinds of linearized
response have been previously considered by other authors:
the solution of linearized Navier-Stokes equations about Poi-
seuille flow and the same solution obtained by using the
actual turbulent mean velocity profile as the base flow. This
latter pseudoturbulent response accounts for the mean turbu-
lent profile but not for turbulent mixing. While the two re-
sponses with the turbulent mean profile should be identical at
t=0 and similar at very short time delays, they can be ex-
pected to progressively diverge later owing to this difference.
That this is indeed the case can be appraised from Fig. 4,
which reports the temporal decay of the maximum absolute
value of H12, the most frequently used component of Hij, in
the whole volume; the true turbulent response clearly pre-
sents a faster decay rate. From the same figure it can be
appreciated how the laminar response is different from its
companions even at t=0, and remains markedly different
from the pseudoturbulent one for the considered time inter-
val, thus explaining the control performance improvement
observed in above cited papers upon switching from laminar
to pseudoturbulent response.

By observing the three responses in 3D �see Fig. 5�,
other differences can be noticed. In all cases H12 presents an
elongated region of near-wall negative u1, but quantitative
differences are considerable. At t+=30, this region turns out
to be much longer and narrower for the laminar response.
More importantly, both laminar responses—and in particular
the one with the mean turbulent profile—present side regions
of positive u1, that are absent in the turbulent one, except for
very short time delays. From the differences between the true
turbulent and the pseudoturbulent responses one is thus led
to conclude that a possibility exists for further improvements

in control effectiveness, if the additional information embod-
ied in the true linear response can be exploited.

A comparative glance at all 9 components of Hij �Fig. 6�
reveals that they are of significantly different magnitude. The
components Hi1 turn out to be relatively small, approxi-
mately 10 times smaller than the others. This parallels a
similar observation6 made for the laminar case. H2j, i.e., the
wall-normal component of the response to any forcing, de-
cays much faster than the other components. From a quali-
tative viewpoint, it thus appears that the largest effect with
wall-based forcing can be obtained with u2 or u3 actuation at
the wall, and mostly u1 and u3 perturbations are introduced
into the flow. This qualitative statement is made quantitative
by the knowledge of the response tensor.
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FIG. 6. The nine components of Hij.
Top: H1j; middle: H2j; bottom: H3j.
Isosurfaces of Hi1 �left� at ±0.02% of
the maximum; isosurfaces of Hi2

�middle� and Hi3 �right� at ±0.2% of
the maximum. Negative values in light
gray �enhanced online�.
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