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a b s t r a c t

We propose a quasi-Newton minimization approach for the solution of the p(x)-Laplacian
elliptic problem, x ∈ Ω ⊂ Rm. This method outperforms those existing for the p(x)-
variable case, which are based on general purpose minimizers such as BFGS. Moreover,
when compared to ad hoc techniques available in literature for the p-constant case, and
usually referred to as ‘‘mesh independent’’, the present method turns out to be generally
superior thanks to better descent directions given by the quadratic model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the p(x)-Laplacian elliptic problem
−div(|∇u(x)|p(x)−2

∇u(x)) = f (x) x ∈ Ω ⊂ Rm,
u(x) = 0 x ∈ ∂Ω

(1)

where Ω is an open bounded subset of Rm with ∂Ω Lipschitz continuous, p ∈ P log, that is p is a measurable function,
p : Ω → [1, +∞] and 1/p is globally log-Hölder continuous. Moreover, we assume 1 < pmin ≤ p(x) ≤ pmax < ∞,
f ∈ Lp

′(x)(Ω) (where p′(x) denotes the dual variable exponent of p(x)) and u ∈ V = W 1,p(x)
0 (Ω). Since p(x) is bounded,

we may see the space W 1,p(x)
0 (Ω) as the space of functions in W 1,p(x)(Ω) with null trace on ∂Ω . The trace operator can

be defined on W 1,p(x)(Ω) in such a way that, as usual, if u ∈ W 1,p(x)(Ω) ∩ C(Ω), then its trace coincides with u|∂Ω . We
refer to [1] for a general introduction to variable exponent Sobolev spaces. This model occurs in many applications, such as
image processing [2,3] and electrorheological fluids [4–6], in which p(x)may assume values close to the extreme ones [7–9].
Hereafter we leave the explicit dependence on x ∈ Ω ⊂ Rm only for the exponent p(x) and all integrals are intended over
the domain Ω . The p(x)-Laplacian problem (1) admits a unique [10] weak solution u satisfying

u = argmin
v∈V

J(v)

where

J(u) =


|∇u|p(x)

p(x)
−


fu (2)

or, equivalently,

J ′(u)v = 0, ∀v ∈ V (3)
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where

J ′(u)v =


|∇u|p(x)−2

∇u · ∇v −


f v. (4)

A commonway [11–14] to tackle the problem is the directminimization, in a suitable finite dimensional subspace ofV , of the
functional J in Eq. (2), rather than solving the nonlinear equation (3) [15]. However, to our knowledge, ad hoc minimization
algorithms were developed only for the p-constant case [13–15], whereas only general purpose methods such as the quasi-
Newton method BFGS (Broyden–Fletcher–Goldfarb–Shanno) have been used for the p(x)-variable case [12].

In this work weminimize J(u) employing a new quadratic model which makes use of the exact second differential J ′′(u),
only slightly regularized in order to handle possible analytic or numerical degeneracy when |∇u| is small and p(x) is close
to the extreme values pmin or pmax. The result is an efficient and robust algorithm converging faster than those available in
literature, both for the p-constant case and the p(x)-variable one.

2. Minimization problem

Weminimize J(u) in a suitable finite element subspace of V and we call uh the solution

uh
= arg min

vh∈Vh
0

J(vh) ⇔ J ′(uh)vh
= 0 ∀vh

∈ V h
0 .

Given a regular triangulation of a polygonal approximation Ωh of the domain, we select the subspace V h
0 ⊂ V of continuous

piecewise linear functions which are zero at the boundaries of Ωh. Since for p ≠ 2 problem (1) is degenerate quasi-linear
elliptic, its solution has a limited regularity (see, for instance, [16]) and therefore higher-order finite element approximations
do not worth (see Ref. [17]). For the variable exponent case, p(x) is approximated by continuous piecewise linear functions
as well, even if a local approximation by constant functions is possible (see Ref. [10,18]). Given the approximation un

∈ V h
0

of the solution uh at iteration n, we look for a direction dn ∈ V h
0 such that

J(un
+ αndn) < J(un).

The descent direction dn is called steepest descent direction if

J ′(un)dn = −
J ′(un)


∗

dn
where ∥·∥ is a suitable norm in V h

0 and ∥·∥∗ its dual norm. The idea (see Ref. [13,14]) is to find dn as the solution of

dn : bn(dn, v) = −J ′(un)v, ∀v ∈ V h
0

where bn(·, ·) is a suitable bilinear form depending on iteration n. The choice of bn characterizes the minimization method.
The extension to non-homogeneous Dirichlet boundary conditions is straightforward. The solution u belongs to the

variable exponent Sobolev space W 1,p(x)
g = {v ∈ W 1,p(x)

: v = g on ∂Ω} and its piecewise approximation must be in
the space V h

gh , that is the space of continuous piecewise linear functions whose value of ∂Ωh is gh, where gh is chosen to
approximate the Dirichlet boundary data. The search directions are still in the space V h

0 .

2.1. Gradient-based directions

The choice in Ref. [13], for the p-constant case, is dn = wn, where

bn(wn, v) =




(ε +
∇un

p−2
)∇wn

· ∇v, p > 2
(ε +

∇un
)p−2

∇wn
· ∇v, p < 2.

(5)

The bilinear form bn(·, ·) corresponds to a simple linearization of J ′(un)v. The parameter ε is introduced in order to handle
possible analytic or numerical degeneracy where |∇un| is small. In fact, for p ≫ 2 the term |∇un|p−2 may underflow even
if |∇un| > 0. On the other hand, for p < 2 the same term may overflow. We notice that the parameter ε is introduced only
for finding the descent direction and not for regularizing the original p(x)-Laplacian functional J . With the above choice, the
authors in Ref. [13] proved a convergence result (J(un) → J(u)) only for the case p > 2. Their complicated proof is hardly
extendible to the case p < 2 or to the general case with variable p(x). The direction wn is called in Ref. [13] preconditioned
steepest descent. The scalar value αn is chosen by exact line search

αn = argmin
α

J(un
+ αdn). (6)

In Ref. [14] wn is computed for all 1 < p < +∞ using the first definition in (5). The descent direction is then computed
by

dn = wn
+ βndn−1
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where

βn = max


0,min


wnTwn

wn−1Twn−1
,
(wn

− wn−1)Twn

wn−1Twn−1


.

The definition of βn corresponds to an hybridization of the popular Fletcher–Reeves and Polak–Ribière–Polyak parameters
for the nonlinear conjugate gradient method (see also Ref. [19]). Direction dn is called in Ref. [14] hybrid conjugate gradient.
The scalar αn is chosen as in Eq. (6).

2.2. Quasi-Newton direction

Our proposal for the direction dn in the general case p(x) is the following.We start with the second differential of J , which
is well defined for p(x) ≥ 2

J ′′(u)(v, w) =


(p(x) − 2)|∇u|p(x)−4(∇u · ∇w)(∇u · ∇v) +


|∇u|p(x)−2

∇w · ∇v (7a)

=


|∇u|p(x)−2


(p(x) − 2)

∇u
|∇u|

· ∇w
∇u
|∇u|

· ∇v + ∇w · ∇v


(7b)

=


|∇u|p(x)−2(p(x) − 2) (Sign(∇u) · ∇w) (Sign(∇u) · ∇v) + ∇w · ∇v


(7c)

where we denoted

Sign(∇u(x)) =
∇u(x)

|∇u(x)|2 +

1 − sign(|∇u(x)|2)

 =


∇u(x)
|∇u(x)|

if ∇u(x) ≠ 0

0 if ∇u(x) = 0.

Formula (7c) is well defined and numerically computable for p(x) ≥ 2 even if ∇u(x) is zero somewhere. On the other hand
it is in general still not positive definite and not defined if p(x) < 2 and ∇u(x) = 0 somewhere. Therefore we modify
|∇u|p(x)−2 in formula (7c) into

|∇u|p(x)−2
ε = ε +


ε2

·

1 − sign(|∇u|2)


+ |∇u|2

 p(x)−2
2 . (8)

In this way, we accomplish both the regularizations in Eq. (5), since p(x) can be simultaneously very large in some regions
and small in some other regions. Hence, the regularized second differential is

J ′′ε (u)(v, w) =


|∇u|p(x)−2

ε


(p(x) − 2) (Sign(∇u) · ∇w) (Sign(∇u) · ∇v) + ∇w · ∇v


. (9)

Therefore our descent direction is dn = wn defined by

wn
: bn(wn, v) = −J ′(un)v, ∀v ∈ V h

0 (10)
where bn(wn, v) = J ′′ε (un)(wn, v). In this way, we are in practice approximating J(u) by a quadratic positive definite model

J(u) ≈ J(un) + J ′(un)(u − un) +
1
2
J ′′ε (un)((u − un), (u − un))

from which the name quasi-Newton. Other regularizations would be possible, by replacing |∇u|p(x)−2 with
ε + (ε + |∇u|)p(x)−2

(see, for instance, [13]) or with

ε +

ε2

+ |∇u|2
 p(x)−2

2

(see, for instance, [20]),which is similar to the ideaused in [21],where theproblem itself, andnot only the seconddifferential,
is regularized in the same way. Our choice (8) turned out to be the most effective in the numerical experiments. We notice
that the choice of the gradient-based directions [13,14] can be generalized for the p(x)-variable case as

wn
: Pε(un)(wn, v) =

 ∇un
p(x)−2
ε

∇wn
· ∇v = −J ′(un)v, ∀v ∈ V h

0 (11)

and

dn = wn, preconditioned steepest descent [13] (12a)

dn = wn
+ βndn−1, hybrid conjugate gradient [14]. (12b)

The scaling length αn in un
+ αndn is found by a backtracking line search method based on sufficient decrease condition

(Armijo’s rule). Together with reasonable assumptions on J ′′ε (un), this is enough to guarantee convergence to a stationary
point of J(u) (see, for instance, [22, Th. 3.2.4]).
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3. Numerical examples

We implemented the quasi-Newton and, for comparison, the gradient-based minimization method [14] in
FreeFem++ 3.31 [23] for the solution of two-dimensional problems, being the extension to three dimensions straightforward.
The numerical solution at iteration n is denoted by

un(x, y) =


j

un
j φj(x, y)

where φj(x, y) is the jth nodal finite element basis function. In the following numerical examples, the initial guess u0(x, y)
is always the solution of Poisson’s problem corresponding to p = 2. The descent directions wn in (10) and (11) are
approximated by the linear conjugate gradient method.

The exit criterion (see Ref. [24, p. 160]) is

max
j

 J ′(un)φj ◦ un
j

J(un)

 ≤ 10−6

where J ′(un)φj is defined in (4) and ◦ denotes Hadamard’s product. For comparison, in Ref. [13,14] the initial guess is
u0(x, y) = 0,wn is computed by amultigrid solver, the bisectionmethod and the golden sectionmethod are used in the line
search, respectively and the exit criterion is

√
bn(dn, dn)
b0(d0, d0)

≤ 10−6.

The solution of Eq. (10) is obtained by the default linear conjugate gradient method provided by FreeFem++, which
employs the diagonal preconditioner. We also tried the matrix of entries Pε(un)(φj, φi) (see (11)) as preconditioner, since it
is an approximation of the matrix J ′′ε (un)(φj, φi) used for the quasi-Newton direction. In this way, in general, we observed a
smaller number of iterations needed for the convergence of the linear conjugate gradient method. However this approach
never paid in terms of total CPU time due to the cost of the factorization of the preconditioner.

In the next tables, we report the total number of minimization iterations, the CPU time, the relative error of J and of the
approximated solution in theW 1,p norm

∥u∥W1,p =


|u|p

 1
p

+


|∇u|p

 1
p

whenever the exact solution is known. In case of variable p(x), we report either the Luxemburg norm in Lp(x), that is

∥u∥Lp(x) = inf
γ>0


γ :


Ω

u(x)γ

p(x) dx ≤ 1


or inW 1,p(x), that is

∥u∥W1,p(x) = ∥u∥Lp(x) + ∥∇u∥Lp(x) .

We have to say that the CPU time here shown, taken on an Intel Quad Core i7-4600U 2.10 GHz, is not a reliable measure of
the computational effort, since in our experiments we sometimes found significant variations in different instances of the
same experiment.1

3.1. p-constant case

Example 1. This case is taken from Ref. [13,14], with Ω = B(0, 1) and f = 1. The exact solution is

u(x, y) =
p − 1
p


1
2

 1
p−1 

1 − (x2 + y2)
p

2p−2


and the corresponding value of J(u) is

J(u) = π


1
2

 1
p−1 (p − 1)2

p(2 − 3p)
.

The disk B(0, 1) is discretized with four different meshes called D1, D2, D3 and D4with number of vertices (dof) 1600, 6221,
24444 and 97451 respectively. The choice of the number of dof is almost the same as in Refs. [13,14], being not possible in

1 All the next numerical experiments are reproducible with the code available at the web page http://profs.scienze.univr.it/caliari/software.htm.

http://profs.scienze.univr.it/caliari/software.htm
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Fig. 1. Solutions of Example 1 with p = 4 (left) and, p = 1.1 (right).

Table 1
Results for Example 1, p = 1.05.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

Iter 142 264 109 256 98 180 91 257
CPU [s] 11.22 12.9 40.44 53.58 185 171.8 1072 1263
J err. 9.49e−02 9.49e−02 2.85e−02 2.85e−02 7.20e−03 7.20e−03 1.87e−03 1.87e−03
W 1,p err. 2.09e−01 2.09e−01 9.78e−02 9.78e−02 4.55e−02 4.48e−02 2.22e−02 2.20e−02

Table 2
Results for Example 1, p = 1.1.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

Iter 75 128 75 128 75 128 75 128
CPU [s] 5.794 6.455 25.36 28.28 120.2 129.8 620.1 686.3
J err. 2.36e−02 2.36e−02 6.34e−03 6.34e−03 1.53e−03 1.53e−03 3.93e−04 3.93e−04
W 1,p err. 9.74e−02 9.74e−02 4.68e−02 4.68e−02 2.24e−02 2.24e−02 1.11e−02 1.11e−02

FreeFem++ to match them exactly. Fig. 1 shows the numerical solutions on mesh D1 for the cases p = 4 and p = 1.1. We
notice that for the relatively small value p = 4 the shape is very close to the cone 1 −


x2 + y2 corresponding to the limit

p → ∞. On the other hand, in the limit p → 1+ the solution tends to zero with a cake like shape.
We compared the quasi-Newton method (qN) with our own implementation of the preconditioned hybrid Conjugate

Gradient method (phCG) [14] with wn given by condition (11) and the descent direction given by Eq. (12b). The latter is
proven in Ref. [14] to be superior to the preconditioned descent algorithm described in Ref. [13], especially for large values
of p. We selected a range of constant p values from 1.05 to 1000. The value 1.05 was chosen because in Ref. [13] the smallest
successfully tried valuewas 1.06, whereas the value 1000was themaximum tested in both Refs. [13,14].We also considered
the value 1.1 because used in Ref. [13] and claimed to overflow in Ref. [14].

In Tables 1–6 we collect our results. Method qN clearly outperforms phCG both in terms of number of iterations and CPU
time. The only case in which qN takes few more iterations (365 versus 355) is for p = 1000 with mesh D4 (see Table 6). In
order to reduce the number of iterations for large values of p, we tried a very simple continuation strategy (see Ref. [18])
in which we solved the minimization problem for an intermediate value pi = 2 + i · (p − 2)/50, i = 1, 2, . . . , 50 with
initial condition given by the solution at the (i − 1)th step. For instance, for the case p = 1000 with mesh D4, we obtained
convergence with the same errors reported in Table 6 in 244 iterations for qN and in 344 iterations for phCG. However, the
description of an optimal and general continuation strategy suitable for p not necessarily constant, large and/or close to one,
is beyond the scopes of the present paper. We finally notice that the iteration number weakly depends on the mesh size,
especially for not too large values of p. This property was already observed in Refs. [13,14] for the gradient-based methods
and therein named ‘‘mesh independence’’.

Example 2. This case is taken from Ref. [13], with Ω = (0, 1)2, f = 0 and with non-homogeneous Dirichlet boundary
conditions such that the exact solution is

u(x, y) = (x2 + y2)
p−2
2p−2 .
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Table 3
Results for Example 1, p = 4.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

Iter 8 17 9 20 8 23 8 28
CPU [s] 0.52 0.8819 2.396 4.233 9.402 21.61 44.84 128
J err. 9.92e−04 9.92e−04 2.49e−04 2.49e−04 6.37e−05 6.37e−05 1.59e−05 1.59e−05
W 1,p err. 2.73e−02 2.73e−02 1.47e−02 1.47e−02 9.76e−03 9.75e−03 5.06e−03 5.06e−03

Table 4
Results for Example 1, p = 10.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

Iter 10 18 10 19 12 16 13 14
CPU [s] 0.795 1.23 3.339 5.354 16.98 19.98 86.34 86.64
J err. 1.16e−03 1.16e−03 2.88e−04 2.88e−04 7.64e−05 7.64e−05 1.89e−05 1.89e−05
W 1,p err. 1.19e−01 1.19e−01 8.17e−02 8.17e−02 1.17e−01 1.17e−01 6.20e−02 6.20e−02

Table 5
Results for Example 1, p = 100.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

Iter 31 63 37 73 43 74 50 83
CPU [s] 3.187 6.439 15.86 31.24 92.83 142.1 514.2 714.7
J err. 3.78e−03 3.78e−03 1.00e−03 1.00e−03 3.11e−04 3.11e−04 7.83e−05 7.83e−05
W 1,p err. 3.15e−01 3.15e−01 2.24e−01 2.24e−01 5.17e−01 5.17e−01 2.67e−01 2.67e−01

Table 6
Results for Example 1, p = 1000.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

Iter 146 156 193 234 264 306 365 355
CPU [s] 18.43 31.83 105.3 188.4 651.3 1026 4629 5363
J err. 7.38e−03 7.38e−03 2.84e−03 2.84e−03 1.25e−03 1.25e−03 4.22e−04 4.22e−04
W 1,p err. 3.28e−01 3.28e−01 2.41e−01 2.41e−01 5.89e−01 5.89e−01 2.98e−01 2.98e−01

Table 7
Results for Example 2, p = 20.

N = 27 N = 54 N = 108 N = 216
qN phCG qN phCG qN phCG qN phCG

Iter 9 29 9 34 10 29 10 29
CPU [s] 0.2985 0.7421 1.234 3.598 5.535 17.88 44.82 104.4
J err. 1.48e−01 1.48e−01 7.62e−02 7.62e−02 3.94e−02 3.94e−02 2.04e−02 2.04e−02
W 1,p err. 1.89e−01 1.89e−01 1.83e−01 1.83e−01 1.77e−01 1.77e−01 1.71e−01 1.71e−01

The square is discretizedwith a uniform gridwithN+1 points in each direction, giving a similar number of dof as in Ref. [13],
where this problemwas solved for p = 20without the hybrid strategy for theminimization direction. This causes a number
of iterations much larger then those reported in Table 7 for the phCG method. However, the newly introduced qN method
is by far faster than both gradient-based methods.

Example 3. This case is taken from Ref. [17]. It is the same problem of Example 1 extended to Ω = (−1, 1)2 with the
corresponding non-homogeneous Dirichlet boundary conditions. The square is discretized with a uniform grid with N + 1
points in each direction. In Ref. [17] the authors show the correct order of convergence as N increases, which is linear in
W 1,p norm if p < 2 and linear inW 1,1 norm if p > 2, since u is regular enough. Herewe reproduce the convergence behavior
for two values of p taken from Example 1 (p = 1.1 and p = 4), see Tables 8 and 9 and Fig. 2.

Example 4. In the last example for the p-constant casewe consider the problemon the diskΩ = B(0, 1)with discontinuous,
namely

f =


2 if x > 0
1 if x ≤ 0.
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Table 8
Results for Example 3, p = 1.1.

N = 10 N = 20 N = 40 N = 80
qN phCG qN phCG qN phCG qN phCG

Iter 54 72 56 68 57 69 57 74
CPU [s] 0.4273 0.3793 1.762 1.44 7.342 5.996 38.59 32.73
J err. 1.94e−01 1.94e−01 5.05e−02 5.05e−02 1.28e−02 1.28e−02 3.21e−03 3.21e−03
W 1,p err. 5.30e−01 5.30e−01 2.43e−01 2.44e−01 1.16e−01 1.16e−01 5.64e−02 5.66e−02

Table 9
Results for Example 3, p = 4.

N = 10 N = 20 N = 40 N = 80
qN phCG qN phCG qN phCG qN phCG

Iter 6 18 7 20 8 22 9 16
CPU [s] 0.05741 0.1058 0.1978 0.4484 0.8779 2.097 4.972 8.054
J err. 4.20e−02 4.20e−02 1.06e−02 1.06e−02 2.66e−03 2.66e−03 6.66e−04 6.66e−04
W 1,1 err. 7.19e−02 7.19e−02 3.48e−02 3.48e−02 1.71e−02 1.71e−02 8.47e−03 8.47e−03

Table 10
Results for Example 4.

p = 1.1 p = 4
qN phCG qN phCG

Iter 51 121 9 18
CPU [s] 21.0 33.2 2.9 4.7
Residual 7.33e−1 7.93e−2 3.59e−9 1.83e−6

Fig. 2. Convergence order for Example 3.

The disk B(0, 1) is discretized with a mesh with 6039 vertices. Since the exact solution is not available, we measured the
goodness of the numerical solutions by computing the relative residual

max
j

J ′(un)φj


max
j

un
j

 . (13)

In Table 10 we report the results corresponding to p = 1.1 and p = 4. The number of iterations and the CPU time is
always smaller for the quasi-Newton method. For the case p = 1.1 the relative residual is smaller for the preconditioned
hybrid Conjugate Gradient method. Compared with all the previous results, this could be due to the residual (13) not being
a good indicator of the error for solutions with low regularity and in the case p < 2.
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Table 11
Results for Example 5, ϵ = 0.04.

qN phCG BFGS

Iter 3 13 50
CPU [s] 2.9007 5.56235 121.529
Lp(x) error 9.66e−02 9.67e−02 1.05e−01

Table 12
Results for Example 5, ϵ = 0.02.

qN phCG BFGS

Iter 3 5 50
CPU [s] 3.9337 4.72026 128.144
Lp(x) error 3.92e−01 3.92e−01 4.03e−01

3.2. p(x)-variable case

Example 5. This case is the two-dimensional extension of the one-dimensional example reported in Ref. [12], with Ω =

(−1, 1)2, f = 0 and

p(x, y) =

1 − ϵ

ϵ
|x| + 1 + ϵ if |x| ≤ ϵ

2 if ϵ < |x| ≤ 1

where ϵ is a small parameter and p(0, y) → 1+ when ϵ → 0+. The non-homogeneous Dirichlet boundary conditions are
such that the exact solution is

u(x, y) =


(U(|x|) − U(0)) · sign(x) if |x| ≤ ϵ
(C(|x| − 1) + B) · sign(x) if ϵ < |x| ≤ 1

where C is set to 1.3, and, for 0 ≤ x ≤ ϵ,

U(x) =

 1−ϵ
ϵ

x + ϵ

exp


ln C

1−ϵ
ϵ x+ϵ


− ln C · Ei


ln C

1−ϵ
ϵ x+ϵ


1−ϵ
ϵ

and B = U(ϵ) − U(0) + C(1 − ϵ). The function Ei(x) is the exponential integral defined as

Ei(x) = −


∞

−x

e−t

t
dt.

For small values of ϵ the solution has a steep gradient along x = 0. For instance, for ϵ = 0.02, ∂xu(0, y) = C
1
ϵ = 1.350

≈

5 · 105. As correctly observed in Ref. [12], a more efficient and accurate finite element approximation would require a
discontinuous Galerkin approach. For this reason, in Tables 11 and 12, we report the Luxemburg norm in Lp(x) space of
the relative error. In fact, even if the solution is in W 1,p(x) space, due to the steep gradient along x = 0, we had no reliable
numerical approximation of

∇u

Lp(x) on the uniform grid we used (N = 101 points in each direction).

Tables 11 and 12 show that for relatively small values of ϵ the quasi-Newton method takes only three iterations. On the
other hand, if we use the BFGSmethod implemented in FreeFem++ (the samemethodwas chosen by the authors in Ref. [12]
for the one-dimensional example), then the maximum number of allowed iterations is reached and the CPU time is much
larger. The hybrid preconditioned Conjugate Gradient method, never applied before to the p(x)-Laplacian, is better than
BFGS but in any case worse than our quasi-Newton method.

Example 6. In this case we consider an approximation of a discontinuous piecewise constant exponent p(x, y), namely

p(x, y) =


p+ if x < −0.01

p− + (p− − p+)
x − 0.01
0.02

if |x| ≤ 0.01
p− if x > 0.01

in the domain Ω = B(0, 1) with right hand side f = 1.

The solution corresponding to p+
= 4 and p− = 1.1, computed on the mesh D1, is shown in Fig. 3. It resembles a merge

of the two plots reported in Fig. 1 for the constant cases p = 4 and p = 1.1. We see in Table 13 that once again the quasi-
Newton method clearly outperforms the others both in terms of iteration number and value of the residual. In fact, since
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Fig. 3. Solutions of Example 6 with p+
= 4 and p− = 1.1 on mesh D1 in two different views. See Fig. 1 for comparison with the constant case p(x) = p.

Table 13
Results for Example 6, p+

= 4, p− = 1.1.

qN phCG BFGS

Iter 18 44 50
CPU [s] 1.891 3.247 8.758
Residual 1.39e−06 2.00e−05 2.49e−01

Table 14
Results for Example 7.

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120

Iter qN 3 3 3 3 2 2
CPU [s] 0.07415 0.2949 1.382 2.563 1.686 2.87
J err. 1.11e−03 2.77e−04 1.23e−04 6.93e−05 4.44e−05 3.08e−05
W 1,p(x) err. 2.19e−02 1.08e−02 7.16e−03 5.36e−03 4.30e−03 3.58e−03

the exact solution is not available, we measured the goodness of the numerical solutions by computing the relative residual

max
j

J ′(un)φj


max
j

un
j

 .

Example 7. This case is taken from Ref. [11], with Ω = (−1, 1)2, f = 0 and

p(x, y) = 1 +


1
2
(x + y) + 2

−1

.

The corresponding exact solution is

u(x, y) =
√
2e2


e

1
2 (x+y)

− 1


.

This p(x)-variable case is quite simple from the minimization point of view, even if the BFGS method took more than
50 iterations (not reported in Table 14). As shown in Ref. [11], the correct linear order in N of the error in W 1,p(x) norm is
achieved (see Fig. 4), where N + 1 is the number of points for each direction of the uniform grid on the square Ω .

4. Conclusions

We developed a minimization approach for the p(x)-Laplacian problem based on a quadratic model of the objective
functional with a regularized second differential (quasi-Newton minimization). We have carried out several numerical
examples in two space dimensions with constant p or variable p(x), verified the results against existing analytic solutions,
and found that ourmethod outperforms those available in literature, both in number of iterations andCPU time. In particular,
the quasi-Newton approach proved to be robust and efficient for values of p very small (up to 1.05) or very large (up to 1000)
and for examples of p(x) varying on the domain in a range between p1 and p2 with 1.02 ≤ p1 < 2 and 2 ≤ p2 ≤ 4.
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Fig. 4. Convergence order for Example 7.
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