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Abstract

We propose a quasi-Newton minimization approach for the solution of the p(x)-
Laplacian elliptic problem, x ∈ Ω ⊂ Rm. This method outperforms those exist-
ing for the p(x)-variable case, which are based on general purpose minimizers
such as BFGS. Moreover, when compared to ad hoc techniques available in lit-
erature for the p-constant case, and usually referred to as “mesh independent”,
the present method turns out to be generally superior thanks to better descent
directions given by the quadratic model.

Keywords: p(x)-Laplacian, degenerate quasi-linear elliptic problem,
quasi-Newton minimization

1. Introduction

We consider the p(x)-Laplacian elliptic problem{
−div(|∇u(x)|p(x)−2∇u(x)) = f(x) x ∈ Ω ⊂ Rm,
u(x) = 0 x ∈ ∂Ω

(1)

where Ω is an open bounded subset of Rm with ∂Ω Lipschitz continuous, p ∈
P log, that is p is a measurable function, p : Ω → [1,+∞] and 1/p is globally
log-Hölder continuous. Moreover, we assume 1 < pmin ≤ p(x) ≤ pmax < ∞,
f ∈ Lp′(x)(Ω) (where p′(x) denotes the dual variable exponent of p(x)) and u ∈
V = W

1,p(x)
0 (Ω). Since p(x) is bounded, we may see the space W

1,p(x)
0 (Ω) as the

space of functions in W 1,p(x)(Ω) with null trace on ∂Ω. The trace operator can
be defined on W 1,p(x)(Ω) in such a way that, as usual, if u ∈W 1,p(x)(Ω)∩C(Ω),
then its trace coincides with u|∂Ω. We refer to [1] for a general introduction to
variable exponent Sobolev spaces. This model occurs in many applications, such
as image processing [2, 3] and electrorheological fluids [4–6], in which p(x) may
assume values close to the extreme ones [7–9]. Hereafter we leave the explicit
dependence on x ∈ Ω ⊂ Rm only for the exponent p(x) and all integrals are
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intended over the domain Ω. The p(x)-Laplacian problem (1) admits a unique
[10] weak solution u satisfying

u = arg min
v∈V

J(v)

where

J(u) =

∫ |∇u|p(x)

p(x)
−
∫
fu (2)

or, equivalently,
J ′(u)v = 0, ∀v ∈ V (3)

where

J ′(u)v =

∫
|∇u|p(x)−2∇u · ∇v −

∫
fv. (4)

A common way [11–14] to tackle the problem is the direct minimization, in a
suitable finite dimensional subspace of V , of the functional J in equation (2),
rather than solving the nonlinear equation (3) [15]. However, to our knowl-
edge, ad hoc minimization algorithms were developed only for the p-constant
case [13–15], whereas only general purpose methods such as the quasi-Newton
method BFGS (Broyden–Fletcher–Goldfarb–Shanno) have been used for the
p(x)-variable case [12].

In this work we minimize J(u) employing a new quadratic model which
makes use of the exact second differential J ′′(u), only slightly regularized in
order to handle possible analytic or numerical degeneracy when |∇u| is small
and p(x) is close to the extreme values pmin or pmax. The result is an efficient
and robust algorithm converging faster than those available in literature, both
for the p-constant case and the p(x)-variable one.

2. Minimization problem

We minimize J(u) in a suitable finite element subspace of V and we call uh

the solution

uh = arg min
vh∈V h0

J(vh)⇔ J ′(uh)vh = 0 ∀vh ∈ V h0 .

Given a regular triangulation of a polygonal approximation Ωh of the domain,
we select the subspace V h0 ⊂ V of continuous piecewise linear functions which
are zero at the boundaries of Ωh. Since for p 6= 2 problem (1) is degenerate quasi-
linear elliptic, its solution has a limited regularity (see, for instance, [16]) and
therefore higher-order finite element approximations do not worth (see Ref. [17]).
For the variable exponent case, p(x) is approximated by continuous piecewise
linear functions as well, even if a local approximation by constant functions is
possible (see Ref. [10, 18]). Given the approximation un ∈ V h0 of the solution
uh at iteration n, we look for a direction dn ∈ V h0 such that

J(un + αnd
n) < J(un).
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The descent direction dn is called steepest descent direction if

J ′(un)dn = −‖J ′(un)‖∗ ‖dn‖

where ‖·‖ is a suitable norm in V h0 and ‖·‖∗ its dual norm. The idea (see
Ref. [13, 14]) is to find dn as the solution of

dn : bn(dn, v) = −J ′(un)v, ∀v ∈ V h0
where bn(·, ·) is a suitable bilinear form depending on iteration n. The choice of
bn characterizes the minimization method.

The extension to non-homogeneous Dirichlet boundary conditions is straight-

forward. The solution u belongs to the variable exponent Sobolev spaceW
1,p(x)
g =

{v ∈ W 1,p(x) : v = g on ∂Ω} and its piecewise approximation must be in the
space V hgh , that is the space of continuous piecewise linear functions whose value
of ∂Ωh is gh, where gh is chosen to approximate the Dirichlet boundary data.
The search directions are still in the space V h0 .

2.1. Gradient-based directions

The choice in Ref. [13], for the p-constant case, is dn = wn, where

bn(wn, v) =


∫

(ε+ |∇un|p−2
)∇wn · ∇v, p > 2∫

(ε+ |∇un|)p−2∇wn · ∇v, p < 2.

(5)

The bilinear form bn(·, ·) corresponds to a simple linearization of J ′(un)v. The
parameter ε is introduced in order to handle possible analytic or numerical de-
generacy where |∇un| is small. In fact, for p � 2 the term |∇un|p−2

may
underflow even if |∇un| > 0. On the other hand, for p < 2 the same term
may overflow. We notice that the parameter ε is introduced only for finding
the descent direction and not for regularizing the original p(x)-Laplacian func-
tional J . With the above choice, the authors in Ref. [13] proved a convergence
result (J(un)→ J(u)) only for the case p > 2. Their complicated proof is hardly
extendible to the case p < 2 or to the general case with variable p(x). The di-
rection wn is called in Ref. [13] preconditioned steepest descent. The scalar value
αn is chosen as

αn = arg min
α
J(un + αdn) (6)

(exact linesearch).
In Ref. [14] wn is computed for all 1 < p < +∞ using the first definition

in (5). The descent direction is then computed by

dn = wn + βnd
n−1

where

βn = max

{
0,min

{
wnTwn

wn−1Twn−1
,

(wn − wn−1)Twn

wn−1Twn−1

}}
.
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The definition of βn corresponds to an hybridization of the popular Fletcher–
Reeves and Polak–Ribière–Polyak parameters for the nonlinear conjugate gra-
dient method (see also Ref. [19]). Direction dn is called in Ref. [14] hybrid
conjugate gradient. The scalar αn is chosen as in equation (6).

2.2. Quasi-Newton direction
Our proposal for the direction dn in the general case p(x) is the following.

We start with the second differential of J , which is well defined for p(x) ≥ 2

J ′′(u)(v, w) =

∫
(p(x)− 2)|∇u|p(x)−4(∇u · ∇w)(∇u · ∇v) +

∫
|∇u|p(x)−2∇w · ∇v (7a)

=

∫
|∇u|p(x)−2

(
(p(x)− 2)

∇u
|∇u|

· ∇w
∇u
|∇u|

· ∇v +∇w · ∇v
)

(7b)

=

∫
|∇u|p(x)−2

(
(p(x)− 2) (Sign(∇u) · ∇w) (Sign(∇u) · ∇v) +∇w · ∇v

)
(7c)

where we defined

Sign(∇u(x)) =
∇u(x)√

|∇u(x)|2 +
(

1− sign(|∇u(x)|2)
) =


∇u(x)

|∇u(x)| if ∇u(x) 6= 0

0 if ∇u(x) = 0

Formula (7c) is well defined and numerically computable for p(x) ≥ 2 even if
∇u(x) is zero somewhere. On the other hand it is in general still not positive
definite and not defined if p(x) < 2 and ∇u(x) = 0 somewhere. Therefore we

modify |∇u|p(x)−2
in formula (7c) into

|∇u|p(x)−2
ε = ε+

(
ε2 ·

(
1− sign(|∇u|2)

)
+ |∇u|2

) p(x)−2
2

. (8)

In this way, we accomplish both the regularizations in equation (5), since p(x)
can be simultaneously very large in some regions and small in some other regions.
Hence, the regularized second differential is

J ′′ε (u)(v, w) =

∫
|∇u|p(x)−2

ε

(
(p(x)− 2) (Sign(∇u) · ∇w) (Sign(∇u) · ∇v) +∇w · ∇v

)
. (9)

Therefore our descent direction is dn = wn defined by

wn : bn(wn, v) = −J ′(un)v, ∀v ∈ V h0 (10)

where bn(wn, v) = J ′′ε (un)(wn, v). In this way, we are in practice approximating
J(u) by a quadratic positive definite model

J(u) ≈ J(un) + J ′(un)(u− un) +
1

2
J ′′ε (un)((u− un), (u− un))

from which the name quasi-Newton. Other regularizations would be possible,

by replacing |∇u|p(x)−2
with

ε+ (ε+ |∇u|)p(x)−2

4



(see, for instance, [13]) or with

ε+
(
ε2 + |∇u|2

) p(x)−2
2

(see, for instance, [20]), which is similar to the idea used in [21], where the
problem itself, and not only the second differential, is regularized in the same
way. Our choice (8) turned out to be the most effective in the numerical exper-
iments. We notice that the choice of the gradient-based directions [13, 14] can
be generalized for the p(x)-variable case as

wn : Pε(u
n)(wn, v) =

∫
|∇un|p(x)−2

ε ∇wn · ∇v = −J ′(un)v, ∀v ∈ V h0 (11)

and

dn = wn, preconditioned steepest descent [13] (12a)

dn = wn + βnd
n−1, hybrid conjugate gradient [14]. (12b)

The scaling length αn in un+αnd
n is found by a backtracking line search method

based on sufficient decrease condition (Armijo’s rule). Together with reasonable
assumptions on J ′′ε (un), this is enough to guarantee convergence to a stationary
point of J(u) (see, for instance, [22, Th. 3.2.4]).

3. Numerical examples

We implemented the quasi-Newton and, for comparison, the gradient-based
minimization method [14] in FreeFem++ 3.31 [23] for the solution of two-
dimensional problems, being the extension to three dimensions straightforward.
The numerical solution at iteration n is denoted by

un(x, y) =
∑
j

unj φj(x, y)

where φj(x, y) is the j-th nodal finite element basis function. In the following
numerical examples, the initial guess u0(x, y) is always the solution of Poisson’s
problem corresponding to p = 2. The descent directions wn in (10) and (11)
are approximated by the linear conjugate gradient method.

The exit criterion (see Ref. [24, p. 160]) is

max
j

∣∣∣∣J ′(un)φj ◦ unj
J(un)

∣∣∣∣ ≤ 10−6

where J ′(un)φj is defined in (4) and ◦ denotes Hadamard’s product. For com-
parison, in Ref. [13, 14] the initial guess is u0(x, y) = 0, wn is computed by a
multigrid solver, the bisection method and the golden section method are used
in the linesearch, respectively and the exit criterion is√

bn(dn, dn)√
b0(d0, d0)

≤ 10−6.
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The solution of equation (10) is obtained by the default linear conjugate
gradient method provided by FreeFem++, which employs the diagonal pre-
conditioner. We also tried the matrix of entries Pε(u

n)(φj , φi) (see (11)) as
preconditioner, since it is an approximation of the matrix J ′′ε (un)(φj , φi) used
for the quasi-Newton direction. In this way, in general, we observed a smaller
number of iterations needed for the convergence of the linear conjugate gradient
method. However this approach never paid in terms of total CPU time due to
the cost of the factorization of the preconditioner.

In the next tables, we report the total number of minimization iterations,
the CPU time, the relative error of J and of the approximated solution in the
W 1,p norm

‖u‖W 1,p =

(∫
|u|p

) 1
p

+

(∫
|∇u|p

) 1
p

whenever the exact solution is known. In case of variable p(x), we report either
the Luxemburg norm in Lp(x), that is

‖u‖Lp(x) = inf
γ>0

{
γ :

∫
Ω

∣∣∣∣u(x)

γ

∣∣∣∣p(x)

dx ≤ 1

}

or in W 1,p(x), that is

‖u‖W 1,p(x) = ‖u‖Lp(x) + ‖∇u‖Lp(x) .

We have to say that the CPU time here shown, taken on an Intel Quad Core
i7-4600U 2.10GHz, is not a reliable measure of the computational effort, since in
our experiments we sometimes found significant variations in different instances
of the same experiment1.

3.1. p-constant case

Example 1. This case is taken from Ref. [13, 14], with Ω = B(0, 1) and f = 1.
The exact solution is

u(x, y) =
p− 1

p

(
1

2

) 1
p−1 (

1− (x2 + y2)
p

2p−2

)
and the corresponding value of J(u) is

J(u) = π

(
1

2

) 1
p−1 (p− 1)2

p(2− 3p)
.

The disk B(0, 1) is discretized with four different meshes called D1, D2, D3 and
D4 with number of vertices (dof) 1600, 6221, 24444 and 97451 respectively. The

1All the next numerical experiments are reproducible with the code available at the web
page http://profs.scienze.univr.it/caliari/software.htm.
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choice of the number of dof is almost the same as in Ref. [13, 14], being not
possible in FreeFem++ to match them exactly. Figure 1 shows the numerical
solutions on mesh D1 for the cases p = 4 and p = 1.1. We notice that for the
relatively small value p = 4 the shape is very close to the cone 1 −

√
x2 + y2

corresponding to the limit p→∞. On the other hand, in the limit p→ 1+ the
solution tends to zero with a cake like shape.
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Figure 1: Solutions of Example 1 with p = 4 (left) and, p = 1.1 (right).

We compared the quasi-Newton method (qN) with our own implementation of
the preconditioned hybrid Conjugate Gradient method (phCG) [14] with wn given
by condition (11) and the descent direction given by equation (12b). The latter
is proven in Ref. [14] to be superior to the preconditioned descent algorithm
described in Ref. [13], especially for large values of p. We selected a range
of constant p values from 1.05 to 1000. The value 1.05 was chosen because
in Ref. [13] the smallest successfully tried value was 1.06, whereas the value
1000 was the maximum tested in both Ref. [13, 14]. We also considered the
value 1.1 because used in Ref. [13] and claimed to overflow in Ref. [14].

In Tables 1–6 we collect our results. Method qN clearly outperforms phCG
both in terms of number of iterations and CPU time. The only case in which
qN takes few more iterations (365 versus 355) is for p = 1000 with mesh D4
(see Table 6). In order to reduce the number of iterations for large values of p,
we tried a very simple continuation strategy (see Ref. [18]) in which we solved
the minimization problem for an intermediate value pi = 2 + i · (p − 2)/50,
i = 1, 2, . . . , 50 with initial condition given by the solution at the (i− 1)-th step.
For instance, for the case p = 1000 with mesh D4, we obtained convergence with
the same errors reported in Table 6 in 244 iterations for qN and in 344 iterations
for phCG. However, the description of an optimal and general continuation
strategy suitable for p not necessarily constant, large and/or close to one, is
beyond the scopes of the present paper. We finally notice that the iteration
number weakly depends on the mesh size, especially for not too large values
of p. This property was already observed in Ref. [13, 14] for the gradient-based
methods and therein named “mesh independence”.

Example 2. This case is taken from Ref. [13], with Ω = (0, 1)2, f = 0 and with
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D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

iter 142 264 109 256 98 180 91 257
CPU [s] 11.22 12.9 40.44 53.58 185 171.8 1072 1263
J err. 9.49e-02 9.49e-02 2.85e-02 2.85e-02 7.20e-03 7.20e-03 1.87e-03 1.87e-03
W 1,p err. 2.09e-01 2.09e-01 9.78e-02 9.78e-02 4.55e-02 4.48e-02 2.22e-02 2.20e-02

Table 1: Results for Example 1, p = 1.05.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

iter 75 128 75 128 75 128 75 128
CPU [s] 5.794 6.455 25.36 28.28 120.2 129.8 620.1 686.3
J err. 2.36e-02 2.36e-02 6.34e-03 6.34e-03 1.53e-03 1.53e-03 3.93e-04 3.93e-04
W 1,p err. 9.74e-02 9.74e-02 4.68e-02 4.68e-02 2.24e-02 2.24e-02 1.11e-02 1.11e-02

Table 2: Results for Example 1, p = 1.1.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

iter 8 17 9 20 8 23 8 28
CPU [s] 0.52 0.8819 2.396 4.233 9.402 21.61 44.84 128
J err. 9.92e-04 9.92e-04 2.49e-04 2.49e-04 6.37e-05 6.37e-05 1.59e-05 1.59e-05
W 1,p err. 2.73e-02 2.73e-02 1.47e-02 1.47e-02 9.76e-03 9.75e-03 5.06e-03 5.06e-03

Table 3: Results for Example 1, p = 4.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

iter 10 18 10 19 12 16 13 14
CPU [s] 0.795 1.23 3.339 5.354 16.98 19.98 86.34 86.64
J err. 1.16e-03 1.16e-03 2.88e-04 2.88e-04 7.64e-05 7.64e-05 1.89e-05 1.89e-05
W 1,p err. 1.19e-01 1.19e-01 8.17e-02 8.17e-02 1.17e-01 1.17e-01 6.20e-02 6.20e-02

Table 4: Results for Example 1, p = 10.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

iter 31 63 37 73 43 74 50 83
CPU [s] 3.187 6.439 15.86 31.24 92.83 142.1 514.2 714.7
J err. 3.78e-03 3.78e-03 1.00e-03 1.00e-03 3.11e-04 3.11e-04 7.83e-05 7.83e-05
W 1,p err. 3.15e-01 3.15e-01 2.24e-01 2.24e-01 5.17e-01 5.17e-01 2.67e-01 2.67e-01

Table 5: Results for Example 1, p = 100.

D1 D2 D3 D4
qN phCG qN phCG qN phCG qN phCG

iter 146 156 193 234 264 306 365 355
CPU [s] 18.43 31.83 105.3 188.4 651.3 1026 4629 5363
J err. 7.38e-03 7.38e-03 2.84e-03 2.84e-03 1.25e-03 1.25e-03 4.22e-04 4.22e-04
W 1,p err. 3.28e-01 3.28e-01 2.41e-01 2.41e-01 5.89e-01 5.89e-01 2.98e-01 2.98e-01

Table 6: Results for Example 1, p = 1000.
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non-homogeneous Dirichlet boundary conditions such that the exact solution is

u(x, y) = (x2 + y2)
p−2
2p−2 .

The square is discretized with a uniform grid with N+1 points in each direction,
giving a similar number of dof as in Ref. [13], where this problem was solved for
p = 20 without the hybrid strategy for the minimization direction. This causes
a number of iterations much larger then those reported in Table 7 for the phCG
method. However, the newly introduced qN method is by far faster than both
gradient-based methods.

N = 27 N = 54 N = 108 N = 216
qN phCG qN phCG qN phCG qN phCG

iter 9 29 9 34 10 29 10 29
CPU [s] 0.2985 0.7421 1.234 3.598 5.535 17.88 44.82 104.4
J err. 1.48e-01 1.48e-01 7.62e-02 7.62e-02 3.94e-02 3.94e-02 2.04e-02 2.04e-02
W 1,p err. 1.89e-01 1.89e-01 1.83e-01 1.83e-01 1.77e-01 1.77e-01 1.71e-01 1.71e-01

Table 7: Results for Example 2, p = 20.

Example 3. This case is taken from Ref. [17]. It is the same problem of Exam-
ple 1 extended to Ω = (−1, 1)2 with the corresponding non-homogeneous Dirich-
let boundary conditions. The square is discretized with a uniform grid with N+1
points in each direction. In Ref. [17] the authors show the correct order of con-
vergence as N increases, which is linear in W 1,p norm if p < 2 and linear in
W 1,1 norm if p > 2, since u is regular enough. Here we reproduce the conver-
gence behavior for two values of p taken from Example 1 (p = 1.1 and p = 4),
see Tables 8 and 9 and Figure 2.

N = 10 N = 20 N = 40 N = 80
qN phCG qN phCG qN phCG qN phCG

iter 54 72 56 68 57 69 57 74
CPU [s] 0.4273 0.3793 1.762 1.44 7.342 5.996 38.59 32.73
J err. 1.94e-01 1.94e-01 5.05e-02 5.05e-02 1.28e-02 1.28e-02 3.21e-03 3.21e-03
W 1,p err. 5.30e-01 5.30e-01 2.43e-01 2.44e-01 1.16e-01 1.16e-01 5.64e-02 5.66e-02

Table 8: Results for Example 3, p = 1.1.

N = 10 N = 20 N = 40 N = 80
qN phCG qN phCG qN phCG qN phCG

iter 6 18 7 20 8 22 9 16
CPU [s] 0.05741 0.1058 0.1978 0.4484 0.8779 2.097 4.972 8.054
J err. 4.20e-02 4.20e-02 1.06e-02 1.06e-02 2.66e-03 2.66e-03 6.66e-04 6.66e-04
W 1,1 err. 7.19e-02 7.19e-02 3.48e-02 3.48e-02 1.71e-02 1.71e-02 8.47e-03 8.47e-03

Table 9: Results for Example 3, p = 4.
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Figure 2: Convergence order for Example 3.

Example 4. In the last example for the p-constant case we consider the problem
on the disk Ω = B(0, 1) with discontinuos, namely

f =

{
2 if x > 0

1 if x ≤ 0

The disk B(0, 1) is discretized with a mesh with 6039 vertices. Since the exact
solution is not available, we measured the goodness of the numerical solutions
by computing the relative residual

maxj |J ′(un)φj |
maxj

∣∣unj ∣∣ . (13)

In Table 10 we report the results correponding to p = 1.1 and p = 4. The number

p = 1.1 p = 4
qN phCG qN phCG

iter 51 121 9 18
CPU [s] 21.0 33.2 2.9 4.7
residual 7.33e-1 7.93e-2 3.59e-9 1.83e-6

Table 10: Results for Example 4.

of iterations and the CPU time is always smaller for the quasi-Newton method.
For the case p = 1.1 the relative residual is smaller for the preconditioned hybrid
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Conjugate Gradient method. Compared with all the previous results, this could
be due to the residual (13) not being a good indicator of the error for solutions
with low regularity and in the case p < 2.

3.2. p(x)-variable case

Example 5. This case is the two-dimensional extension of the one-dimensional
example reported in Ref. [12], with Ω = (−1, 1)2, f = 0 and

p(x, y) =

{
1−ε
ε |x|+ 1 + ε if |x| ≤ ε

2 if ε < |x| ≤ 1

where ε is a small parameter and p(0, y) → 1+ when ε → 0+. The non-
homogeneous Dirichlet boundary conditions are such that the exact solution is

u(x, y) =

{
(U(|x|)− U(0)) · sign(x) if |x| ≤ ε
(C(|x| − 1) +B) · sign(x) if ε < |x| ≤ 1

where C is set to 1.3, and, for 0 ≤ x ≤ ε,

U(x) =

(
1−ε
ε x+ ε

)
exp

(
lnC

1−ε
ε x+ε

)
− lnC · Ei

(
lnC

1−ε
ε x+ε

)
1−ε
ε

and B = U(ε)−U(0) +C(1− ε). The function Ei(x) is the exponential integral
defined as

Ei(x) = −
∫ ∞
−x

e−t

t
dt.

For small values of ε the solution has a steep gradient along x = 0. For in-
stance, for ε = 0.02, ∂xu(0, y) = C

1
ε = 1.350 ≈ 5 · 105. As correctly observed

in Ref. [12], a more efficient and accurate finite element approximation would
require a discontinuous Galerkin approach. For this reason, in Tables 11 and
12, we report the Luxemburg norm in Lp(x) space of the relative error. In fact,
even if the solution is in W 1,p(x) space, due to the steep gradient along x = 0,
we had no reliable numerical approximation of ‖∇u‖Lp(x) on the uniform grid
we used (N = 101 points in each direction).

Tables 11 and 12 show that for relatively small values of ε the quasi-Newton
method takes only three iterations. On the other hand, if we use the BFGS
method implemented in FreeFem++ (the same method was chosen by the authors
in Ref. [12] for the one-dimensional example), then the maximum number of
allowed iterations is reached and the CPU time is much larger. The hybrid
preconditioned Conjugate Gradient method, never applied before to the p(x)-
Laplacian, is better than BFGS but in any case worse than our quasi-Newton
method.
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qN phCG BFGS
iter 3 13 50
CPU [s] 2.9007 5.56235 121.529

Lp(x) error 9.66e-02 9.67e-02 1.05e-01

Table 11: Results for Example 5, ε = 0.04.

qN phCG BFGS
iter 3 5 50
CPU [s] 3.9337 4.72026 128.144

Lp(x) error 3.92e-01 3.92e-01 4.03e-01

Table 12: Results for Example 5, ε = 0.02.

Example 6. In this case we consider an approximation of a discontinuous
piecewise constant exponent p(x, y), namely

p(x, y) =


p+ if x < −0.01

p− + (p− − p+)x−0.01
0.02 if |x| ≤ 0.01

p− if x > 0.01

in the domain Ω = B(0, 1) with right hand side f = 1.
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Figure 3: Solutions of Example 6 with p+ = 4 and p− = 1.1 on mesh D1 in two different
views. See Figure 1 for comparison with the constant case p(x) = p.

The solution corresponding to p+ = 4 and p− = 1.1, computed on the mesh
D1, is shown in Figure 3. It resembles a merge of the two plots reported in
Figure 1 for the constant cases p = 4 and p = 1.1. We see in Table 13 that once
again the quasi-Newton method clearly outperforms the others both in terms of
iteration number and value of the residual. In fact, since the exact solution is
not available, we measured the goodness of the numerical solutions by computing
the relative residual

maxj |J ′(un)φj |
maxj

∣∣unj ∣∣ .
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qN phCG BFGS
iter 18 44 50
CPU [s] 1.891 3.247 8.758
residual 1.39e-06 2.00e-05 2.49e-01

Table 13: Results for Example 6, p+ = 4, p− = 1.1.

Example 7. This case is taken from Ref. [11], with Ω = (−1, 1)2, f = 0 and

p(x, y) = 1 +

(
1

2
(x+ y) + 2

)−1

.

The corresponding exact solution is

u(x, y) =
√

2e2
(
e

1
2 (x+y) − 1

)
.

N = 20 N = 40 N = 60 N = 80 N = 100 N = 120
iter qN 3 3 3 3 2 2
CPU [s] 0.07415 0.2949 1.382 2.563 1.686 2.87
J err. 1.11e-03 2.77e-04 1.23e-04 6.93e-05 4.44e-05 3.08e-05

W 1,p(x) err. 2.19e-02 1.08e-02 7.16e-03 5.36e-03 4.30e-03 3.58e-03

Table 14: Results for Example 7.

20 40 60 80 100 120
1e-3

1e-2

1e-1

N

er
ro
r

W 1,p(x) error

O(1/N)

Figure 4: Convergence order for Example 7.

This p(x)-variable case is quite simple from the minimization point of view,
even if the BFGS method took more than 50 iterations (not reported in Table 14).
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As shown in Ref. [11], the correct linear order in N of the error in W 1,p(x) norm
is achieved (see Figure 4), where N+1 is the number of points for each direction
of the uniform grid on the square Ω.

4. Conclusions

We developed a minimization approach for the p(x)-Laplacian problem based
on a quadratic model of the objective functional with a regularized second dif-
ferential (quasi-Newton minimization). We have carried out several numerical
examples in two space dimensions with constant p or variable p(x), verified the
results against existing analytic solutions, and found that our method outper-
forms those available in literature, both in number of iterations and CPU time.
In particular, the quasi-Newton approach proved to be robust and efficient for
values of p very small (up to 1.05) or very large (up to 1000) and for examples
of p(x) varying on the domain in a range between p1 and p2 with 1.02 ≤ p1 < 2
and 2 ≤ p2 ≤ 4.
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