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a b s t r a c t

Westudy thenumerical accuracy of thewell-known time splitting Fourier spectralmethod for the approx-
imation of singular solutions of the Gross–Pitaevskii equation. In particular, we explore its capability of
preserving a steady-state vortex solution, whose density profile is approximated by an accurate diagonal
Padé expansion of degree [8, 8], here explicitly derived for the first time. We show by several numerical
experiments that the Fourier spectral method is only slightly more accurate than a time splitting finite
difference scheme, while being reliable and efficient. Moreover, we notice that, at a post-processing stage,
it allows an accurate evaluation of the solution outside grid points, thus becoming particularly appealing
for applications where high resolution is needed, such as in the study of quantum vortex interactions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Quantum turbulence [1–3], as well as classical turbulence [4,5], is dominated by reconnection of vortical structures which is much
simpler to treat in the framework of quantum fluids rather than in viscous fluids [6], while leading to similar features such as time
asymmetry [7]. Despite the fundamental differences between the two forms of turbulence, there are reasons to believe that the
understanding of quantum turbulence might shed new light on the understanding of its classical counterpart [3].

Quantum fluid dynamics is properly described by a nonlinear Schrödinger equationwhich, in this framework, takes the name of Gross–
Pitaevskii equation (GPE) [8,9]

∂ψ

∂t
=

i
2
∇

2ψ +
i
2

(
1 − |ψ |

2)ψ, (1)

where ψ is the complex wave function. The derivation of the above equation as a model of superfluidity can be found, for instance,
in [10,11]. Through the Madelung transformation ψ =

√
ρ exp(iS) and u = ∇S, Eq. (1) can be stated also in classical fluid dynamical

terms. Defects in the wave function ψ are interpreted as infinitesimally thin vortices of constant circulation Γ =
∮
u ·ds = 2π , with

healing length ξ equal to 1, which implies lim|x|→∞ |ψ(t, x)| = 1.
Another form of the Gross–Pitaevskii equation, which is used to model Bose–Einstein Condensates (BECs) with vanishing boundary

conditions, includes a space dependent trapping potential V

i
∂Ψ

∂t
= −

1
2
∇

2Ψ + VΨ + β|Ψ |
2Ψ , lim

|x|→∞

|Ψ (t, x)| = 0,

whereβ > 0 is the so-called coupling constant.We refer the reader to [12] for a review of themathematical theory and numericalmethods
for BECs.

In the framework of quantum fluids, the main reason for preferring the GPE approach to others for the study of quantum turbulence is
that it guarantees a natural dynamics of interacting vortices [13] while resolving fine scales up to the vortex core [3,14]. On the contrary,
methods based on the inviscid Euler equations (either their direct numerical simulation [15] or vortex filament methods [16]) are unable
to automatically perform vortex reconnections, being forbidden by Euler dynamics.
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The numerical solution of theGPE (1) is normally carried out by employing time splitting Fouriermethods [7,13,17–19] and by imposing
vortices in a unitary background density, i.e. ρ∞ = |ψ∞|

2
= 1. However, these methods assume periodic boundary conditions. Solutions

which are not periodic must be mirrored in the directions lacking periodicity [17], thus imposing doubling of the degrees of freedom in
each of those directions and a consequent increase of the computational effort.

Recent developments [13,19,20] have shown that reconnections in quantum fluids are strictly related to topological features charac-
terizing the interacting vortex tubes such as writhe, total torsion and intrinsic twist. These quantities depend on the fine details of the
curve that describes the vortex centerline (its third derivative with respect to the curvilinear abscissa is required for computing torsion)
and on the phase of the wave functionψ in the neighborhood of the vortex centerline. In [21] the pseudo-vorticity field is used to track the
topological defects of the superfluid and reconstruct the vortex centerlines which correspond to zeros of the field. Moreover, by assuming
a periodic field, Fourier representation is exploited to retain spectral accuracy for both the wave function and its derivatives, so as to
accurately compute curvature and torsion. Other works [22,23] have tackled the issue of tracking in an accurate and reliable way vortices
whose dynamics is prescribed by the Gross–Pitaevskii model. Therefore it is paramount to resort to high resolution numerical simulations
of Eq. (1), especially in the proximity of the reconnection event.

With the goal of assessing the goodness of time-splitting Fourier methods for singular solutions on uniform grids versus time-splitting
finite differences on nonuniform grids, we focus on the two-dimensional straight vortex, which is the prototype commonly employed
for more complex vortex geometries, such as vortex rings and vortex knots [13,19,20]. We first derive an analytical approximation of the
steady state vortex that nullifies the right-hand-side of (1). Then we perform a systematic comparison between the two approaches by
measuring the deviation of the numerical solution from the initial condition (being steady the initial condition should remain preserved).
Finally, we explore the possibility to evaluate the solution obtained by time-splitting Fourier methods on nonuniform grids designed to
guarantee higher spatial resolution in the proximity of vortex singularity. Both time-splitting Fourier and finite differences methods can
be easily extended to the three-dimensional case, in which they preserve their properties.

2. Accurate Padé approximation of a 2d vortex

In this section, we seek an analytical approximation of the two-dimensional, steady-state solution of Eq. (1) that represents a straight
vortex centered at the origin in a constant background density ρ∞ and compare it to the numerical solution obtained by finite differences.

It is well-known that the classical two-dimensional Euler vortex of circulation Γ has azimuthal velocity uθ = Γ /(2πr) where
r =

√
x21 + x22 is the radius and θ = atan2(x2, x1) = arg(x1 + ix2) ∈ (−π, π] is the azimuthal angle. It should be noted that

uθ → 0 at infinity and uθ → ∞ for r → 0. The cartesian components of the velocity are thus u1 = −uθ sin θ = −Γ x2/(2πr2) and
u2 = uθ cos θ = Γ x1/(2πr2). Therefore u = (u1, u2) = (Γ /(2π ))∇θ . This shows that the velocity field is solenoidal (∇ · u = 0), that the
quantum mechanical phase, S, is simply the azimuthal angle θ , and that the quantum of circulation, in our dimensionless units, is equal
to 2π . In steady conditions, the continuity equation ensures that ∇ · (ρu) = 0, hence u · ∇ρ = 0, which means that ∇ρ · ∇θ = 0. The
solution ρ ≡ ρ̄, ρ̄ ̸= 0, uniform in space would result in atoms moving at infinite speed on the vortex center r = 0. The other possibility
is that ∇ρ ⊥ ∇θ . Since ∇θ = θ̂/r , then ∇ρ is parallel to r̂ and thus ρ = ρ(r), r̂ and θ̂ being the unitary vectors in two-dimensional polar
coordinates.

In a two-dimensional domain we set ψ(x1, x2) = ρ(
√
x21 + x22)

1/2eiθ (x1,x2) where ρ(
√
x21 + x22) = ρ(r) is a function to be determined. By

imposing that ψ is the steady solution of Eq. (1), we find that ρ satisfies the equation

ρ ′′
+
ρ ′

r
−

(ρ ′)2

2ρ
−

2ρ
r2

+ 2(1 − ρ)ρ = 0, (2)

with boundary conditions ρ(0) = 0 and ρ(∞) = 1, which is the only admissible constant background density.
It is known [11,24] that Padé approximations of ρ(r) retain only even degrees at both the numerator and denominator, that is

ρ(r) ≈

∑p
j=0 ajr

2j

1 +
∑q

k=1 bkr2k
=

a0 + a1r2 + a2r4 + · · · + apr2p

1 + b1r2 + b2r4 + · · · + bqr2q
. (3)

In order for this approximation to satisfy the boundary conditions, it must be

ρ(0) = 0 H⇒ a0 = 0
ρ(∞) = 1 H⇒ p = q, bq = ap.

Given these simplifications, the diagonal Padé approximation, with 2q − 1 coefficients and both numerator and denominator of degree
r2q, is

ρq(r) =
a1r2 + a2r4 + a3r6 + · · · + aqr2q

1 + b1r2 + b2r4 + b3r6 + · · · + aqr2q
. (4)

In literature this approximation is normally limited to q = 2 [11], that is

ρ2(r) =
a1r2 + a2r4

1 + b1r2 + a2r4

with

a1 =
11
32
, b1 =

5 − 32a1
48 − 192a1

, a2 = a1

(
b1 −

1
4

)
.

Despite its widespread usage, this approximation is qualitatively wrong because it reaches a maximum above ρ(∞) = 1 (see insert in Fig.

1) at r̄ = 2
√
6
(
4 + 3

√
2
)

≈ 14.065, unique positive solution of r4 − 192r2 − 1152 obtained by imposing ρ ′

2(r) = 0. The solution of Eq.
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Fig. 1. Comparison between
[
g̃

( r
1+r

)]2 , numerical solution of (7) obtained by second-order finite differences on 5000 equispaced points, and different Padé approximations
ρq(r).

(2) cannot have a maximum above 1, corresponding to ρ ′(r̄) = 0, because the second derivative

ρ ′′(r̄) =
2ρ(r̄)
r̄2

+ 2(ρ(r̄) − 1)ρ(r̄)

would be positive.
Due to these limitations, we seek higher-order (q > 2), Padé expansions, namely

ρ3(r) =
a1r2 + a2r4 + a3r6

1 + b1r2 + b2r4 + a3r6
and ρ4(r) =

a1r2 + a2r4 + a3r6 + a4r8

1 + b1r2 + b2r4 + b3r6 + a4r8
.

In order to determine the coefficients of a certain approximation ρq(r), we compute the analytical expressions ρq(r), ρ ′
q(r) and ρ

′′
q (r)

and substitute them in Eq. (2) obtaining the form

ρ ′′

q +
ρ ′
q

r
−

(ρ ′
q)

2

2ρq
−

2ρq
r2

+ 2(1 − ρq)ρq = 0 ⇐⇒
Nq(r)
Dq(r)

= 0. (5)

The numerator Nq(r) is made of terms r2k, which are in a number much larger than the 2q − 1 degrees of freedom of the Padé expansion.
For this reason Eq. (2) cannot be satisfied exactly. However, we can nullify the coefficients of 2q−1 terms r2k. We can choose to start from
higher- or lower-order coefficients in Nq(r). We prefer to operate on lower-order powers of r2k, i.e. k = 1, . . . , 2q − 1, because we need a
good approximation of ρq(r) in a neighborhood of the origin. Interestingly enough, we observe a posteriori that canceling the lower-order
coefficients of r2k results in very small values of the coefficients of larger powers of r . The step-by-step derivation of ρq(r) for q = 2, 3, 4
is reported in Appendix, whereas Tables A.1 and A.2 summarize all coefficients for the expansions ρq, q = 2, 3, 4.1

In order to test the reliability of these approximations, we compare them with a numerical solution. In this case, it is more convenient
to compute directly f (r) = ρ(r)1/2, as first suggested by [17], which satisfies

f ′′
+

f ′

r
+ f

(
1 − f 2 −

1
r2

)
= 0 (6)

with f (0) = 0 and f (∞) = 1.
Eq. (6) could be integrated numerically as it is, by artificially bounding the infinite domain. To avoid this problem, we resort to the

change of variables s = r/(1 + r), g(s) = f (r), which yields the equation for g(s)

(s − 1)4g ′′
+ 2(s − 1)3g ′

−
(s − 1)3

s
g ′

−
(s − 1)2

s2
g + (1 − g2)g = 0, (7)

defined in the finite domain s ∈ (0, 1], with boundary conditions g(0) = 0 and g(1) = 1. We solve Eq. (7) by central second order
finite differences with equally spaced discretization points si = i/N , i = 1, 2, . . . ,N . Given the numerical solution g̃ of (7), the numerical
approximation of the density is

ρnum(ri) =

[
g̃

(
ri

1 + ri

)]2

(8)

where ri = si/(1−si), i = 1, 2, . . . ,N−1. This rescaling provides denser points ri in the neighborhood of the origin, where they aremostly
needed (more than 95% of the points ri are in the interval 0 ≤ r ≤ 20). Nevertheless, the computation of the initial solution for (1) on a
two-dimensional grid, for instance, requires ρnum to be interpolated.

1 The SageMath code for the computation of the coefficients is available on request by contacting the corresponding author.
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Fig. 2. Relative error (for r ̸= 0) between different Padé approximations ρq(r) and the numerical solution of (7) obtained by second-order finite differences on 5000
equispaced points.

In Fig. 1 we show the comparison between the numerical solution of (7) by employing second-order central finite differences with
5000 points and different Padé approximations ρq(r) for q = 2, 3, 4. Visual inspection confirms that q = 2 is a poor representation of the
solution of Eq. (2), especially for 4 < r < 20.

To appreciate quantitatively the error with respect to the numerical solution, in Fig. 2 we report the relative error in a semilog plot. We
observe that in general the relative error decreases for increasing order of Padé approximation. In particular for r → 0, ρ4(r) exhibits the
profile that better fits the numerical solution. Finally, the first derivatives ρ ′

3 and ρ ′

4 are always positive, i.e. no overshooting is observed.

3. Time splitting methods

Here we introduce the Strang splitting methods for the Gross–Pitaevskii equation, in which the kinetic linear part is solved either by
the Fourier spectral method or nonuniform finite differences.

As we have seen above, the Gross–Pitaevskii equation has been extensively employed not only for simulating the dynamics of vortices
in a uniform background density but also for BECs with vanishing boundary conditions [12]

lim
|x|→∞

|Ψ (t, x)| = 0.

It is easy to prove that such conditions lead to the preservation of the total mass in any dimension d∫
Rd

|Ψ (t, x)|2dx,

where x = (x1, . . . , xd). In fact, over a bounded domainΩ ⊂ Rd with boundary S

d
dt

∫
Ω

|Ψ (t, x)|2dx =

∫
Ω

(
∂Ψ (t, x)
∂t

Ψ (t, x) +
∂Ψ (t, x)
∂t

Ψ (t, x)
)
dx =

=
i
2

∫
S

(
Ψ (t, x)∇Ψ (t, x) · n⃗ − Ψ (t, x)∇Ψ (t, x) · n⃗

)
dS,

(9)

thus the derivative of the mass tends to zero as Ω tends to Rd. In the case of vanishing boundary conditions, widely used schemes for
the numerical simulation of the dynamics of (1) are the so-called time-splitting pseudospectral/finite difference methods and the finite
difference time domainmethods (see [12] for a review). If we restrict the options to second-order accurate schemes in time, Time Splitting
pseudoSPectral (TSSP) methods, Time Splitting Finite Difference (TSFD) methods and Crank–Nicolson Finite Difference (CNFD) method
conserve the mass at the discretized level when periodic, homogeneous Dirichlet or homogeneous Neumann boundary conditions are
imposed in the bounded domain of discretization. We refer the reader to [25] for higher-order time splitting methods.

When studying the evolution of bright-tailed structures such as the two-dimensional vortices described above, homogeneous Dirichlet
boundary conditions are not compatible and must be excluded. Periodic boundary conditions and Fourier spectral decomposition can be
used after a proper mirroring of the computational domain (see Section 3.1). Homogeneous Neumann boundary conditions can be used
and are easy to implement for Finite Difference schemes in space. As a side effect, both periodic and homogeneous Neumann boundary
conditions preserve the mass over bounded domains, since the boundary term in (9) vanishes. From the time discretization point of view,
CNFD is implicit and requires the solution of a coupled nonlinear system at each time step. For this reason we resorted to time splitting
methods.

In [12, Example 4.1] TSSP is suggested when the solution is smooth and TSFD otherwise, although the hint comes from a one-
dimensional numerical experiment. In what follows, we analyze two approaches: a classical time splitting Fourier method and a time
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splitting nonuniform finite difference method. In any case, equation (1) is split into two parts

∂u
∂t

(t, x) =
i
2
∇

2u(t, x) (10a)

∂v

∂t
(t, x) =

i
2

(
1 − |v(t, x)|2

)
v(t, x). (10b)

The solution of the first equation depends on the space chosen for the discretization and will be described in the next two sections. The
second equation can be solved exactly, taking into account that |v| is preserved by the equation. Therefore

v(τ , x) = exp
(
τ i
2

(
1 − |v(0, x)|2

))
v(0, x) (11)

for any x in the spatial domain. If we denote by eτAun(x) and eτB(vn(x))vn(x) the two partial numerical solutions, the approximationψn+1(x)
of ψ(tn+1, x), where tn+1 = (n + 1)τ , can be recovered by the so-called Strang splitting

ψn+1/2(x) = eτAe
τ
2B(ψn(x))ψn(x)

ψn+1(x) = e
τ
2B(ψn+1/2(x))ψn+1/2(x).

3.1. Time splitting Fourier method

Eq. (10a) can be solved exactly in time within the Fourier spectral space. Apart from the error at machine-precision level coming from
the necessary direct and inverse Fast Fourier Transforms (FFTs), the only possible considerable error might arise from an insufficient
number of Fourier modes. This is usually not a big deal when approximating smooth solutions fast decaying to zero, since spectral order
of convergence takes place. For this to happen, the unbounded domain has to be truncated to a computational bounded domainΩ large
enough to support the most of a periodic approximation of the solution. However, when simulating the dynamics of vortex solutions
not decaying to zero, as in our case where lim|x|→∞ |ψ(t, x)| = 1, the main issue is the lack of periodicity at the boundaries. This can be
overcome by introducing mirror vortices in those directions [17], with the consequent increase of the computational effort due to the
doubling the degrees of freedom in each of those directions. Such a mirroring, however, does not make the initial solution truly periodic
as it guarantees the same values, at opposite boundaries, only for ψ and not for its derivatives. A similar situation appears in [26], where
an ansatz wave function for a system of superfluid vortices in a periodic two-dimensional square is presented. In that case, the values ofψ
are periodic through amodification of its phase at the boundaries. As far as the regularity of the solution in the neighborhood of the vortex
core is concerned, it should be noted that the phase field has a singularity in the vortex position, whereas the density goes smoothly to
zero keeping the wave function nonsingular.

In order to investigate the accuracy of Fourier approximation for vortex solutions, we consider the Fourier series expansion of the
function obtained by mirroring

ψ0(r, θ ) = ρ
1/2
4 (r)eiθ , ψ0 : [−L, L)2 → C (12a)

and

ψ
η

0 (r, θ ) = ρ
1/2
4 (r)eiθη(r), ψ

η

0 : [−L, L)2 → C (12b)

with respect to the axis x = L and y = L, where η(r) is the mollifier

η(r) =

{
e
1− 1

1−(r/L)2 for 0 ≤ r < L,
0 elsewhere.

The mollifier η(r) preserves the shape of the density and the phase defect at the origin and make ψη

0 to vanish with all its derivatives
towards r = L. The final computational domain isΩ = [−L, 3L)2, with L = 20. We compute a reference approximation by an expansion
into a series with (2 ·2048)2 Fourier modes and compare it with expansions ranging betweenM = m2

= (2 ·32)2 andM = m2
= (2 ·512)2

modes, in the L2 norm. For the mollified ψη

0 we observe in Fig. 3 a typical spectral rate of convergence, while for the original ψ0 wave
function representing the straight vortex we observe a strong order reduction (the observed rate of convergence is roughly 3/2). We
conclude that spectral accuracy is not reached because the solution at the boundaries in not truly periodic with all its derivatives. The
phase singularity at the vortex position does not affect spectral convergence.

Increasing the number of Fourier coefficients so as to gain accuracy is often not an option. In fact, due to the necessary mirroring, this
corresponds to a huge growth of the degrees of freedom.Moreover, the use of hyperbolic sparse grids (see [27], for instance) is not possible,
since the possibility of discarding coefficients and grid points is given only for fast decaying Fourier coefficients, that is spectral order of
convergence to the exact solutions.

The order reduction in Fourier decomposition of the solutions to be approximated and the needed duplication along axes in order to
satisfy at least the periodicity of the values of the solutions suggest to explore the alternative of a finite difference discretization in space.

3.2. Time splitting finite difference method

The main advantage of a finite difference approach is that the mirroring of the solution is not required, being the extension of
the bounded domain replaced by the imposition of homogeneous Neumann boundary conditions. As shown above, this implies the
conservation of the mass over bounded domains.
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Fig. 3. Error behavior of the Fourier approximation of functions (12) (extended to [−L, 3L)2 by mirroring).

We use centered second order finite differences. With the aim of increasing the spatial resolution around the vortex cores and keeping
a reasonable degree of freedom, we employ a set of nonuniform grid points (see [28], for instance, for locally adaptive finite element
discretizations).

The discretization of the Laplace operator in one dimensionwith nonuniform finite differences onm points provides the nonsymmetric
matrix

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
2
h2
1

2
h2
1

0 . . . 0

2
h1(h1 + h2)

−
2

h1h2

2
h2(h1 + h2)

. . . 0

0
. . .

. . .
. . . 0

0
. . .

2
hm−2(hm−2 + hm−1)

−
2

hm−2hm−1

2
hm−1(hm−2 + hm−1)

0 . . . 0
2

h2
m−1

−
2

h2
m−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where hi = xi+1 −xi, x1 = −L, xm = L. This is not exactly a second order approximation, although a discretization in which hi+1 = (1+δ)hi
and a refinement with hj+1 = (1+δ)1/2hj yields a first order term in the error decaying faster than the second order term (see [29, § 3.3.4]).
The approximation for the two-dimensional and the three-dimensional cases can be simply obtained by Kronecker products with the
identity matrix. If we call A the corresponding matrix, Eq. (10a) is transformed into the system of ordinary differential equations

y′(t) =
i
2
Ay(t), y(t) ∈ CM×1. (13)

Because of the homogeneous Neumann boundary conditions, we investigate the mass preservation for the numerical solution of
system (13). A quadrature formula with positive weights for the computation of the mass writes∫

Ω

|ψ(t, x)|2dx ≈ wT
|y(t)|2, w ∈ RM×1

+
.

It can be written as

y(t)∗Wy(t)

where y(t)∗ ∈ C1×M denotes the transposed conjugate vector of y(t) and W the matrix with diagonal w. We define z(t) = W 1/2y(t) such
that

z ′(t) =
i
2
Awz(t) (14)

with Aw = W 1/2AW−1/2. If Aw is real and symmetric, then exp(τ i/2Aw) is an orthogonal matrix and

z(τ )∗z(τ ) = z∗(0)z(0).

This means that

y(τ )∗Wy(τ ) = (W 1/2y(τ ))∗(W 1/2y(τ )) = z(τ )∗z(τ ) = z(0)∗z(0) =

= (W 1/2y(0))∗(W 1/2y(0)) = y(0)∗Wy(0)
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and therefore system (13) preserves the mass at the discrete level if W makes Aw symmetric. From the structure of the matrix A1, it is
clear that the vector of trapezoidal weights wT

= [h1, h1 + h2, h2 + h3, . . . , hm−1] gives a matrix W1 such that W1A1 is symmetric. The
extension to W in the two-dimensional and three-dimensional cases is trivial and this is enough to get Aw symmetric as well, in fact
ATW = WA ⇐⇒ W−1/2ATW = W 1/2A ⇐⇒ W−1/2ATW 1/2

= AT
w = W 1/2AW−1/2

= Aw . We conclude that Eq. (13) preserves the mass
at the discrete level whenever the trapezoidal rule is used as quadrature formula and this is easily extended to any space dimension.

System (14) could be solved, for instance, by the Crank–Nicolson scheme

zn+1 = zn +
ki
4
Awzn +

ki
4
Awzn+1,

which preserves the discrete mass being Aw symmetric (see [12]). This scheme is second order accurate in time, therefore the size of the
time step k has to be chosen such that the error is smaller than the time splitting error. Moreover, Crank–Nicolson scheme requires the
solution of a linear system of equations withmatrix (I−kiAw/4) at each time step k. Although this is not a big deal in one space dimension,
since the matrix is tridiagonal, in higher dimensions the discretization yields a large, sparse, complex symmetric matrix. This implies the
use of preconditioned Krylov solvers for general matrices such as GMRES or BiCGStab orminimal residual methods for complex symmetric
systems (see [30]). Iterativemethods converge to the solution up to a specified tolerancewhich therefore influences themass conservation
and the whole accuracy of the result. Given these complications, we prefer to consider a direct approximation of the exact solution

zn+1 = exp(τ i/2Aw)zn.

Nowadays there are several options for the computation of the action of the matrix exponential to a vector. We refer to [31] for a review
of polynomial methods which do not require the solution of linear systems. In this way, the kinetic linear part (10a) is solved exactly in
time, as in the Fourier spectral method, but usually at a higher computational cost.

4. Numerical experiments

In this section we extensively investigate the accuracy of the methods introduced above by comparing different Padé approximations
of the initial solution, uniform versus nonuniform finite differences, and Fourier spectral method versus nonuniform finite differences.We
finally assess the upper limit to the maximum accurate resolution of Fourier spectral method and explore the possibility of evaluating a
coarse Fourier solution on a fine nonuniform grid.

In Section 2 we have derived various approximations of ρ(r) for a straight, two-dimensional vortex, whose wave function is ψ(r, θ ) =
√
ρeiθ . In order to quantitatively compare the twomethods introduced in Section 3, wemeasure the preservation of such a steady solution

by reporting the relative error

max
0<|r|≤R

|ψn(r, θ ) − ψ0(r, θ )|
|ψ0(r, θ )|

, n = 1, 2, . . ., T/τ (15)

withψ0(r, θ ) = |ψ0(r)| eiθ , where |ψ0(r)| is either
√
ρq(r) or

√
ρnum(r), the latter evaluated at any required r by linear interpolation of (8).

The origin is excluded since ψ0 is zero therein. The time step τ is chosen such that T/τ is an integer, where T is the final simulation time.
In all our experiments, we selected T = 10. The maximum over the continuum set {0 < |r| ≤ R} in the error above is approximated by
the maximum over a discrete set which will be specified later.

Although the preservation of the initial state may seem a trivial test, it is in fact a reliable and necessary experiment in order to validate
the effectiveness of the proposed numerical methods. Thanks to the reliability of the analytical solution, this test can show the influence
of both the spatial approximation and the time splitting error in the numerical discretization of the PDE (1). In this simulation the exact
mass over any bounded numerical domain is obviously preserved.

In what follows we will employ either TSSP (Fourier) or TSFD. For a computational grid withm × m grid points in the physical domain
of interest, TSSP requires a total of M = 2m × 2m = 4m2 degrees of freedom due to mirroring, whereas TSFD requires only M = m2

degrees of freedom thanks to homogeneous Neumann boundary conditions.

4.1. Comparison between different approximations of the initial condition

We preliminarily test the reliability of the three Padé approximations ρq, q = 2, 3, 4 and the numerical solution of Eq. (7) obtained
by central second order finite differences with N = 5000 uniformly distributed discretization points. For the solution of the GPE (1) we
employ TSSP with Fourier basis functions on a uniform two-dimensional computational grid and 5000 time steps. For this reason, the
numerical solution g̃(s) of Eq. (7) must be interpolated.

Results are reported in Fig. 4, where the relative error defined by (15) is plotted versus time for different disks. The number of Fourier
modes is fixed to m = 2 · 200, i.e. M = 1.6 × 105 degrees of freedom. We compare the solution at each time step with the initial
condition on the grid nodes within the considered disk. The worst approximation of the steady-state solution is the commonly used ρ2
Padé approximation, whereas ψ0(r, θ ) =

√
ρ4(r)eiθ turns out to be as accurate as the numerical solution. For this reason, in the following

experiments we will consider onlyψ0(r, θ ) =
√
ρ4(r)eiθ . All curves collapse on each other in the case of the largest disk, meaning that the

maximum error occurs at the boundaries, mainly due to the nonperiodicity of the solution.

4.2. Uniform vs. nonuniform finite differences

We compare the performance of the finite difference approximation on a uniform versus nonuniform grid. The uniform grid has the
same step-size h as the grid employed for the Fourier approach and reported in Fig. 4. The nonuniform grid is generated by taking into
account different constraints. Given the smallest step-size hmin = h1 = 0.05 at the origin (in the vortex core), we linearly increase the
step-size according to hi+1 = (1 + δ)hi in both x and y and in both positive and negative directions. We choose δ so as to reach the
boundaries exactly, and in order to keep the ratio K = hmax/h1 ≈ 10, where hmax = max hi. The number of points of the nonuniform grid
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Fig. 4. Comparison of the relative error as defined by (15) for different choices of the initial condition, Fourier approach.

is chosen such that the mean value of {hi} equals the step-size of the uniform grid. These constraints guarantee a reasonable nonuniform
grid. The number of time steps is 5000.

The comparison between the uniform and nonuniform grids is shown in Fig. 5. In all cases the initial condition isψ0(r, θ ) =
√
ρ4(r)eiθ ,

thus the error for the uniform grid can be compared directly with that in Fig. 4 for the case of Padé approximation with q = 4 (red squares
in both Figures).

We first focus on the results with the same number of points and the same boundaries, i.e. red squares and blue circles in Fig. 5. The
discrete mass variation along time integration is comparable and of order 10−13. This confirms the conservation of mass also for the case
of nonuniform grid, as discussed in Section 3.2. In the nonuniform case the error is roughly one order of magnitude smaller than in the
uniform case on small disks and for t not too large, whereas the curve of the nonuniform case tends to jump onto the uniform one after
a certain time as the radius of the disk of interest increases. This suggests the idea that the error arises at the boundaries, where ψ0(r, θ )
does not exactly fulfill Neumann boundary conditions.

Motivated by this, we have changed the boundaries from L = 20 to L = 30 and L = 10 to check the dependency of the error on
the choice of the truncated domain. In doing so, we have preserved the constraints on the nonuniform grids discussed above, obtaining
M = 1012 degrees of freedom for L = 10 (upward green triangles) and M = 3012 degrees of freedom for L = 30 (downward black
triangles). With reference to Fig. 5, the domain bounded at L = 10 is clearly too small and the error is always very large compared to all
the other cases. On the other hand, the curves for L = 20 (blue circles) and L = 30 (downward black triangles) behave roughly in the same
way up to a certain value of t , after which the case L = 20 consistently show larger errors than the case L = 30. This reinforces the claim
that the error arises from the boundary conditions.

4.3. Comparison between Fourier spectral method and nonuniform finite differences

Now we concentrate on our main goal, which is the comparison between TSSP with Fourier basis function on uniform grids and TSFD
on a nonuniform grid that we fix to hmin = 0.05, L = 20, m = 201. In order to compare the error defined by (15) for the two methods,
we always evaluate the TSSP solution on the nonuniform grid points (spectral solutions can be evaluated everywhere). This set of points
has the advantage of being denser in the vortex core, where higher spatial resolution is desirable. Results are reported in Fig. 6, where SP
stands for spectral and NFD for nonuniform finite differences.

Keeping in mind that the spectral Fourier approach needs mirroring, i.e. the number of modes in each direction must be doubled,
we first choose a number of Fourier modes m = 2 · 200 in each direction to make it equal to the number of points of the reference
case for nonuniform finite differences (m = 201) in the physical (unmirrored) domain. The overall behavior of the error for these two
cases is comparable: TSSP (red squares) performs better than TSFD (blue circles) for small values of t , whereas the opposite happens for
intermediate values of t . For large t the two curves collapse on each other.

Due to the fact that TSSP needs mirroring, i.e. MTSSP = 4MTSFD, in Fig. 6 we explore also the cases with less Fourier modes, namely
m = 2 · 100 (upward green triangles) and m = 2 · 50 (downward black triangles). As observed for the case m = 2 · 200, in the long term
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Fig. 5. Comparison of the relative error as defined by (15) for central finite differences on uniform (UFD) and nonuniform (NFD) grids.

Fig. 6. Comparison of the relative error as defined by (15) between nonuniform finite differences (NFD) and spectral Fourier (SP) for different numbers of Fourier modes.

all curves seem to provide similar errors, regardless of the disk radius. On the other hand, for small values of t , the number of degrees of
freedom plays a rôle in that a larger number of Fourier modes ensure smaller errors.

It is important to keep in mind that, for what seen in Fig. 3, the TSSP Fourier approach does not retain the spectral accuracy because of
the lack of periodicity at the boundaries.

As a final remark, we observe that the error of the Fourier solution computed on its own uniform grid, reported in Fig. 4 with red
squares, is smaller than the error of the Fourier solution evaluated on the nonuniform grid, reported in Fig. 6 with red squares.

4.4. Maximum accurate resolution of Fourier spectral method

As expected, from Fig. 6 we have seen that the smaller the number of Fourier modes, the larger the relative error with respect to the
initial condition.

We wish to check if there exists an upper limit to the maximum resolution of Fourier spectral method. For doing so, we increase the
number of Fourier modes and, proportionally, the number of time steps as suggested in [32]. Results are shown in Fig. 7. We observe
high accuracy in the core (see smaller disk, left plot) for small values of t , immediately followed by saturation. In a larger disk (right plot),
saturation kicks in almost immediately. The errors reported in Fig. 7 suggest that m = 2 · 200 is a reasonable value of Fourier modes for
the preservation of a two-dimensional quantum vortex in a computational domain [−L, 3L)2, L = 20. Since the healing length is ξ = 1,
the grid size is ξ/5.
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Fig. 7. Comparison of the relative error as defined by (15) for increasing number of Fourier modes.

Fig. 8. Comparison of the relative error as defined by (15) for different evaluations of the Fourier solution (m = 2 · 100) at nonuniform grids.

4.5. Fourier evaluation on nonuniform grids

As explained in the Introduction, ourmotivation to explore the nonuniform finite difference approach is based on the need of high local
spatial resolution and accuracy. For instance, this is a challenging requirement for the study of vortex reconnections.

Instead of increasing the number of Fouriermodes so as to reach higher global spatial resolution, one can resort to a TSSPmethodwith a
reasonable number ofmodes (considering thatmirroring is needed) and then evaluate the TSSP solution on a nonuniform grid, with denser
points where they are needed. In Fig. 8 we compare the reasonable case m = 2 · 100, for which the number of modes is relatively small,
but not too small, with different nonuniform grids. We notice that the numerical integration itself is carried out only once and the Fourier
coefficients of the solution are stored at each time step. The evaluation at the grid points is performed afterward, in the post processing
stage, as many times as desired. Moreover, tools like the Nonuniform Fast Fourier Transform (NFFT, see [33,34]) might be employed for
the fast evaluation of trigonometric polynomials at arbitrary point sets. The constant spatial step-size of the TSSP method is h = 0.4,
whereas hmin stands for the minimum value of the step-size, in the proximity of the origin, for the nonuniform grids. As seen before, there
is a substantial difference in the error only for t < 2, whereas for larger values of t evaluating the Fourier solution on a nonuniform grid
does not worsen the solution. Evaluating a TSSP solution on a locally refined grid is, thus, a very promising approach to study, for instance,
quantum vortex reconnections.

5. Conclusions

After deriving a new accurate Padé approximation for the density distribution of a two-dimensional steady-state vortex, we have used
it as the initial condition for the Gross–Pitaevskii equation to test the performance of the time-splitting Fourier method. We showed that,
although it cannot retain its classical spectral accuracy in space being as accurate as low-order finite difference on nonuniform grids, it
preserves quite well the steady-state solution, especially in the neighborhood of the vortex core. Moreover, the Fourier approach is easy
to implement and generally fast, thanks to FFT. The additional advantage of a post-processing evaluation on arbitrary points makes this
approach suited for applications where local high resolution is required.

Appendix. Detailed derivation of Padé approximations

The case q = 2. The coefficients of this expansion are already known, however it is instructive to proceed with their derivation in order
to understand how it works. We have to compute 3 coefficients, a1, b1 and a2, therefore we can use only 3 equations. These equations
are obtained by nullifying, respectively, the coefficients of the terms r2, r4 and r6 in the numerator N2(r) (lower-order powers of r2k). By
nullifying the coefficient of r2, we get

− 4a21b1 + 4a1a2 + a21 = 0,
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Table A.1
Coefficients of Padé approximations ρ2 and ρ3 .

q = 2 q = 3

a1 11
32

0.34003812123694735361

b1
5−32a1

48−192a1

2304a31+656a21−421a1−28

7680a21−1680a1−330

a2 a1
(
b1 −

1
4

)
a1

(
b1 −

1
4

)
b2

768a1b1−120b1−384a21+8a1+7
4608a1−1152

a3
a1(192b2−48b1+16a1+5)

192

from which a2 = a1
(
b1 −

1
4

)
. By nullifying the coefficient of r4, and replacing a2 with the expression above, we get

a21(192a1b1 − 48b1 − 32a1 + 5) = 0,

which gives b1 =
5−32a1

48−192a1
. If we now nullify the coefficient of r6 and replace a2 with a1

(
b1 −

1
4

)
and b1 with 5−32a1

48−192a1
, we get the following

equation

a21(8a1 + 1)(32a1 − 11) = 0.

Clearly, a1 = 0 is not acceptable, nor is a1 = −
1
8 . The only acceptable value is a1 =

11
32 . As wementioned before, Eq. (2) cannot be satisfied

exactly, however, an a posteriori evaluation reveals that the remaining coefficients of r2k are smaller than 1.5 × 10−4 and monotonically
decreasing with k.

The case q = 3. Sincewe have to compute 5 coefficientswe need 5 equations, which are obtained by imposing that the coefficients of the
terms r2, r4, r6, r8 and r10 must be zero. Bynullifying the coefficient of r2 westill get the sameequation as for q = 2,−4a21b1+4a1a2+a21 = 0,
from which a2 = a1

(
b1 −

1
4

)
. By nullifying the coefficient of r4, and replacing a2 with the expression above, we get

192a1b2 − 48a1b1 − 192a3 + 16a21 + 5a1 = 0,

which is easy to solve for a3 leading to

a3 =
a1(192b2 − 48b1 + 16a1 + 5)

192
.

Nowwe collect terms in r6 and impose its coefficient to be zero. In this equation we replace a2 and a3 with the expressions derived above
and get the equation

4608a1b2 − 1152b2 − 768a1b1 + 120b1 + 384a21 − 8a1 − 7 = 0,

which we solve for b2:

b2 =
768a1b1 − 120b1 − 384a21 + 8a1 + 7

4608a1 − 1152
.

Then we nullify the coefficient of r8, substitute all previously found a2, a3 and b2, getting the equation

7680a21b1 − 1680a1b1 − 330b1 − 2304a31 − 656a21 + 421a1 + 28 = 0,

which gives

b1 =
2304a31 + 656a21 − 421a1 − 28

7680a21 − 1680a1 − 330
.

Finally, we nullify the coefficient of r10, substitute a2, a3, b2 and b1, and get the equation for a1

a21
(
21233664a51 − 9732096a41 − 62464a31 + 137856a21 + 62772a1 − 1247

)
= 0.

This equation must be solved numerically and leads to many real solutions. However the only value that reproduces a physical behavior
of ρ3(r) for r → 0 is a1 = 0.34003812123694735361. It is possible to compute the first derivative and verify that ρ ′

3(r) > 0 for all r > 0.
In other words, ρ3 is a physical, monotonically increasing, approximation of the density due to a two-dimensional quantum vortex. Again,
the coefficients of r2k that are not zero are, indeed, smaller than 4.0 × 10−4 and monotonically decreasing with k. Table A.1 summarizes
the coefficients for the cases q = 2 and q = 3.

The case q = 4. Now we have 7 coefficients to compute, therefore we need 7 equations, i.e. we need to nullify the coefficients of r2k
for k = 1, . . . , 7. By canceling the term r2 and solving for a2 we get the usual expression a2 = a1

(
b1 −

1
4

)
. By nullifying the term r4,

substituting a2 and solving for a3 we get a3 =
a1(192b2−48b1+16a1+5)

192 , which is the same expression obtained for ρ3. By canceling the term
r6, substituting a2 and a3 as found, and solving for a4 we get

a4 =
4608a1b3 − 1152a1b2 + (384a21 + 120a1)b1 − 128a21 − 7a1

4608
.
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Table A.2
Coefficients of Padé approximation ρ4 .

q = 4

a1 0.34010790700196714760

b1
2304a31+656a21−421a1−28

7680a21−1680a1−330

a2 a1
(
b1 −

1
4

)
b2

(737280a31+209920a21−134720a1−8960)b1−364544a31+70144a21+18256a1+393

2457600a21−537600a1−105600

a3
a1(192b2−48b1+16a1+5)

192

b3
(61440a1−9600)b2+(−30720a21+640a1+560)b1+8448a21−1056a1−21

368640a1−92160

a4
4608a1b3−1152a1b2+(384a21+120a1)b1−128a21−7a1

4608

By canceling the term r8, substituting a2, a3, a4 and solving for b3 we get

b3 =
(61440a1 − 9600)b2 + (−30720a21 + 640a1 + 560)b1 + 8448a21 − 1056a1 − 21

368640a1 − 92160
.

By canceling the term r10, substituting a2, a3, a4 and b3, and solving for b2 we get

b2 =
(737280a31 + 209920a21 − 134720a1 − 8960)b1 − 364544a31 + 70144a21 + 18256a1 + 393

2457600a21 − 537600a1 − 105600
.

By canceling the term r12, substituting all known aj, b3, b2, and solving for b1 we get

b1 =
722731008a51 − 326467584a41 − 13427712a31 + 11551104a21 + 834006a1 − 12183

2972712960a51 − 1362493440a41 − 8744960a31 + 19299840a21 + 8788080a1 − 174580

Finally by canceling the term r14, substituting all aj, bk previously found, we get an equation for a1

1292033536819200a81 − 2530164294549504a71 + 1853440540016640a61−

642522859438080a51 + 107808283328512a41 − 8028170208256a31+

248539665024a21 + 1297120628a1 + 9325957 = 0.

This equation hasmany real solutions, which can be determined numerically. However, the only value that leads to a physically acceptable
ρ4(r) for r → 0 is a1 = 0.34010790700196714760. After computing all other coefficients and the first derivative, it is straightforward
to verify that ρ ′

4(r) > 0 for all r > 0, i.e. ρ4 is a physical, monotonically increasing, approximation of the density for a two-dimensional
quantum vortex. As observed before, the coefficients of r2k that are not zero are smaller than 1.9 × 10−11 and monotonically decreasing
with k. Table A.2 summarizes the coefficients for the case q = 4.

References

[1] W.F. Vinen, Phil. Trans. R. Soc. A 366 (2008) 2925–2933.
[2] M.S. Paoletti, D.P. Lathrop, Ann. Rev. Cond. Mat. Phys. 2 (2011) 213–234.
[3] C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, Proc. Natl. Acad. Sci. USA 111 (2014) 4647–4652.
[4] U. Frisch, Turbulence, Cambridge University Press, Cambridge, England, 1995.
[5] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, England, 2000.
[6] F. Hussain, K. Duraisamy, Phys. Fluids 23 (2011) 021701(4).
[7] S. Zuccher, M. Caliari, A.W. Baggaley, C.F. Barenghi, Phys. Fluids 24 (2012) 1–21.
[8] L.P. Pitaevskii, Sov. Phys.—JETP 13 (1961) 451–454.
[9] E.P. Gross, J. Math. Phys. 4 (1963) 195–207.

[10] P.H. Roberts, N.G. Berloff, in: C.F. Barenghi, R.J. Donnelly, W.F. Vinen (Eds.), Quantized Vortex Dynamics and Superfluid Turbulence, in: Lecture Notes in Physics, vol.
571, Springer Berlin Heidelberg, 2001, pp. 235–257.

[11] N.G. Berloff, J. Phys. A: Math. Gen. 37 (2004) 1617–1632.
[12] W. Bao, Y. Cai, Kinet. Relat. Models 6 (2013) 1–135.
[13] S. Zuccher, R.L. Ricca, Phys. Rev. E 92 (2015) 061001.
[14] L. Kondaurova, V. L’vov, A. Pomyalov, I. Procaccia, Phys. Rev. B 89 (2014) 014502.
[15] M.D. Bustamante, R.M. Kerr, Physica D 237 (2008) 1912–1920.
[16] R. Hänninen, A.W. Baggaley, Proc. Natl. Acad. Sci. USA 111 (2014) 4667–4674.
[17] J. Koplik, H. Levine, Phys. Rev. Lett. 71 (1993) 1375–1379.
[18] A.J. Allen, S. Zuccher, M. Caliari, N.P. Proukakis, N.G. Parker, C.F. Barenghi, Phis. Rev. A 90 (2014) 013601.
[19] S. Zuccher, R.L. Ricca, Phys. Rev. E 95 (2017) 053109.
[20] M.W. Scheeler, D. Kleckner, D. Proment, G.L. Kindlmann, W.T.M. Irvine, Proc. Natl. Acad. Sci. USA 111 (2014) 15350–15355.
[21] A. Villois, G. Krstulovic, D. Proment, H. Salman, J. Phys. A 49 (2016) 415502.
[22] C. Rorai, J. Skipper, R.M. Kerr, K.R. Sreenivasan, J. Fluid Mech. 808 (2016) 641–667.
[23] A. Villois, D. Proment, G. Krstulovic, Phys. Rev. Fluids 2 (2017) 044701.
[24] S. Nazarenko, R. West, J. Low Temp. Phys. 132 (2003) 1–10.

http://refhub.elsevier.com/S0010-4655(17)30300-4/sb1
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb2
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb3
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb4
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb6
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb7
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb8
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb9
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb13
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb14
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb15
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb16
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb17
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb18
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb19
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb20
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb21
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb22
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb23
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb24


58 M. Caliari, S. Zuccher / Computer Physics Communications 222 (2018) 46–58

[25] M. Thalhammer, M. Caliari, C. Neuhauser, J. Comput. Phys. 228 (2009) 822–832.
[26] T.P. Billam, M.T. Reeves, B.P. Anderson, A.S. Bradley, Phys. Rev. Lett. 112 (2014) 145301.
[27] V. Gradinaru, SIAM J. Numer. Anal. 46 (2007) 103–123.
[28] M. Thalhammer, J. Abhau, J. Comput. Phys. 231 (2012) 6665–6681.
[29] J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, third ed., Springer, 2002.
[30] S.-C.T. Choi, Tech. Rep. ANL/MCS-P3028-0812, Computation Institute, University of Chicago, Chicago, Illinois, 2013.
[31] M. Caliari, P. Kandolf, A. Ostermann, S. Rainer, BIT 54 (2014) 113–128.
[32] W. Bao, S. Jin, P.A. Markowich, J. Comput. Phys. 175 (2002) 487–524.
[33] J. Keiner, S. Kunis, D. Potts, ACM Trans. Math. Software 36 (2009) 19:1–19:30.
[34] M. Caliari, S. Zuccher, Comput. Phys. Comm. 213 (2017) 197–207.

http://refhub.elsevier.com/S0010-4655(17)30300-4/sb25
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb26
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb27
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb28
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb29
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb30
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb31
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb32
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb33
http://refhub.elsevier.com/S0010-4655(17)30300-4/sb34

	Reliability of the time splitting Fourier method for singular solutions in quantum fluids
	Introduction
	Accurate Pade approximation of a 2d vortex
	Time splitting methods
	Time splitting Fourier method
	Time splitting finite difference method

	Numerical experiments
	Comparison between different approximations of the initial condition
	Uniform vs. nonuniform finite differences
	Comparison between Fourier spectral method and nonuniform finite differences
	Maximum accurate resolution of Fourier spectral method
	Fourier evaluation on nonuniform grids

	Conclusions
	Detailed derivation of Pade approximations
	References


