
Computer Physics Communications 213 (2017) 197–207

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an
application to quantum vortex reconnections✩

Marco Caliari ∗, Simone Zuccher
Department of Computer Science, University of Verona, Italy

a r t i c l e i n f o

Article history:
Received 11 May 2016
Received in revised form
1 December 2016
Accepted 5 December 2016
Available online 16 December 2016

Keywords:
GPE
Fourier series evaluation
Time-splitting
NFFT

a b s t r a c t

Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier
Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated
Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ
the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed
for this purpose, and provide a Matlab R⃝ and GNU Octave interface that makes NFFT easily available
to the Numerical Analysis community. We test the effectiveness of our package in the framework of
quantum vortex reconnections, where pseudospectral Fouriermethods are commonly used and local high
resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated
Fourier series at arbitrary points provides excellent results at a computational cost much smaller than
carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce
comparable details of the reconnecting vortices.

Program summary

Program Title: INFFTM
Program Files doi: http://dx.doi.org/10.17632/nx5zzp5xxj.1
Licensing provisions: GNU GPLv3
Programming language: MATLAB/GNU Octave
Nature of problem: Evaluation of 3d Fourier series at arbitrary rectilinear grids or sets of arbitrary points,
with application to quantum vortex reconnection.
Solution method: Fast n-dimensional linear transform of an n-d tensor (rectilinear grids), NFFT
(Nonuniform Fast Fourier Transform, arbitrary points), time splitting spectral Fourier method
(Gross–Pitaevskii equation for superfluids).
External routines/libraries: NFFT (optional but recommended).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fourier series approximation is a fundamental tool in computational physics. Themain reason for itswidespread usage is the availability
of the Fast Fourier Transform (FFT) algorithm which allows to evaluate, in the three-dimensional case, a linear combination of N1N2N3
trigonometric polynomials at a sample of N1N2N3 points of a regular grid with a computational cost O(N1N2N3(logN1 + logN2 + logN3))
instead of the cost O(N2

1N
2
2N

2
3) of a direct Discrete Fourier Transform.

FFT, as implemented in the FFTW [1] library, is nowadays available and easy to use onmost high level computational tools. For instance,
in the MATLAB1 language the functions ifft, ifft2, and ifftn allow fast evaluation of trigonometric polynomials at a specific regular

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author.

E-mail address:marco.caliari@univr.it (M. Caliari).
1 We will refer to MATLAB as the programming language used by the softwares Matlab R⃝ and GNU Octave.

http://dx.doi.org/10.1016/j.cpc.2016.12.004
0010-4655/© 2016 Elsevier B.V. All rights reserved.

https://vpn.univr.it/10.1016/,DanaInfo=dx.doi.org+j.cpc.2016.12.004
https://vpn.univr.it/locate/,DanaInfo=www.elsevier.com+cpc
https://vpn.univr.it/locate/,DanaInfo=www.elsevier.com+cpc
https://vpn.univr.it/dialog/,DanaInfo=crossmark.crossref.org+?doi=10.1016/j.cpc.2016.12.004&domain=pdf
https://vpn.univr.it/10.17632/,DanaInfo=dx.doi.org+nx5zzp5xxj.1
https://vpn.univr.it/science/journal/,DanaInfo=www.sciencedirect.com+00104655
https://vpn.univr.it/science/journal/,DanaInfo=www.sciencedirect.com+00104655
https://vpn.univr.it/science/journal/,DanaInfo=www.sciencedirect.com+00104655
https://vpn.univr.it/science/journal/,DanaInfo=www.sciencedirect.com+00104655
https://vpn.univr.it/science/journal/,DanaInfo=www.sciencedirect.com+00104655
https://vpn.univr.it/science/journal/,DanaInfo=www.sciencedirect.com+00104655
https://vpn.univr.it/science/journal/,DanaInfo=www.sciencedirect.com+00104655
mailto:marco.caliari@univr.it
https://vpn.univr.it/10.1016/,DanaInfo=dx.doi.org+j.cpc.2016.12.004

198 M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207

grid of points in one-, two- and n-dimensions, respectively. The fast evaluation of a three-dimensional truncated Fourier series at a set of
arbitrary points is a more challenging task. NFFT [2] is a C library that approximates the evaluation of a truncated Fourier series at a set of
M arbitrary points at costO(N1N2N3(logN1 + logN2 + logN3)+M| log ε|3), where ε is the desired accuracy (typically the double precision
one). Although a Matlab R⃝ and GNU Octave interface is provided, to our knowledge it is not commonly used in computational science,
maybe because of the NFFT algorithm formulation. For instance, given the set of coefficients {ψ̂k}

N
k=1, ifft performs the fast evaluation of

1
N

N
k=1

ψ̂ke2π i(k−1)xn , xn =
n − 1
N

, n = 1, 2, . . . ,N,

whereas, given the set of coefficients {ψ̂k}
N/2−1
k=−N/2, NFFT evaluates

N/2−1
k=−N/2

ψ̂ke−2π ikζm , ζm ∈


−

1
2
,
1
2


, m = 1, 2, . . . ,M

in an approximated and fast way.
The present work provides the package INFFTM, a MATLAB interface based on NFFT for the fast evaluation of a truncated Fourier series

of a function ψ : Ω → C at a set ΞM of arbitrary M points in the computational domainΩ =
3

d=1[ad, bd). The intermediate case of the
evaluation of a truncated Fourier series at an arbitrary rectilinear grid YM with M1M2M3 points is also addressed.

The motivation for developing this tool relies on the need for localized high resolution encountered in the post-processing stage of
reconnecting quantum vortices [3,4]. The dynamics of quantum vortices and their possible reconnections are properly described by the
Gross–Pitaevskii equation, which is normally solved by resorting to the Time Splitting pseudoSPectral (TSSP) approach. Since the details
of reconnections are localized in space at scales much smaller than the vortex core size, employing standard FFT on regular grids would
require an excessive, and thus infeasible, number of grid points in order to achieve the required resolution. However, in [5] it was found
that, even in the presence of singular solutions, the number of Fourier coefficients required for an accurate description of the solution is not
very large. The need for high local resolution at the post-processing stage, however, urgently demanded a tool for the efficient evaluation
of such a small truncated Fourier series at a localized set of clustered points.

The paper is organized as follows. In Section 2wepresent the details of Fourier series decomposition and evaluation in three dimensions,
whereas in Section 3 we describe the framework for quantum fluids simulations. In Section 4 we outline themain functions of our INFFTM
package and in Section 5 we show the result of the two main drivers performing a quantum vortex reconnection and some evaluations of
the truncated Fourier series at different rectilinear grids and arbitrary points.

2. Fourier series decomposition and evaluation

This section, which is the core of the whole work, introduces the necessary notation and describes how the Fourier decomposition is
performed, together with its successive evaluation at rectilinear grids or arbitrary points. Let

IN =

3
d=1

{1, 2, . . . ,Nd}, N = (N1,N2,N3), Nd even.

Given a complex function ψ ∈ L2(Ω), withΩ =
3

d=1[ad, bd), its truncated Fourier series is

ψ̂(x) =


k∈IN

ψ̂kEk(x), ψ̂k ∈ C, (1)

where x = (x1, x2, x3) ∈ Ω , k = (k1, k2, k3) is a multiindex and

Ek(x) =

3
d=1

e2π i(kd−1−Nd/2)(xd−ad)/(bd−ad)

√
bd − ad

.

Given the regular grid of points

XN = {xn = (x1,n1 , x2,n2 , x3,n3)} =

3
d=1

{ad + (nd − 1)hd, nd = 1, 2, . . . ,Nd},

with hd = (bd − ad)/Nd, the approximate Fourier coefficients ψ̂k are computed by the three-dimensional trapezoidal quadrature formula
applied to the integral

Ω

ψ(x)Ek(x)dx,

where Ek(x) denotes the complex conjugate of Ek(x). The function ψ̂(x) turns out to be an approximation of the original ψ(x) which
interpolates it at the points XN . The denominator in the basis functions Ek assures the equivalence

k∈IN

|ψ̂k |
2

=


Ω

|ψ̂(x)|2dx = h1h2h3


xn∈XN

|ψ̂(xn)|2 ≈


Ω

|ψ(x)|2dx

for any domainΩ =
3

d=1[ad, bd).

M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207 199

The regular grid of points XN can be represented in MATLAB by

[X{1:3}] = ndgrid(x{1:3})

where

x{d} = linspace(a(d),b(d),N(d)+1)’; x{d} = x{d}(1:N(d))

Given n = [n(1),n(2),n(3)], we have

xn = [x{1}(n(1)),x{2}(n(2)),x{3}(n(3))]
= [X{1}(n(1),n(2),n(3)),... X{2}(n(1),n(2),n(3)),... X{3}(n(1),n(2),n(3))].

If psi denotes the MATLAB three-dimensional array containing the values of ψ at XN , then the three-dimensional array psihat of
approximate Fourier coefficients ψ̂k is recovered using the fast Fourier transform

psihat = fftshift(fftn(psi)) * prod(sqrt(b - a) ./ N)

whose computational cost is O(N1N2N3(logN1 + logN2 + logN3)).
Given the truncated Fourier series approximation of a function, it is trivial to approximate its partial derivatives with respect to the

directions xd since

∂xdEk(x) = Λk,dEk(x), Λk,d = 2π i(kd − 1 − Nd/2)/(bd − ad), (2)

which leads to

∂xdψ̂(x) =


k∈IN

Λk,dψ̂kEk(x).

From the definition ofΛk,d, it follows that
Ω

|∇ψ̂(x)|2dx =


k∈IN

Λk,1
2 +

Λk,2
2 +

Λk,3
2 |ψ̂k |

2

= −


k∈IN


Λ2

k,1 +Λ2
k,2 +Λ2

k,3

|ψ̂k |

2
= −


Ω

∇
2ψ̂(x)ψ̂(x)dx,

where the last equivalence comes from integration by parts and taking into account the periodicity of ψ̂(x) in the computational
domainΩ .

2.1. Evaluation of a truncated Fourier series at a rectilinear grid

The evaluation of a truncated Fourier series at the regular grid XN can be implemented straightforwardly by employing the inverse fast
Fourier transform

psihathat = ifftn(ifftshift(psihat)) / prod(sqrt(b - a) ./ N)

whose computational cost is O(N1N2N3(logN1 + logN2 + logN3)).
Given an arbitrary rectilinear grid YM =

3
d=1{yd,md , md = 1, 2, . . . ,Md} ⊂ Ω , we introduce the matrices

Ed
=

edmdkd


=

e2π i(kd−1−Nd/2)(yd,md−ad)/(bd−ad)

√
bd − ad

∈ CMd×Nd , d = 1, 2, 3

and then, for a single ym ∈ YM , evaluate

ψ̂(ym) =


k∈IN

ψ̂kEk(ym) =

N3
k3=1

e3m3k3


N1

k1=1

e1m1k1


N2

k2=1

ψ̂(k1,k2,k3)e
2
m2k2


.

We observe that the innermost and the middle sum can be evaluated, for each k3, by a matrix–matrix product between ψ̂(·,·,k3) and the
matrix E2 transposed, followed by a second matrix–matrix product with the matrix E1. The overall cost is O(N1N2M2 + N1M2M3).

If the result, i.e. a matrix of orderM1 ×M2, is computed and stored for each k3 (this cost is O(N3(N1N2M2 + N1M2M3))), then the outer
sum corresponds to themultiplication of the term e3m3k3

for suchmatrices, for a total computational costO(N3M1M2M3). A straightforward
implementation in MATLAB of this strategy could be

for d = 1:3
E{d} = exp(2*pi*1i * (y{d} - a(d)) / (b(d) - a(d)) ...

* (-N(d)/2:N(d)/2 - 1)) / sqrt(b(d) - a(d));
end
psihaty = zeros(M);
for k3 = 1:N(3)

temp = E{1} * (psihat(:,:,k3) * E{2}.’); % 2d evaluation
for m3 = 1:M(3)

psihaty(:,:,m3) = psihaty(:,:,m3) + temp * E{3}(m3,k3);
end

end

200 M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207

The routine ndcovlt2 implements the same evaluation avoiding the two loops over N3 and M3. Both implementations do not need the
explicit construction of YM . In order to have an idea of the computational cost, we tested the evaluation of a series with 643 random
complex Fourier coefficients at the regular grid XM with 643 points and obtained what follows.
ifft
Elapsed time is 0.010371 seconds.
ndcovlt

error_inf =

1.0725e-13

Elapsed time is 0.049872 seconds.
two loops

error_inf =

1.0760e-13

Elapsed time is 0.201674 seconds.

in Matlab R⃝ R2014b and
ifft
Elapsed time is 0.0108922 seconds.
ndcovlt
error_inf = 9.5313e-14
Elapsed time is 0.0321529 seconds.
two loops
error_inf = 9.4936e-14
Elapsed time is 0.258168 seconds.

in GNUOctave 4.0.0. The first elapsed time is due to the inverse fast Fourier transformwhose result is used tomeasure the error, in infinity
norm, with respect to the other two methods. In the other two methods, the computational cost for the evaluation of Ed, d = 1, 2, 3, is
not considered. This test can be found at the end of the igridftn.m file and can be run, in GNU Octave, by demo igridftn. Due to the
randomness of the Fourier coefficients the values of the errors are not perfectly reproducible. The implementation via ndcovlt is always
much faster than the usage of nested loops; the factor is four in Matlab R⃝ R2014b and eight in GNU Octave 4.0.0, where JIT (Just-in-time
accelerator) is not available. We observe that a truncated Fourier series can be evaluated at any rectilinear grid YM and that ndcovlt
is very general as it can evaluate an n-dimensional truncated series at a rectilinear grid of points. For instance, it was used in [6] for the
evaluation of truncated Hermite series.

2.2. Evaluation of a truncated Fourier series at arbitrary points

Given a set of arbitrary points ΞM = {ξm = (ξ1m, ξ2m, ξ3m), m = 1, 2, . . . ,M} ⊂ Ω , it is possible to evaluate ψ̂ at a single point ξm
by firstly computing the vectors

Ed
=

edkd


=
e2π i(kd−1−Nd/2)(ξdm−ad)/(bd−ad)

√
bd − ad

∈ CNd , d = 1, 2, 3

and then

ψ̂(ξm) =


k∈IN

ψ̂kEk(ξm) =

N1
k1=1

N2
k2=1

N3
k3=1

ψ̂(k1,k2,k3)e
1
k1e

2
k2e

3
k3 . (3)

Finally, a loop overm has to be performed. This can be done in MATLAB by the code
for m = 1:M

E{1}(:,1,1) = exp(2*pi*1i * (Xi(1,m) - a(1)) / (b(1) - a(1)) ...
* (-N(1)/2:N(1)/2 - 1)) / sqrt(b(1) - a(1));

E{2}(1,:,1) = exp(2*pi*1i * (Xi(2,m) - a(2)) / (b(2) - a(2)) ...
* (-N(2)/2:N(2)/2 - 1)) / sqrt(b(2) - a(2));

E{3}(1,1,:) = exp(2*pi*1i * (Xi(3,m) - a(3)) / (b(3) - a(3)) ...
* (-N(3)/2:N(3)/2 - 1)) / sqrt(b(3) - a(3));

EE = bsxfun(@times,E{1} * E{2},E{3});
psihatxi(m) = sum(psihat(:) .* EE(:));

end

at a computational cost O(MN1N2N3). This implementation is limited to three dimensions, but it can be extended to any n-dimensional
truncated series. Unfortunately, due to the construction of the vectorsEd inside a loop, this implementation turns out to be quite inefficient.

2 It was originally written by Jaroslav Hajek for the linear-algebra package of GNU Octave.

M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207 201

2.2.1. NFFT
Provided the set of points {ζm = (ζ1m, ζ2m, ζ3m), m = 1, 2, . . . ,M}, with −1/2 ≤ ζdm < 1/2, NFFT performs a fast approximation of

f̂ (ζm) =


k∈IN


f̂k

3
d=1

e−2π i(kd−1−Nd/2)ζdm


.

Given the coefficients {ψ̂k}k and the evaluation points ΞM = {ξm}m, Fourier series evaluation at ΞM can be approximated by calling the
NFFT algorithm with

ζdm = mod

ξdm − ad
ad − bd

, 1


−
1
2
, d = 1, 2, 3

and coefficients

f̂k = ψ̂k

3
d=1

eπ i(kd−1−Nd/2)

√
bd − ad

= ψ̂k
(−1)k1+k2+k3−3−(N1+N2+N3)/2

3
d=1

√
bd − ad

,

where mod(x, y) is the usual remainder of the Euclidean division of x by y, mod(x, y) = x − y ⌊x/y⌋.
We first checked our MATLAB interface to NFFT by evaluating a truncated series of 643 random complex Fourier coefficients at the

regular grid XM with 643 points (for which the inverse FFT is available) and compared the result in infinity norm obtaining

NFFT

error_inf =

5.3705e-14

Elapsed time is 2.267151 seconds.

in Matlab R⃝ R2014b and

NFFT
error_inf = 6.3161e-14
Elapsed time is 2.74056 seconds.

in GNU Octave 4.0.0. Although the asymptotic cost of the NFFT is smaller than the evaluation at the regular grid, for this number of
coefficients and points of evaluation NFFT turns out to be about 20 times slower than ndcovlt.

In order to have an idea of the computational cost in a real case usage, the evaluation of a series with 643 coefficients on M = 1000
random points inΩ takes

one-loop
Elapsed time is 3.295020 seconds.
NFFT

error_inf =

1.2296e-13

Elapsed time is 0.130843 seconds.

in Matlab R⃝ R2014b and

one-loop
Elapsed time is 3.95735 seconds.
NFFT
error_inf = 1.2488e-13
Elapsed time is 0.0957451 seconds.

in GNU Octave 4.0.0. Here we observe a speed-up of about 40 of the NFFT approach over a straightforward implementation. The measured
error is between the two evaluations. These tests can be found at the end of the innft3.m file and can be run, in GNU Octave, by
demo infft3.

202 M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207

3. Application to quantum vortex reconnections

Turbulence, ubiquitously present in nature, is dominated by reconnection of vortical structures. Examples of reconnecting vortex tubes
can be found in quantum turbulence [7–9], whose dynamics is properly described by the Gross–Pitaevskii equation (GPE) [10,11]

∂ψ

∂t
=

i
2
∇

2ψ +
i
2


1 − |ψ |

2ψ, (4)

where ψ is the complex wave function. Quantum vortices are infinitesimally thin filaments of concentrated vorticity in a unitary
background density, ρ(x) = |ψ(x)|2 → 1 when |x| → ∞. On the vortex centerlines the density tends to zero and the phase of the
wave functionψ is not defined. In the dimensionless units of Eq. (4), the quantum of circulation is Γ = 2π and the healing length, i.e. the
lengthscale of the core vortex over which reconnections occur, is ξ = 1. GPE admits energy

E =
1
2


|∇ψ(x)|2 dx +

1
4


(1 − |ψ(x)|2)2 dx. (5)

Time splitting Fourier methods [12,3,13,4,5] are normally used to compute the numerical solution of the GPE (4). Because these methods
rely on periodic boundary conditions for the solutions restricted to a bounded physical domain, initial conditions that are not periodicmust
be mirrored in the directions lacking periodicity [12], with a consequent increase of the degrees of freedom and computational effort [5].

Recent studies focusing on the topological details of quantum-vortex reconnections [4] have emphasized the need for an accurate
description of the vortex centerline, which can be achieved by costly high-resolution numerical simulations of Eq. (4). On the other hand,
it is possible to resort to more affordable approaches combined with an a posteriori accurate evaluation of the solution on a finer grid, as
proposed in Ref. [5].

In order to exploit the second option, following [12], we consider a fully three-dimensional reconnection originating from two
perpendicular straight vortices, whose cross sections are two-dimensional vortices. The wave function of a single two-dimensional vortex

in the (s1, s2) plane and centered in (0, 0) is ρ(

s21 + s22)

1/2eiθ(s1,s2) = f (

s21 + s22)e

iθ(s1,s2), where f (

s21 + s22) = f (r) is a function to be

determined whereas the phase is θ(s1, s2) = atan2(s2, s1). By requiring the wave function to be the steady solution of Eq. (4), we find [5]
that ρ(r) satisfies

ρ ′′
+
ρ ′

r
−
(ρ ′)2

2ρ
−

2ρ
r2

+ 2(1 − ρ)ρ = 0, (6)

with boundary conditions ρ(0) = 0, ρ(∞) = 1. Instead of computing the numerical solution of this equation, it is possible to resort to a
high-order Padé approximation of ρ(r) [5]. It is known [14,15] that diagonal Padé approximations of ρ(r) retain only even degrees at both
the numerator and denominator, that is

ρ(r) ≈ ρq(r) =
a1r2 + a2r4 + · · · + aqr2q

1 + b1r2 + b2r4 + · · · + bqr2q
. (7)

The coefficients of a certain approximation ρq(r) are computed by substituting the analytic expressions ρq(r), ρ ′
q(r) and ρ

′′
q (r) in Eq. (6)

and by nullifying the coefficients of the first 2q− 1 terms r2k. The choice q = 4 leads to an algebraic equation of degree 8 for a1 which can
be solved numerically. Once a1 is known, all the other coefficients can be computed analytically (see [5] for the details). Their expression
is reported and used in the code file sf4pade.m. A straight vortex in a three-dimensional domain can be obtained by the extrusion of
the above two-dimensional wave function along the vortex center line. A nontrivial initial condition generated by the superimposition of
multiple straight vortices is simply the product of their wave functions.

3.1. Numerical discretization

After restricting the unbounded domain R3 to the computational domainΩ =
3

d=1[ad, bd) in which the initial solution is periodic, Eq.
(4) can be split into the kinetic and potential parts

∂u
∂t

=
i
2
∇

2u (8a)

∂v

∂t
=

i
2


1 − |v|2


v, (8b)

and the Time Splitting pseudoSPectral (TSSP) approach can be employed, as done in [5]. Eq. (8a) is solved exactly in timewithin the Fourier
spectral space, whereas Eq. (8b) is solved exactly owing to the fact that |v| is preserved by the equation. Therefore,

v(τ , x) = exp

τ i
2


1 − |v(0, x)|2


v(0, x) (9)

for any x in the spatial domain. By introducing eτAun(x) and eτB(vn(x))vn(x) to denote the two partial numerical solutions, the numerical
approximation ψn+1(x) of ψ(tn+1, x) at time tn+1 = (n + 1)τ is recovered by the so-called Strang splitting

ψn+1/2(x) = eτAe
τ
2 B(ψn(x))ψn(x)

ψn+1(x) = e
τ
2 B(ψn+1/2(x))ψn+1/2(x).

Strang splitting preserves the discrete finitemass in the computational domainΩ and is second order accurate in time.We refer the reader
to [16] for higher-order time splitting methods.

M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207 203

3.2. Other applications of the NFFT tool

The Gross–Pitaevskii equation is a model not only for superfluids but also for Bose–Einstein condensates (see [17] for a review). In the
second framework, the typical formulation is

i
∂ψ

∂t
= −

1
2
∇

2ψ + Vψ + β|ψ |
2σψ,

where V : R3
→ R is a scalar potential, β a real constant and σ > 0. In this case the corresponding energy is

E =
1
2


|∇ψ(x)|2dx +


V |ψ(x)|2dx +

β

σ + 1


|ψ(x)|2σ+2dx

and the Strang splitting method described above can still be applied without anymodification. We notice that space discretizations which
are not regular (see, for instance, [5] for nonuniform finite differences and [18] for finite elements) provide results that are difficult to
compare with those obtained via pseudospectral approaches, which are available only on regular grids. INFFTM allows the evaluation at
arbitrary rectilinear grids and sets of arbitrary points making the comparison of these results possible.

Another interesting application where NFFT is a valuable tool is the so calledmagnetic Schrödinger equation

i
∂ψ

∂t
=

1
2
(i∇ + A)2ψ + Vψ,

where A : R3
→ R3 is the vector potential which can be chosen divergence free owing to Coulomb’s gauge. Besides the kinetic and the

potential parts, the advection part

∂w

∂t
= A · ∇w

has to be considered and then combined with the others in a splitting scheme. The advection part can be solved, for instance, by the
characteristics method and the value of w(τ, x) at the departure point of the characteristics can be recovered by NFFT. We refer to [19]
for further details.

4. Description of the programs

On developing the code, we realized that some functions naturally apply to any space dimension. On the contrary, others are specific
for the three-dimensional case, which is the object of the present work. Therefore, we used the following convention: function names
ending in ‘3’ are specific and for the three-dimensional case only, whereas the others canwork in any space dimension. The only exception
is igridftn which calls ndcovlt, originally developed by Jaroslav Hajek and not designed for the trivial one-dimensional case (see
Section 4.1 and Appendix B). In what follows we describe only the implementation in three dimensions.

As written in the README file, before using the package, NFFT has to be installed. We refer to Appendix A for the instructions on the
installation in a Linux environment. After that, the correct path to the NFFT library has to be given in the file nfftpath.m. If the NFFT
library is not installed, the packagewillwork anyway, but the evaluation of a three-dimensional truncated Fourier series at a set of arbitrary
points will be extremely slow.

4.1. Functions for Fourier series evaluation

The two main functions are igridftn and infft3. They implement the evaluation of the truncated Fourier series (1) at a rectilinear
grid (ndgrid format) and at an arbitrary set of points, respectively. The calls are similar

psi = igridftn(psihat,a,b,y)
psi = infft3(psihat,a,b,Xi)

psihat being the three-dimensional array of Fourier coefficients, a and b the limits of the physical domain Ω (in the form
[a(1),a(2),a(3)] and [b(1),b(2),b(3)]), y a cell array containing in the column vector y{d} the dth projection of the points
and Xi a two-dimensional array containing in the dth row the dth component of the points.

The simple function

plotiso3(x,data,iso)

invokes theMATLAB program isosurface to plot the isosurface of level iso of the real input data corresponding to ndgrid(x{1:3}).
Since isosurface in Matlab R⃝ R2014b requires the data in meshgrid format, plotiso3 performs the permutation

data = permute(data,[2,1,3]);

4.2. Functions for superfluid simulation by GPE

As described in Section 3, here we focus on the particular application to quantum vortex reconnections. The time integration of GPE
is carried out by the main function sfrun. Given an initial solution as a function of x{1:3}, sfrun first computes some preliminary

204 M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207

quantities (sfpregpe), such as Λk,d (see Eq. (2)), then computes initial and final mass and energy of the system (sfEm, see Eq. (5)), and
finally it performs time integration by Strang splitting method (sfgpe) and store the structure sf of the solution in a MATLAB ’-v6’
format file at nsteps1+ equally distributed time steps. The structure sf contains the fields pdb (a row vector of length six consisting
of the physical domain boundaries), psipdb (a complex 3d-array of the values of the wave function at the grid in the physical domain),
mirror (a row vector of length three for the mirroring flags) and t (the simulation time). From the structure sf it is possible to recover
the Fourier coefficients of the solution psipdb by invoking the function

[psihat,a,b] = sf2psihat(sf)

All the previous functions work in any space dimension. The functions sfsvl3 and sfic3 generate respectively a single straight vortex
in a three-dimensional domain and the superimposition of multiple vortices. The function sfview3 simply extracts the grid points and
the density of the wave function from the structure sf and plots a given isosurface level through the function plotiso3.

4.3. Evaluation within a vortex tube

The study of vortex reconnections in quantum fluids requires high spatial resolution in order to extract the vortex centerlines with
enough accuracy, and this is especially true in the neighborhood of the reconnection event (see Section 3). Instead of evaluating the
physical solution at a finer rectilinear grid within the whole physical domain, it is more convenient to evaluate the solution only within
vortex tubes, i.e. where high resolution is really needed.

Function sftubeeval3 has been designed especially for this purpose. Its input arguments are the structure sf, which defines
completely ψ on an equispaced grid in the physical domain, and rhobar, a vector containing the values of the density ρ that define the
vortex tubes. For example, if rhobar=0.2 (a single value), then function sftubeeval3 first extracts points from XN for which ρ ≤ 0.2.
Then, if ξm denotes the mth point within the vortex tube (corresponding to a certain xn ∈ XN) and hd the step-size of XN in direction d, a
small regular grid of step-size hd/3 made of only 27 points centered in ξm is generated for eachm. Finally, sftubeeval3 returns the new
set of points and ρ = |ψ |

2 evaluated at these points by NFFT. In order to retrieve smaller vortex tubes containing enough points, the input
rhobar should be a vector. In this case the process described above is repeated up to the last value of ρ and the output of sftubeeval3
is the set of pointsΞM on successive refined grids for which ρ ≤ rhobar(end), together with their corresponding values of ρ.

4.4. Drivers

The two drivers sfdrv3 and evaldrv3 were written for the convenience of the user, as they perform the numerical simulation and
the visualizations exactly as described in the next section.

5. Numerical experiments

We solve the GPE equation (4) in the physical domain [−20, 20]3. The initial solution is given by the superimposition of two straight
vortices, passing through the points (2, 0, 0) and (−2, 0, 0) and oriented as (0, 1, 0) and (0, 0, 1), respectively. In order tomake this initial
condition periodic at the boundaries, the computational domain has to be set toΩ = [−20, 60)3 and the initial solution has to bemirrored
along the three directions. This can be accomplished by setting the field mirror to [true,true,true] in the structure sf associated
to the initial solution. While ensuring the periodicity of the solution, mirroring does not force the periodicity of the derivatives. In the
computational domain we select N1 = (80, 80, 80), yielding a (coarse) regular grid XN1 with a constant space step size of 1 along each
direction. The solution is computed up to the final time T = 20 with 200 time steps. The initial solution, in the original physical domain, is
shown in Fig. 1 by plotting the isosurface ρ = 0.1 extracted from the original data at the regular grid XN1 , through the function sfview3.

The solution at the final time T = 20 is reported in Fig. 2. The left plot shows the isosurface ρ = 0.1 in the whole physical domain,
whereas the right plot shows a zoom at the isolevel ρ = 0.05, which should guarantee a better description of the vortex centerlines
(ρ → 0 therein). Clearly, none of the plots in Fig. 2 allows to discriminate whether the reconnection has occurred or not. Moreover,
reducing the isolevel of ρ makes things worse in that vortex tubes appear disconnected due to the low spatial resolution characterizing
the original data.

In order to increase the details, we evaluate the solution at a finer Cartesian equispaced grid YM1 , with M1 = (321, 321, 321) in the
physical domain [−20, 20]3 by the function igridftn. By extracting the isosurface corresponding to ρ = 0.0012, the vortex tubes
become much better defined (see Fig. 3, left) clearly indicating that a reconnection has occurred. Selecting the same isolevel for the
original data at XN1 yields an almost empty plot. Since our interest is in the neighborhood of the reconnection, instead of evaluating
the solution at equally-spaced points, it is more convenient to evaluate the solution at a coarser nonequispaced rectilinear grid YM2 , with
M2 = (281, 281, 281) points denser around the origin, always by igridftn. The isosurface ρ = 0.0012 (see Fig. 3, right) provides a
much better result than the equispaced case (Fig. 3, left) in terms of clear vortex cores, which now appear completely connected.

Finally, by employing the strategy described in Section 4.3 with the sequence rhobar=[0.2,0.05] and then plotting points
corresponding to ρ ≤ 0.0012, we obtain the left plot in Fig. 4. The set ΞM obtained by sftubeeval3 has M = 32 022 points and
the number of points corresponding to ρ ≤ 0.0012 is 809. Similar vortex tubes can be obtained without evaluation at finer grids only by
resorting to high-resolution simulations. An example is reported in the right plot of Fig. 4, which shows the isosurface ρ = 0.0012 for the
solution at the original regular grid XN2 with N2 = (228, 228, 228) and 1000 time steps.

The script to run the GPE simulation with N1 is sfdrv3 (CPU time about 14 s), whereas the script to perform evaluation is evaldrv3
(CPU time about 17 s with NFFT installed, about 247 s without). The simulation with N2 took about 420 min.

6. Conclusions

Wehave developed the package INFFTM for the fast evaluation of three-dimensional truncated Fourier series at general rectilinear grids
and sets of arbitrary points. The twomain functions, igridftn and infft3, are written in plainMATLAB language, work inMatlab R⃝ and

M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207 205

Fig. 1. Isosurface level 0.1 for the density of the initial solution at XN1 .

Fig. 2. Isosurface level 0.1 (left) and zoom of the isosurface level 0.05 (right) for the density of the final solution at XN1 .

GNUOctave and are based on two efficient, although notwidespread, tools, namelyndcovlt by J. Hajek andNFFT by J. Keiner, S. Kunis, and
D. Potts. We have demonstrated the effectiveness of igridftn and infft3 in the framework of quantum vortex reconnections. A proper
post-processing of the numerical data obtained by running a cheap simulation of the vortex dynamics modeled by the Gross–Pitaevskii
equation provides details on the reconnecting vortices that are comparable to costly high-resolution simulations. These promising results
highlight the potential of INFFTM to become a standard MATLAB library for applications involving Fourier series approximation.

Appendix A. Installation of NFFT in a Linux environment

The necessary information for installation of NFFT is available in the file README. Here we briefly summarize the procedure.
Onwriting this paper, the latest release of NFFTwasnfft-3.3.2.tar.gz.3 It can be built in the usualway (./configure andmake)

and, in order to compile the Matlab R⃝ mex interface, it must to be configured by

./configure --with-matlab=/path/to/matlab --enable-openmp

3 Available at https://www-user.tu-chemnitz.de/~potts/nfft/.

https://vpn.univr.it/%7Epotts/nfft/,DanaInfo=www-user.tu-chemnitz.de,SSL+

206 M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207

Fig. 3. Isosurface level 0.0012 for the density of the final solution evaluated at YM1 (left, equispaced grid) and at YM2 (right, nonequispaced grid).

Fig. 4. Isosurface level 0.0012 for the density of the final solution evaluated at ΞM (left) and for the density of the final solution computed and evaluated at XN2 , with
N2 = (228, 228, 228) (right).

The installation stage make install is not necessary. Then, the correct path to nfft-3.3.2/matlab/nfft has to be given in the
nfftpath.m file. The path to Matlab can be obtained by the command

matlab -n

The installation in GNU Octave is similar and requires, in the configuration stage,

./configure --with-octave=/path/to/octave --enable-openmp

If GNU Octave is installed in the system as a standard package, then it is enough to give

./configure --with-octave --enable-openmp

In order to check the correct installation of the NFFT library it is possible to run the test at the end of the nfftpath.m file or, in GNU
Octave, to run demo nfftpath. The demo (provided by the original NFFT library) requires about 20 s and has to be considered passed if
the string A two dimensional example appears. The presence of some NaN values in the output is not a symptom of a failure.

M. Caliari, S. Zuccher / Computer Physics Communications 213 (2017) 197–207 207

Appendix B. Auxiliary files and workarounds

Versions of GNUOctave before 4.0.0 have noflip function,which is required by the code and distributed in theaux folder. GNUOctave
4.0.0. has a bug4 with fftshift and ifftshift not working on three-dimensional arrays. Patched working functions are distributed
in the aux folder.

Matlab R⃝ R2014b has a bug5 preventing, from time to time, to load nfftmex.mexa64. The workaround is to load the library as soon
as Matlab R⃝ R2014b is started. This can be achieved, for instance, by running the script aux/mlloadnfft.

In the folder aux we provide also the functions igridft2, infft, and infft2. Although igridftn and ndconvlt can work in
two dimensions, in order to evaluate a two-dimensional truncated Fourier series at a rectilinear grid it is much simpler to use a double
matrix–matrix product as done in igridft2.m. The functions infft and infft2 apply NFFT to a one-dimensional and to a two-
dimensional array of Fourier coefficients, respectively. A demonstration of their usage can be found at the end of the files and can be
run, in GNU Octave, by demo infft and demo infft2. We notice that there is no need for a specific function igridft1 because the
evaluation of a one-dimensional truncated Fourier series at an arbitrary setΞM of points is straightforwardly obtained by thematrix–vector
product

E = exp(2*pi*1i * (Xi(:) - a) * (-N/2:N/2 - 1) / (b - a)) / ...
sqrt(b - a);

psi = E * psihat;

whose computational cost is O(NM). However, the one-dimensional infft might be more convenient for large M as its computational
cost is O(N logN + M |log ε|) and, in general, it is also more accurate.

References

[1] M. Frigo, S.G. Johnson, Proc. IEEE 93 (2) (2005) 216–231.
[2] J. Keiner, S. Kunis, D. Potts, ACM Trans. Math. Software 36 (4) (2009) 19:1–19:30.
[3] S. Zuccher, M. Caliari, A.W. Baggaley, C.F. Barenghi, Phys. Fluids 24 (125108) (2012) 1–21.
[4] S. Zuccher, R.L. Ricca, Phys. Rev. E 92 (6) (2015) 061001.
[5] M. Caliari, S. Zuccher, 2016, arXiv:1603.05022 [math.NA].
[6] M. Caliari, S. Rainer, Comput. Phys. Comm. 184 (3) (2013) 812–823.
[7] W.F. Vinen, Phil. Trans. R. Soc. A 366 (1877) (2008) 2925–2933.
[8] M.S. Paoletti, D.P. Lathrop, Ann. Rev. Cond. Mat. Phys. 2 (2011) 213–234.
[9] C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, Proc. Natl. Acad. Sci. USA 111 (1) (2014) 4647–4652.

[10] L.P. Pitaevskii, Sov. Phys.—JETP 13 (1961) 451–454.
[11] E.P. Gross, J. Math. Phys. 4 (1963) 195–207.
[12] J. Koplik, H. Levine, Phys. Rev. Lett. 71 (9) (1993) 1375–1379.
[13] A.J. Allen, S. Zuccher, M. Caliari, N. Proukakis, N.G. Parker, C.F. Barenghi, Phys. Rev. A 90 (2014) 013601.
[14] N.G. Berloff, J. Phys. A: Math. Gen. 37 (2004) 1617–1632.
[15] S. Nazarenko, R. West, J. Low Temp. Phys. 132 (1) (2003) 1–10.
[16] M. Thalhammer, M. Caliari, C. Neuhauser, J. Comput. Phys. 228 (3) (2009) 822–832.
[17] W. Bao, Y. Cai, Kinet. Relat. Models 6 (1) (2013) 1–135.
[18] M. Thalhammer, J. Abhau, J. Comput. Phys. 231 (20) (2012) 6665–6681.
[19] M. Caliari, A. Ostermann, C. Piazzola, J. Comput. Appl. Math. Available online 5 September 2016.

4 Bug no. #45207.
5 Bug no. 961694.

https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref1
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref2
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref3
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref4
https://vpn.univr.it/,DanaInfo=arxiv.org+1603.05022
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref6
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref7
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref8
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref9
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref10
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref11
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref12
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref13
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref14
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref15
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref16
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref17
https://vpn.univr.it/S0010-4655(16)30369-1/,DanaInfo=refhub.elsevier.com+sbref18

	INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections
	Introduction
	Fourier series decomposition and evaluation
	Evaluation of a truncated Fourier series at a rectilinear grid
	Evaluation of a truncated Fourier series at arbitrary points
	NFFT

	Application to quantum vortex reconnections
	Numerical discretization
	Other applications of the NFFT tool

	Description of the programs
	Functions for Fourier series evaluation
	Functions for superfluid simulation by GPE
	Evaluation within a vortex tube
	Drivers

	Numerical experiments
	Conclusions
	Installation of NFFT in a Linux environment
	Auxiliary files and workarounds
	References

