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Abstract. In this paper, we introduce a new class of nonlinear Schrödinger
equations (NLSEs), with an electromagnetic potential (A,8), both depending on
the wavefunction 9. The scalar potential8 depends on |9|

2, whereas the vector
potential A satisfies the equation of magnetohydrodynamics with coefficient
depending on 9.

In Madelung variables, the velocity field comes to be not irrotational in
general and we prove that the vorticity induces dissipation, until the dynamical
equilibrium is reached. The expression of the rate of dissipation is common to
all NLSEs in the class.

We show that they are a particular case of the one-particle dynamics out of
dynamical equilibrium for a system of N identical interacting Bose particles,
as recently described within stochastic quantization by Lagrangian variational
principle.

The cubic case is discussed in particular. Results of numerical experiments
for rotational excitations of the ground state in a finite two-dimensional trap with
harmonic potential are reported.
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1. Introduction

Stochastic quantization by Lagrangian variational principle [1, 2] allows the behavior of a single
particle in a system of N identical interacting bosons to be described in a particularly simple
way, just exploiting conditional expectations given the position at time t of the considered
particle [3]. Indeed in this setting, the motion of a single particle in the physical space comes
to be described by a non-Markovian three-dimensional diffusion with common density ρ and,
at least at dynamical equilibrium, common current velocity v. The three-dimensional drift is
perturbed by zero-mean terms depending on the whole configuration of the N -boson interacting
system. The evolution in time of the couple (ρ, v) is governed by a system of two partial
differential equations (PDEs) which, in the gradient case, have the structure of Madelung fluid
equations with a dynamical perturbation. Such a description holds for very general interactions
and for any N .

In case of smooth short-range pair interaction, the stochastic description allows to derive
rigorously the potential to which the single particle is subject, leading to the familiar term
proportional to the density ρ. Moreover, the formalism suggests a characterization of the
mesoscopic scale where the general one-particle dynamics can be rewritten as a cubic nonlinear
Schrödinger equation (NLSE).

As is well known, this equation, usually called the Gross–Pitaevskii (GP) equation, plays
a fundamental role in describing the hydrodynamics of a Bose–Einstein condensate [4] (see
[5]–[7] for accurate reviews). In our setting no condensation is a priori assumed and the cubic
NLSE arises just as a tool for describing the one particle dynamics, for smooth short-range pair
interaction, in terms of mathematical objects defined in conditional mean.

In this paper, we consider the general one-particle Bose dynamics out of dynamical
equilibrium. We observe that in the simplest sufficient conditions which allow to put
the equations in closed form, one is reduced to considering a class of NLSEs with an
electromagnetic potential (A,8+ G) such that G depends on the squared modulus of the
wavefunction andA satisfies the equation of magnetohydrodynamics with coefficient depending
on the wavefunction (see (7)). In agreement with the linear case [8], we can prove that the
dynamics is dissipative until the dynamical equilibrium is reached. This corresponds to the case
when ∇ ∧A is equal to zero in all points where the wave function is different from zero. Quite
surprisingly the rate of dissipation does not depend on G. The case with G = gρ for some
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constant g is the simplest one. The derivation of this term for the case of smooth short-range
pair interaction is the same as in the dynamical equilibrium case.

The plan of the paper is as follows: in section 2, we recall the derivation of the one particle
Bose dynamics within stochastic quantization by Lagrangian variational principle and introduce
the class of NLSEs corresponding to the simplest closed form of evolution equations out of
dynamical equilibrium. The particularization for the case of pair smooth short-range interaction
is discussed in section 2.1. Section 3 is a mathematical digression, where we study in general
the Lagrangian and Hamiltonian structure of a class of NLSEs with time-dependent external
electromagnetic potentials. In section 4, we apply results of section 3 in order to show that all
NLSEs with vorticity introduced in section 2 are in fact dissipative, until vorticity goes to zero
or concentrates in the zeros of the density, and we restrict our attention to the cubic case. Some
nontrivial numerical solutions for a Bose system in a finite two-dimensional trap with harmonic
potential are presented.

2. One-particle dynamics for a system of N identical interacting bosons

2.1. General one-particle equations

Let us consider an isolated system of N identical interacting particles with Hamiltonian

H=

N∑
i=1

{
−

h̄2

2m
∇

2
i +8(ri)

}
+8int(r1, . . . , rN , α),

where8 and8int denote, respectively, the external and the interaction potentials, r i the position
of the i th particle in the physical space and α is a coupling parameter. We assume that H is
bounded from below, so thatH has a self-adjoint extension which is the generator of the unitary
group which describes the evolution in time of the wavefunction 9̂ in L2

C(R3N , dr̂).
The 3N -dimensional Schrödinger equation reads, in compact form,

i h̄∂t9̂ =

(
−

h̄2

2m
∇̂

2 +8α,N
tot

)
9̂, (1)

where ∇̂ := (∇1, . . . ,∇N ) and 8α,N
tot :=

∑N
i=18(ri)+8int(r1, . . . , rN , α).

In stochastic quantization by Lagrangian variational principle (see [1, 2]) the role of state
is played by a time-dependent couple (ρ̂, V̂ ), where, for every time t , ρ̂ is a smooth probability
density in R3N and V̂ := (V1, . . . ,VN ) a smooth 3N -dimensional vector field on R3N .

The Schrödinger equation is substituted by the couple of PDEs

∂t ρ̂ = −∇̂ · (ρ̂V̂ )[
∂t V̂ + (V̂ · ∇̂)V̂ −

h̄2

2m2
∇̂

(
∇̂

2
√
ρ̂√
ρ̂

)]
k

+
h̄

2m

3N∑
p=1

(
∂p ln ρ̂ + ∂p

)
(∂k V̂p − ∂pV̂k)= −

1

m
∂k8

α,N
tot .

(2)

(A modified version of the principle, leading to the same equations, but with a free parameter,
is proposed in [9]. The extension to finite dimensional systems on curved manifolds is given
in [10].)
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Equations (2) (which are derived rigorously from first principles), describe an evolution
of hydrodynamical type for the couple (ρ̂, V̂ ). One can prove that they represent a smooth
approximation of the canonical quantum description (where in fact V̂ can be very singular), in
the sense that every rotational solution of (2) relaxes on an irrotational canonical one.

To be more precise, one can see that if V̂ is a smooth gradient-field, we have Madelung
equations for the N -particle system: putting, for some differentiable scalar field Ŝ,

V̂ =
1

m
∇̂ Ŝ

and, if ρ̂ is positive on an open set Q,

9̂ = ρ̂
1
2 e

i
h̄ Ŝ,

we get the 3N -dimensional Schrödinger equation (1) on Q.
Otherwise, for general initial data the rotational terms, of the first order in h̄

m , induce
dissipation. Under mild conditions, introducing the N -body energy functional

EN [ρ̂, V̂ ] =

∫
R3N

(
1

2
mV̂ 2 +

1

2
mÛ 2 +8α,N

tot

)
ρ̂ dr̂ ,

where Û := h̄
2m ∇̂ ln ρ̂ and which, in the gradient case, reduces to EN = 〈9̂,H9̂〉, we have

d

dt
EN [ρ̂, V̂ ] = −

h̄

2
E

 3N∑
k=1

3N∑
p=1

(∂pV̂k − ∂k V̂p)
2

2

 ,
where E denotes the mathematical expectation. Therefore irrotational solutions conserve the
energy, which turns to be the usual quantum mechanical expectation of the observable energy.

For generic initial data, Schrödinger solutions are expected to work as an attracting
set, which corresponds to dynamical equilibrium. In this case, the constructed quantization
procedure reproduces the canonical one after a relaxation, in some analogy with the Parisi–
Wu approach [11]. (Global existence of solutions to (2) was proved in [12] for the Gaussian
two-dimensional case. In the same case one can prove that irrotational solutions constitute a
center manifold and that the convergence is in the sense of the relative entropy [13].)

To each solution of (2) is associated a 3N -dimensional diffusion process q̂ := (q1, . . . , qN )

which satisfies the stochastic differential equation on R3N

dq̂(t)= b̂(q̂(t), t)+
(

h̄

m

)1/2

dŴ (t), (3)

where

b̂ = V̂ +
h̄

2m
∇ ln ρ̂

and Ŵ is a standard 3N -dimensional Brownian motion.
In [3] this structure was exploited to give some rigorous results concerning the one-particle

dynamics and to discuss the GP model from a new point of view.
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These results hold under some sufficient conditions which, in the most simple formulation
are

(i) ρ̂ has support in a compact set for t = 0, and the support remains in a given bounded
domain for all t ∈ [0, T ], T > 0;

(ii) ρ̂ is of class C1
0 as function of t and C2

0 as function of the configuration variable r̂ , while
the current V̂ ρ̂ is assumed of class C1

0 as functions of r̂ .

Remark. Assumptions (i) and (ii) are not the weakest ones: alternatively one could work in an
unbounded region requiring that an integrable function g exists on R3N such that |∂t ρ̂(r̂ , t)|6
g(r̂), dr̂ -a.s., and analogously for ρ̂ and ρ̂V̂ as functions of the configuration.

One can then prove that the evolution in time of the position q i of the i th particle turns out
to be represented by a non-Markovian diffusion equation

dqi(t)=

(
vi (qi(t), t)+

h̄

2m
∇i ln ρ (qi(t), t)

)
dt

+ ζi (q1(t), q2(t), . . . , qN (t), t) dt +
(

h̄

m

)1/2

dWi(t),

where ρ is the one-particle probability density (which is common to all the particles, by the
symmetry of 9̂), and vi is defined by

vi(r, t)= Eqi (t)=r [Vi(q1(t), . . . , qi(t), . . . , qN (t), t)] , (4)

Eqi (t) denoting the conditional expectation given q i(t).
The term ζi depends on the whole configuration of the N -particle system and one can easily

prove that it has zero mean once fixed q i(t)= r . This shows that the interaction with the other
N − 1 particles produces a differentiable noise.

In addition, one has the following general one-particle dynamical equations (where for
simplicity we put i = 1 and k = 1, 2, 3)

[
∂tρ + ∇ · (ρv1)

]
(r, t)= 0[

∂tv1 + (v1 · ∇) v1 −
h̄2

2m2
∇

(
∇

2√ρ
√
ρ

)
+

h̄

2m
(∇ ln ρ + ∇)∧ (∇ ∧ v1)

]
k

(r, t)

= −
1

m
Eq1(t)=r

[
∂k8

α,N
tot (q1(t), . . . , qN (t))

]
−βk(α, N , r, t),

(5)

where βk represents the dynamical perturbation, due to the interactions, to the evolution of the
one-particle velocity field v1. The main point here is that such a perturbation does not affect the
one-particle continuity equation.

Notice that if the N -body system is at dynamical equilibrium, which corresponds to
canonical quantization, then

ρ =

∫
R3(N−1)

|9̂|
2(r1, . . . , rN , t)dr2 · · · drN

and

v1(r, t)= Eq1(t)=r[∇1 Ŝ(q1(t), . . . , qN (t), t)], (6)
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where Ŝ is the phase of the N -body wavefunction 9̂. In addition, we can prove that v1 = v2 =

. . .= vN .
We consider in this paper the particular case when βk is negligible and there exists a smooth

function G such that

Eq1(t)=r [∂k8int(q1(t), . . . , qN (t))] = ∂kG[ρ](r, t).

Then, recalling results given in [2], one can easily prove that there exists a smooth scalar field
S such that, defining

A := ∇S − mv1,

ψ := ρ(1/2) exp
(

i

h̄
S

)
,

one gets the NLSE with vorticity
ih̄∂tψ =

1

2m
(ih̄∇ +A)2ψ + (8+ G(|ψ |

2))ψ,

∂tA= b− ∧ (∇ ∧A)−
h̄

2m
∇ ∧ (∇ ∧A),

(7)

where

b− :=
1

m
(∇S −A)−

h̄

2m
∇ ln(|ψ |

2).

Neglecting βk means that the effects of the interactions on the one-particle dynamics, which
affects only second equation, are taken explicitly into account only in the term containing the
interaction potential.

As detailed in [3], βk is essentially of kinematical origin and basically depends on time,
space and size scales. As a consequence, properly neglecting βk would correspond to fixing
suitable mesoscopic scales.

Concluding, equation (7) represents the simplest closed form of one-particle dynamics out
of equilibrium, for a system of identical interacting bosons.

Notice that the second equation in (7) is analogous to the equation of magnetohydro-
dynamics.

2.2. The cubic case

Let us consider the case when G(ρ)= gρ for some constant g and A= 0 (d = 3). Then we
have the cubic NLSE, usually called the Gross–Pitaevskii equation, which plays a fundamental
role in describing the dynamics of a Bose–Einstein condensate in a number of experimental
situations [4, 5, 14].

Unfortunately, as is well known, the problem of rigorously deriving the GP equation from
the N -body Hamiltonian H is still partially open, in the sense that a rigorous derivation of
the general time-dependent GP equation and a control of errors for finite N in the rescaling
procedures are still lacking.

The most important results are given in [15] and [16] (see also [17] and references therein
for recent results and an accurate review of mathematical aspects). It is proved that, if the
interaction potential is of the type

8int =
1

2

∑
i 6= j

VN (ri − r j),
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where (Lieb–Seiringer–Yngvason scaling)

VN (r) := N 2V (Nr)

and V is a positive, spherically symmetric, compactly supported smooth potential with
scattering length equal to a0 (which implies that the scattering length of VN is equal to (a0/N )),
then, for N going to infinity, the N -body ground state approaches in a precise sense5N

i=1φGP(r i),
where φGP is the ground state of the cubic NLSE with g = 4π(h̄2/m)a0.

Extensions to time-dependent situations are done in [18] for the free evolution from a class
of factorized initial states. In this case, the limit equation is the cubic NLSE with zero external
potential. Moreover, it is proved that the asymptotic solutions are still factorized.

In the stochastic quantization approach proposed in [3], the considered interaction potential
is of the type

8int(r1, . . . , rN , α) :=
K

2

∑
j 6=i

hBα(ri )(r j),

where K is a constant which can be positive or negative, Bα(r) is the open sphere centered
in r , with volume α, and hBα(r) satisfies the following assumptions, which simply mean that
hBα(r i ) is a good smooth approximation of the characteristic function IBα(r) of the sphere Bα(r i),
that is

(a) 06 hBα(r i )(r j)= hBα(r j )(r i),

(b) hBα(r) ∈ C1
0 , supp(hBα(r))= Bα(r),

(c) 06
∫
R3

(
IBα(ri )(r)− hBα(ri )(r)

)
d3r = O(α2).

It is also assumed that conditions (i) and (ii) in section 2.1 are preserved in the limit of α
going to zero and that 9̂(r1, . . . , rN , t) and its spatial derivatives up to order two show good
behavior in the same limit. Then, neglecting terms of order o(α), one gets

Eq1(t)=r [∂k8int(q1(t), . . . , qN (t))] = ∂kG[ρ](r, t),

where

G(ρ)= Kα(N − 1)ρ.

Moreover, the new formalism suggests a characterization of the proper mesoscopic scales where
the dynamical perturbation β(α, N , r, t) in (5) can be neglected.

3. Digression: Lagrangian and Hamiltonian densities for a class of NLSEs with external
time-dependent four-vector potentials

We plan now to study how the dissipative character of the general N -body dynamics out of
dynamical equilibrium is preserved in the one-particle description. We will see that all NLSEs
with vorticity we are considering are in fact dissipative and we will give the expression of the
rate of dissipation. To do this, we need some general results given in this section.
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Let (A,8) denote a smooth time-dependent four-vector potential on R3 and consider the
nonlinear Schrödinger equation

ih̄∂tψ =
1

2m
(ih̄∇ +A)2ψ + (8+ G(|ψ |

2)ψ, (8)

where G is a continuous function from R+ to R.
Assume now that ψ is a smooth solution of (8) such that |ψ |

2 is strictly positive on an open
domain Q (possibly extended to the whole R3), for all t > 0. Putting

|ψ |
2
= ρ,

(9)

v =
1

m
(∇S −A),

we get the equivalent Madelung-like equations on Q
∂tρ = −∇ ·

1

m
(ρ(∇S −A)),

∂t S +
(∇S −A)2

2m
−

h̄2

2m

∇
2√ρ
√
ρ

+8+ G(ρ)= 0.
(10)

Let us now introduce the time-dependent Hamiltonian density

H[ρ, S, t] :=

[
(∇S −A)2

2
+

1

2m

(
h̄

2
∇ ln ρ

)2

+8

]
ρ + F(ρ), (11)

where F denotes a primitive of G.
The time-dependent Lagrangian density is

L[ρ, ∂tρ, S, t] := S∂tρ−H[ρ, S, t]. (12)

We can prove the following:

Proposition 1. Let us consider the action functional

I[ta,tb][ρ, S] =

∫ tb

ta

dt
∫

Q
L[ρt , ∂tρt , St , t](x)dx . (13)

Let δρ and δS be arbitrary smooth functions of x and t such that

δρta = δρtb = 0, (14)

δS|∂Q = 0, (15)

∇ρ

ρ
δρ

∣∣∣
∂Q

= 0. (16)

Then a necessary and sufficient condition in order ρ and S to make stationary the action
functional with respect to the above defined class of variations is that they satisfy equations (10).

Proof. We require that

δρ I[ta,tb] := I[ta,tb][ρ + δρ, S] − I[ta,tb][ρ, S] = o(δρ) (17)
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and

δS I[ta,tb] := I[ta,tb][ρ, S + δS] − I[ta,tb][ρ, S] = o(δS), (18)

with δρ and δS smooth functions satisfying the above described conditions.
Then

δS I[ta,tb] =

∫ tb

ta

dt
∫

Q
dx(∂tρδS − δSH)(x, t), (19)

δρ I[ta,tb] =

∫ tb

ta

dt
∫

Q
dx(−∂t Sδρ− δρH)(x, t), (20)

where in (20) we have exploited (14), and

δSH :=
1

m
{∇ · [(∇S −A)ρδS] − ∇ · [(∇S −A)ρ]δS} , (21)

δρH :=
[

1

2m
(∇S −A)2 +8+ G(ρ)

]
δρ

+
h̄2

2m

[
∇ ·

(
∇ρ

δρ

2ρ

)
− ∇ ·

(
∇ρ

2ρ

)
δρ−

(
∇ρ

2ρ

)2

δρ

]
. (22)

Recalling the properties of δS and δρ at the border of Q ((15) and (16)) and integrating by
parts, one gets that sufficient and necessary conditions in order for smooth functions S and ρ to
make stationary the action functional are the two equations (10). ut

Corollary (Energy-theorem). Let us assume

ρ|∂Q = 0, (23)

∇ρ

ρ

∣∣∣∣
∂Q

<∞. (24)

Introducing the energy functional

E :=
∫

Q
H[ρ, S, t](x, t)dx, (25)

we have
d

dt
E = −

∫
Q

[
1

m
(∇S −A) · (∂tA)ρ

]
(x, t)dx +

∫
Q
∂t8ρdx . (26)

Proof. The proof is an extension of results given in [2].
Following the traditional route in analytical mechanics, we consider the variations

δρ = ∂tρδt,

δS = ∂t Sδt.
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Let now (ρ, S) be a smooth solution of (10). We then find

d

dt
E =

d

dt

∫
Q
H(ρ, S,A)(x, t)dx

= lim
δt→0

1

δt

∫
Q

[δ(S)H + δ(ρ)H]dx −

∫
Q

[
1

m
(∇S −A) · (∂t A)ρ

]
(x, t)dx +

∫
Q
∂t8ρdx . (27)

We observe that, for any smooth δS, the expression of δ(S)H is given by (21). As a consequence,
comparing with the first of (10), we see that δ(S)H is equal to ∂tρδS plus a boundary term which
disappears in the integral by (23).

Analogously, for any smooth δρ, the expression of δ(ρ)H is given by (22). Then, comparing
with the second expression of (10), we can see that δ(ρ)H is equal to −∂t Sδρ plus a boundary
term which disappears in the integral by (24).

Concluding, substituting δS and δρ by ∂t Sδt and ∂tρδt , we find that the only contribution
to the variation in time of the energy E comes from the time dependent fields A and 8, giving

d

dt
E = −

∫
Q

[
1

m
(∇S −A) · ∂tAρ

]
(x, t)dx +

∫
Q
∂t8ρdx .

ut

Of course this result implies that all NLSEs of the type we have considered conserve the
expected energy, if the four-vector potential (A,8) is independent of time.

Notice also that the time derivative of the energy does not depend explicitly on the term
G(ρ).

Finally, we stress that condition (24) is only sufficient. Indeed, there exists at least one
example, namely the Gaussian solutions of the two-dimensional harmonic oscillator, where (24)
is not verified (with Q = R2) and the energy theorem still holds [12].

4. Cubic NLSE with vorticity: rotational excitations of the ground state

Let us now consider the cubic case of the general NLSE with vorticity (7) (with ψ normalized
to 1) 

ih̄∂tψ =
1

2m
(ih̄∇ +A)2ψ + (8+ g|ψ |

2)ψ,

∂tA= b− ∧ (∇ ∧A)−
h̄

2m
∇ ∧ (∇ ∧A),

(28)

where

b− =
1

m
(∇S −A)−

h̄

2m
∇ ln(|ψ |

2).

Then the first in (28), for any given time-dependent field A, is a particular case in the class of
conventional NLSEs we have studied in section 2, with time independent 8 and G(ρ)= gρ.
Recalling that ψ := ρ(1/2) exp(i/h̄)S, the energy functional reads, in terms of ρ and S,

E =

∫
Q

[
1

2m
(∇S −A)2 +

1

2

(
h̄

2m
∇ ln ρ

)2

+8+
g

2
ρ

]
ρdx
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and the energy theorem, which holds for any time-dependent vector field A, gives

d

dt
E = −

∫
Q

[
1

m
(∇S −A) · (∂tA)ρ

]
(x, t)dx .

Recalling the position 1
m (∇S −A) := v and the expression of ∂tA, a simple component-wise

calculation and an integration by parts, with ρ equals to zero on ∂Q, gives

d

dt
E = − m

∫
Q

{
v ·

[(
h̄

2m
∇ ln ρ +

h̄

2m
∇

)
∧ ∇ ∧ v

]}
ρdx

= −
h̄

2

∫
Q
(∇ ∧ v)2 ρdx = −

h̄

2

∫
Q
(∇ ∧A)2 ρdx . (29)

Notice that the expression of the rate of dissipation is independent both of m and g, and it is the
same as in the non-interacting case. Moreover, by the results of section 3, system (7) has the
same rate of dissipation, if gρ is replaced by any continuous function of ρ itself 4.

We now come back to the equations in Madelung form and make use of standard
adimensional variables, which are still denoted by r, t, ρ and v (see, for example, [8] for details).

We get the system of coupled PDEs∂tv + (v · ∇)v− 2∇

(
∇

2√ρ
√
ρ

)
+ (∇ ln ρ + ∇)∧ (∇ ∧ v)= −∇8− c∇ρ,

∂tρ = −∇ · (ρv),

(30)

where c is a constant.
In the following, we consider the two-dimensional case with trap harmonic potential

8 := 1
2r 2 and an infinite barrier at r = R. The linear case, corresponding to c = 0, was firstly

studied in [8], showing concentration of vorticity in the minima of the density during the
dissipative transients. Asymptotically, the vorticity concentrates close to a central vortex line,
suggesting the formation of a singularity in Madelung fluid.

In this work, we present a comparison with the cubic NLSE with vorticity we have just
introduced by solving numerically (30) for c = 0, 10, 100. The initial density is chosen to be
the squared absolute value of the corresponding ground states and the initial velocity field is
fixed with a uniform vorticity. The last plays the role of a ‘rotational excitation’. The ground
state in the finite trap is approximated by the ground state in R2, truncated at r = R, where ρ is
of order 10−10. This value remains fixed during the simulation.

The code exploits finite element method (FEM) technique, with triangular finite elements in
a circular domain D of radius R = 6.5, linear shape functions and standard Galerkin variational
formulation. The system is reduced of one order by introducing the (adimensional) osmotic
velocity u := ∇lnρ. In particular this allows to rewrite equivalently the system with a diffusive
and stabilizing term in each equation. For the time discretization a θ -method is adopted, with a
modified Newton nonlinear solver. The numerical calculation of the ground state, see figure 1,
was performed by directly minimizing the energy functional under the normalization constraint
of ψ (see [19] for details).

4 We recall that Q is an open set which does not contain points where the wavefunction has nodes. As a
consequence, the case when nodes are present and their position varies in time is not automatically described
in this setting.
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c = 100
c = 10
c = 0

x

ρ
(x
,0
,0
)

86420–2–4–6–8
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0.12

0.1

0.08

0.06

0.04

0.02

0

Figure 1. Profiles of the two-dimensional initial densities as a function of x for
different values of c.

The boundary conditions, ν denoting the unitary external normal vector, are

−∇ · (u− v)

∣∣∣∣
∂D

ν +
∂v

∂ν

∣∣∣∣
∂D

= 0,

u
∣∣∣
∂D

= u0

∣∣∣
∂D
,

ρ

∣∣∣
∂D

= ρ0

∣∣∣
∂D

≈ 10−10.

(31)

Strong variations in time to the value at the border of the current velocity field v are
allowed.

We have performed several numerical simulations up to a final time t̄ defined as follows:
t̄ is the first time at which the density ρ assumes a value less than 10−4, which happens in a
small neighborhood of the origin. We have observed that t̄ strongly depends on the value of the
nonlinearity constant c, the radius of the trap R and of the initial vorticity ∇ × v0. The behavior
of the simulation was satisfactory up to few steps before t̄ : the radial symmetry was naturally
conserved on the mesh and the positivity of the density was preserved. Moreover, for each time
step, only a reasonable (less than ten) number of nonlinear iterations was necessary. The profiles
of the vorticity in figure 5 are reconstructions of ∇ × v, computed a posteriori starting from the
piecewise-linear velocity field.

In all the simulations, dissipative transients and concentration of vorticity in the minima of
the density were observed.

This seems to be a general behavior which somehow occurs for any initial density. The
effect is spectacular for the excitation of the ground state, as one can see from figures 2–5 which
illustrate the results of numerical experiments for R = 6.5, initial velocity v = −�0rθ ,�0 = 10,
and different values of c (namely c = 0, 10, 100). The values of the parameters were chosen in
order for t̄ to be less than 0.3.
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c = 100
c = 10
c = 0

t

E
(t
)
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0

Figure 2. Energy as a function of time for different values of c.

c = 100
c = 10
c = 0

t

ρ
(0
,0
,t
)

0.30.250.20.150.10.050

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Figure 3. Density at the origin as a function of time for different values of c.

5. Conclusions

We have introduced from first principles a new class of NLSEs with electromagnetic potential
depending on the wavefunction. The dynamics is dissipative until the vorticity of the magnetic
potential goes to zero or eventually concentrates in nodes of the wave function itself. For the
cubic case, this expected qualitative behavior is validated by numerical solutions where, for the
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c = 100
c = 10
c = 0

t

−∇
×
v

0.30.250.20.150.10.050

20

15

10

5

0

Figure 4. Vorticity (−∇ × v) at the origin as a function of time for different
values of c.

case of a finite two-dimensional trap with harmonic potential, the ground state is initially excited
by a field with uniform vorticity.

We have shown that such a class of NLSEs is related to the description of the one-particle
dynamics for a system of N identical interacting Bose particles out of dynamical equilibrium:
the cubic case corresponds to a pair short-range smooth interaction. This put the present work
in the context of modeling the dynamics of a Bose–Einstein condensate, leading in fact to a
new version of the Gross–Pitaevskii equation, with dissipation induced by a vorticity field. This
fact represents an alternative to other solutions proposed in the literature in order to simulate
the relaxation toward vortex lattices of a rotating superfluid [20]–[24]. To this purpose the GP
equation is usually modified by adding a dissipative term, which is interpreted as a friction
due to the non-condensed fraction (see, for example [25]). In our approach, the dissipation has a
purely kinematical (and quantum) origin and it does not depend on the size of the non-condensed
fraction.

It is worth mentioning that, as far as the rotating superfuids are concerned, equation (28)
could be applied in modeling experiments where a dilute Bose gas with pair short range
interaction is put into rotation and the condensation occurs only after the stirring procedure
is completed. Indeed in this case, the initial conditions for the superfluid velocity would exhibit
a distributed vorticity: unlike the canonical description, the new equations allow such an initial
condition and the (dissipative) evolution is expected to lead to a concentration of the vorticity in
the nodes of the wave function (which correspond to a gradient-like and conservative superfluid
motion). One could also observe that it would be interesting to check in the experiment whether
the stirring of a condensate preserves quantum coherence or not.
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Figure 5. Profiles of density (solid line) and vorticity (dotted line) as a function
of x for c = 0 and c = 100 at four values of t , respectively the initial time, the
time at which the last maximum of vorticity at the origin occurs in [0, t̄], the time
at which the last maximum of density occurs in [0, t̄], and the final time t̄ .
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As a final comment, we stress that the one-particle dynamics as derived by the Lagrangian
stochastic variational principle for the N -body system, is not exactly the dynamics of the
condensate, unless the dynamical perturbation β in (5) and the kinematic noise ζ in (3) are
equal to zero in some sense. This situation roughly corresponds to a factorized N -body state
and a complete condensation.

The deeper understanding of connections between one-particle dynamics, introduced in
terms of objects defined in the conditional mean, and Bose–Einstein condensation, as well as
the study of dynamical excitations, are challenging subjects for further investigation.
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