
A “light” application of Blended Extreme
Apprenticeship in teaching Programming to

Students of Mathematics

Ugo Solitro1, Margherita Zorzi1, Margherita Pasini2, Margherita Brondino2

1 Department of Computer Science
2 Department of Philosophy, Education and Psychology

University of Verona (Italy)
{ugo.solitro|margherita.zorzi|margherita.pasini|margherita.brondino}@univr.it

Abstract. In this paper we analyze an application of eXtreme Appren-
ticeship (XA) methodology, in a blended form with a reduced set of
software and human resources. The study was conducted at University
of Verona, in the context of the course “Programming with Laboratory”
with 170 participants enrolled at the first degree in Applied Mathemat-
ics, throughout three different academic years. We analyze the very first
period of lessons, when the fundamentals of programming are introduced.
During the first two years, students were trained with a traditional teach-
ing method; the lasts group was trained using the XA teaching model.
Results showed a real improvement of learning outcomes in students
trained with XA compared with the traditional teaching method. Possi-
ble refinements of XA method in our case study and in other educational
contexts are discussed.

1 Introduction

The ability of analyzing problems, designing a solution and finally realizing it
using with the available resources (in short, programming) require a set of abili-
ties related to the so-called computational thinking whose importance has been
largely recognized [15, 8]. So teaching programming has proven to be a criti-
cal task and becomes particularly interesting and challenging when this mat-
ter is proposed to students of non vocational curricula. In Italy informatics is
a marginal discipline in most (non technical) high schools. As a consequence
many college students of scientific discipline (different from informatics) have
little knowledge of informatics. Freshmen typically address basic programming
courses as beginners, without previously acquired skills. Notwithstanding, com-
putational thinking attitude is nowadays essential and some basic masteries in
this field are unavoidable, in particular for technical and scientific subjects. In
mathematics curricula the computer (more precisely the tools based on it) is a
key device for the students. The general shortage of primary informatics skills
(algorithmic thinking, basics coding abilities, experiences in problem-solving ac-
tivities) and the heterogeneous composition and formation of the students group,

determine a number of initial “problems” such as misconception in the basics
of informatics, difficulties in conceiving algorithmic solutions, designing the cor-
responding code, understanding mistakes, and more. Many students complete
the first course in informatics with sufficient knowledge of the topics, but not
fully competent in the applications. For this reason we decide to improve our
teaching methodology for the students of the course Computer Programming
with Laboratory, enrolled at the first degree in Applied Mathematics, by adopt-
ing some techniques inspired by the eXtreme Apprenticeship (XA) [13]. We also
adapted the method to the particular context of the University of Verona mak-
ing use of the available E-learning platform (elearning.univr.it) based on Moodle
(moodle.org). In this paper, we analyse the ongoing experience of teaching pro-
gramming to first year students of the Bachelor Degree in Applied Mathematics
from the University of Verona, following the ideas of XA method. Students of
mathematics are less familiar than expected in informatics. With a new teaching
approach we expect a reduction of the initial difficulties in learning programming
for not trained students, improving the acquired skills. We will measure the ef-
fectiveness of this teaching model when applied with a reduced set of resources.

1.1 The eXtreme Apprenticeship method

A promising perspective in promoting computational thinking is the Cognitive
Apprenticeship (CA) learning model [3], a method inspired by the apprentice-
expert model in which skills are learned within a community, through direct
experience and practice guided by an expert of the skill. The main idea of Cog-
nitive Apprenticeship is to focus on the teaching/learning process rather than
just on the final “product”. Cognitive apprenticeship is based on three separate
stages: modeling, scaffolding and fading. In the modeling stage, the teacher gives
students a conceptual model of the process. Lessons are principally based on pre-
senting work examples in an interacting and active manner: the teacher explains
the decisions made during the process step by step. During scaffolding stage stu-
dents solve exercise under the guidance of an experienced instructor. Students
receive hints to be able to discover the answers to their questions themselves.
The fading stage of apprenticeship learning is reached when students are able to
master tasks by themselves.

Cognitive Apprenticeship has had many applications in teaching program-
ming. eXtreme Apprenticeship (XA) is an extension of the Cognitive Appren-
ticeship model, which emphasizes communication between teacher and learners
during the problem-solving process. This approach promotes learners’ intrinsic
motivation, which is a positive antecedent of performance. This methodology
has been developed and being actively practised since 2010 at the University
of Helsinki (Finland) [13, 14] for teaching programming. In XA hours devoted
to frontal lessons are drastically reduced, and students are encouraged to solve
problems themselves in a guided manner and in a non-interfering environment.
Exercises are the most important aspect of the learning process: student’s ap-
prenticeship starts immediately, gradually, and it is continuously monitored, by
assigning programming exercises. The difficulty of exercises has to be slowly

incremental: as pointed out in [13], each new exercise has to master a mini-
mum amount of new material on top of previous exercises. In this way, students
acquire new skills facing with a measurable amount of work to be done. Pro-
gramming exercises have also a positive impact on the motivational side: there
is no need for any external motivating factors, since success in learning itself
feels good. See, for example, [2, 1, 10]. With the application of XA method, the
finning research team RAGE [13] has obtained excellent results in programming
introductory courses. The method has also been applied in a blended way (that
is with online support) in Bolzano (Italy) in teaching operating systems and
informative system [7, 5, 6, 4].

XA is currently applied in two programming course in Verona, offered at
the bachelor degree in Computer Science and at the bachelor degree in Ap-
plied Mathematics respectively. As previously said, the latter represents our
case study.

2 Method

2.1 Participants

The study was conducted at University of Verona, with 170 participants (50%
males, mean age: 19) enrolled at the first degree in Applied Mathematics; the
course is Computer Programming with Laboratory, throughout three different
academic years (2013/14; 2014/15; 2015/16). We analyze the very first period (8
weeks) when the fundamentals of programming are introduced.

During the first two years, students were trained with a traditional teaching
method (TT); the lasts group was trained using the XA teaching model. Some
students of the last group actually didn’t participate in the training and delivered
no one of the expected programming tasks connected with the XA experience,
and for this reason were excluded from the XA group. The final sample consists
of 114 students (50% males) for the TT condition and 48 students (54% males)
for the XA condition.

2.2 Procedure

The first two months are spent to an introduction to algorithms and program-
ming, partly using the programming language Python. The teaching is organized
in two kinds of activities.

– the “theoretical” part: a wide introduction to programming in a lecture hall;

– the “programming” part: practical experience in the computer laboratory.

In the TT way (A.A. 2013/14 and 2014/15) the two activities are distinct
and with different focus. In the lecture hall the teacher introduced the general
concept and some exercises. In the laboratory a few exercises are presented with
a full or partial solution; the students are encouraged to complete some exercises
and, in addition, some more are proposed as homework. The solution of some

of exercises can be presented later. Teacher and assistants (graduate or Ph.D.
students) give some practical support in the laboratory.

In the XA way, the teacher in the “non practical” lessons usually introduce
the tools necessary to understand the practical activities and some general con-
cepts about informatics and programming. When possible, some “unplugged”
exercises are proposed. The students have to attend introductory lessons and
take part to exercise sessions. During home works they can receive feedback and
support in the laboratory or through the E-learning platform from the teacher
or the assistants. Every two weeks students are asked to submit the result of an
activity that will be evaluated.

The full application of XA method requires a lot of human resources [11]
and/or a semi-automated correction tools (e.g. “Test My Code” [12]). In order
to overcome some restrictions/problems we encounter in our educational context
(few hours-with respect to XA standard– of practical lessons, limited support
by laboratory assistants), we have adapted the teaching routine to the “Verona
setting”: in some sense, our XA method can be defined “light”. We were not
able to fully apply XA paradigm, but notwithstanding we followed its main
guidelines. We claim and prove that XA also works in this particular situation,
which is otherwise realistic: a “typical” educational setting has to face a limited
amount of resources and a flexible adjustment of the teaching method may be
mandatory.

2.3 Research design and data analysis

At the end of the first period students are encouraged to take a partial exam
(“test”) considered as part of the final exam. The following parameters are con-
sidered for the evaluation: correctness of the solution, logical structure and good
programming practices. This test it the only learning outcome available for the
three academic years in this study, and for this reason was considered to ver-
ify the efficacy of XA compared with the traditional teaching model. This test
consists of two parts: a general “theoretical” section, in which the knowledge of
fundamental notions (e.g. the definitions of compiler, interpreter, specification)
are verified; a practical “programming” section where students must solve a few
exercises of increasing difficulty about programming competences and problem
solving skills.

The evaluation in this test produced a quantitative score, which was nor-
malized in the range 0-1 to allow the comparison among the three different aca-
demic year and the comparison between the theoretical and the programming
outcomes.

At the end, three different-even if related-quantitative dependent variables
were considered: total score (TOT), theoretical score (TH), and programming
score (PR). Two different data analyses were carried on.

1. Considering the whole sample, a quasi-experimental design was used, with
the teaching method as the independent variable, with two conditions (XA
vs TT), and the three learning outcomes as the dependent variables.

2. Considering the XA group as a sub-sample, a quasi-experimental design was
used, with total number of delivered programming tasks as an independent
3 level variable (0/1; 2; 3), and the same learning outcomes.

In a third descriptive analysis, the quantitative score was also categorized
in 6 different judgements A, B, C, D, E, F where ‘A’ represents the highest
level and ‘F’ the lowest one.

3 Results

A first set of analyses considered the entire sample. Figure 1 shows the average
exam score considering the three learning outcomes (TOT, TH and PR) for the
two groups (XA and TT). Three separate two-way ANOVAs were run, with the
teaching method as a two-level between-group factor, also considering the two-
level factor “sex”, in order to control for a possible sex effect. First of all, no sex
effect was found, nor interaction sex by teaching method for the learning outcome
TOT nor for the two separate learning outcomes TH and PR. The main effect of
the teaching method was found for TOT (F(1,158)=17,23; p<.001) even if with
a small effect size (η2 = .10), and also for TH (F(1,158)=29.55; p<.001), with a
medium effect size (η2 = .16), and for PR (F(1,158)=4,95; p<.05), with a small
effect size (η2 = .03). In all cases, XA group showed the best results (dependent
variable “TOT”, XA: mean=.73, SD=.03; TT: mean=.59, SD=.03; Dependent
variable “TH”, XA: mean=.79, SD=.03; TT: mean=.62, SD=.02; Dependent
variable “PR”, XA: mean=.61, SD=.03; TT: mean=.52, SD=.02).

Fig. 1: Average exam scores in the two groups - Traditional Teaching method
group (TT) and XA group - considering the overall score (TOT), and the score
in the two parts: Theoretical (TH) and Programming (PR) part.

These results seem in line with the expected better outcomes due to the XA
teaching model, even if the last result with a small effect size on programming
task, needs to be more deeply explored.

In order to verify whether the performance, in the XA group, is connected
with the persistence in doing the assigned tasks, another ANOVA was performed,
in the sub-sample of the XA group, using the three-level variable with the total
number of delivered programming tasks (0/1; 2; 3) as the between-group factor
and the three exam scores as the dependent variable. As expected, the higher
the number of delivered programming tasks, the better the performance (see
Figure 2). This effect is significant for TOT score, due to the effect on TH and
not on PR (TOT: F(2,53)=3,98, p<.05; TH: F(2,53)=4,75, p<.05).

Fig. 2: Average exam scores in the three XA-level groups considering the overall
score (TOT), and the score in the two parts: Theoretical (TH) and Programming
part (PR).

The last analysis concerns the judgement in the exam, in 6 levels, from A to
F. Figure 3 shows that judgements A and B are more frequent for XA students,
whereas judgements E and F are more frequent for TT students. Percentages of
central categories C and D are similar in the two groups.

4 Conclusions

The aim of the present study is to explore the potential advantages of the XA
teaching model on the learning outcomes in teaching programming to university
students.

Our first results are encouraging: the XA method drastically reduces the
number of low results. different teaching perspective to programming seems to

Fig. 3: Percentage of students for each judgement (from A=excellent to F=poor),
separately for TT group and XA group

have a positive effect both in the “practical” part and in the “theoretical” one.
The improvement of the performance is less evident in more advanced exercises
that in general require more experience and, a posteriori, appear to be slightly
more difficult for the current year.

The combination of a more practical approach, an active support, a constant
stimulation to cope with the difficulties, the opportunity to receive feedback in
the lab and through the e-learning platform have contributed to a more effective
participation of the students in the activities.

We are planning to extend the XA method to the teaching of programming
in different curricula and also explore new potential application. A wider appli-
cation of the methodology will require the solution of some relevant problems in
connection with the shortage of human resources and the necessity of a signifi-
cant revision of the e-learning services.

In the next years, we hope to collect more data from different XA trained
classes, and obtain fruitful hints in order to refine XA methodology in our case
study and in other contexts. Database courses addressed to students of liberal
arts could be, for instance, an intriguing context to investigate.

Finally, we think that eXtreme Apprenticeship offers benefits both to stu-
dents and teachers. During the lessons period, an XA teacher collects a huge
amount of delivered programming exercises. This offers an unprecedented overview
about errors students commit in solving programming tasks. A careful analysis
of students’ failures will provide a precious feedback about learning cognitive
processes and teaching methodology.

We think that this investigation, together with an analysis of students’ mo-
tivations and emotions, will provide useful tools for overcoming the beginner
diffculties in learning programming.

References

1. S. Bergin and R. Reilly. The influence of motivation and comfort-level on learning
to program, Proceedings of the 17th Workshop on Psychology of Programming
Interest Group (PPIG’05), 293–304, 2005.

2. M. Brondino, G. Dodero, R. Gennari, A. Melonio, M. Pasini, D. Raccanello,
S. Torello, Emotions and inclusion in co-design at school: Let’s measure them.
Methodologies and intelligent systems for technology enhanced learning, Springer,
1–8. 2015.

3. A. Collins, J. Brown, and A. Holum, Cognitive apprenticeship: Making thinking
visible, American Educator, 6, 38-46, 1991.

4. V. Del Fatto and G. Dodero, Experiencing a new method in teaching Databases us-
ing Blended eXtreme Apprenticeship, Proceedings of 21st International Conference
on Distributed Multimedia Systems (DMS’2015), 2015.

5. V. Del Fatto, G. Dodero and R. Gennari: Operating Systems with Blended Extreme
Apprenticeship: What Are Students’ Perceptions?, IxD&A, 23, 24-37, 2014.

6. V. Del Fatto, G. Dodero and R. Gennari: Assessing Student Perception of Extreme
Apprenticeship for Operating Systems, Proceedings of14th International Confer-
ence on Advanced Learning Technologies (ICALT), 459-460, 2014.

7. G. Dodero and F. Di Cerbo, Extreme Apprenticeship Goes Blended: An Experience,
Proceedings of 12th International Conference on Advanced Learning Technologies
(ICALT), 324-326, 2012.

8. W. Gander et all, Informatics education: Europe cannot afford to miss the ACM,
available at: http://europe. acm. org/iereport/ie. html, 2013

9. T. Hautala, T. Romu, J. Rämö and T. Vikberg, Extreme Apprenticeship Method
in Teaching University-Level Mathematics, Proceedings of 12th International
Congress on Mathematical Education Program Name, 8-15 July, 2012, COEX,
Seoul, Korea, 2012.

10. T. Jenkins, The motivation of students of programming, Proceedings of the 6th
annual conference on Innovation and technology in computer science education,
Canterbury (UK), 53-56, 2001.

11. J. Kurhila, and A. Vihavainen, Management, structures and tools to scale up per-
sonal advising in large programming courses, Proceedings of the 2011 conference
on Information technology education, 3–8, ACM, 2011.

12. M. Pärtel, M. Luukkainen, A. Vihavainen and T. Vikberg, Test My Code, Inter-
national Journal of Technology Enhanced Learning 2, 5(3-4), 271–283, 2013.

13. A. Vihavainen, M. Paksula and M. Luukkainen, Extreme Apprenticeship Method
in Teaching Programming for Beginners, Proceedings of the 42nd ACM technical
symposium on Computer science education (SIGCSE ’11), 93-98, 2011.

14. A. Vihavainen and M. Luukkainen, Results from a three-year transition to the
extreme apprenticeship method, Proceedings of IEEE 13th International Conference
on Advanced Learning Technologies (ICALT), 336–340, 2013.

15. J. Wing, Computational Thinking, Communications of the ACM - Self managed
systems 49(3). 33–35, 2006.

