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We introduce two modal natural deduction systems, MSQS and
MSpQS, which are suitable to represent and reason about trans-
formations of quantum states in an abstract, qualitative, way. Our
systems provide a modal framework for reasoning about opera-
tions on quantum states (unitary transformations and measure-
ments) in terms of possible worlds (as abstractions of quantum
states) and accessibility relations between these worlds. We give
a Kripke–style semantics that formally describes quantum state
transformations, and prove the soundness and completeness of
our systems with respect to this semantics. We also prove a
normalization result for MSQS and MSpQS, showing that all
derivations can be reduced to a normal form that satisfies a sub-
formula property and yields a syntactic proof of the consistency
of our deduction systems.
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belled deduction, proof theory

1 INTRODUCTION

Quantum computing defines a computational paradigm that is based on a
quantum model [4] rather than a classical one. The basic units of the quantum
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model are the quantum bits, or qubits for short (mathematically, normalized
vectors of the Hilbert Space C2). Qubits represent informational units and
can assume both classical values 0 and 1, and all their superpositional val-
ues. A quantum state is a generalization of the qubit: a generic quantum state
is the representation of a quantum state of n qubits (mathematically, it is a
normalized vector of the Hilbert space C2n

).? In this paper, we are not inter-
ested in the structure of quantum states, but rather in the way quantum states
are transformed. Hence, we will abstract away from the internals of quantum
states and represent them in a generic way in order to describe how operations
transform a state into another one.

It is possible to modify a quantum state in two ways: by applying a unitary
transformation or by measuring. Unitary transformations (corresponding to
the so-called unitary operators of the Hilbert space, such as cnot or Bell )
model the internal evolution of a quantum system, whereas measurements
correspond to the results of the interaction between a quantum system and
an observer. The outcome of an observation can be either the reduction to
some quantum state or the reduction to a classical state, where we say that a
state w is classical iff w is invariant with respect to measurement, i.e., each
measurement of w has w as outcome. We call a measurement total when the
outcome of the measurement is a classical state.

We propose to model measurement and unitary transformations by means
of suitable modal operators. More specifically, the main contribution of this
paper is the formalization of a modal natural deduction system [16, 19] in
order to represent (in an abstract, qualitative, way) the fundamental opera-
tions on quantum states: unitary transformations and total measurements. We
call this system MSQS. We also formalize a variant of this system, called
MSpQS, to represent the case of generic (not necessarily total) measure-
ments.

It is important to observe that our logical systems are not quantum logics.
Since the work of Birkhoff and von Neumann in 1936 [5], various logics have
been investigated as a means to formalize reasoning about propositions taking
into account the principles of quantum theory, e.g., [8, 9]. In general, it is
possible to view quantum logic as a logical axiomatization of quantum theory,
which provides an adequate foundation for a theory of reversible quantum
processes, e.g., [1, 2, 3, 13].

Our work moves from quite a different point of view: we do not aim at

? Note that some works, including our own work [12] that we extend and generalize here, use
the term quantum register in place of quantum state. We have adopted the latter here as it is
becoming the more standard term in the literature.

2



proposing a general logical formalization of quantum theory, rather we de-
scribe how it is possible to use modal logic to reason in a simple way about
quantum state transformations. Informally, in our proposal, a modal world
represents (an abstraction of) a quantum state. The discrete temporal evolu-
tion of a quantum state is controlled and determined by a sequence of unitary
transformations and measurements that can change the description of a quan-
tum state into other descriptions. So, the evolution of a quantum state can
be viewed as a graph, where the nodes are the (abstract) quantum states and
the arrows represent quantum transformations. The arrows give us the so-
called accessibility relations of Kripke models and two nodes linked by an
arrow represent two related quantum states: the target node is obtained from
the source node by means of the operation specified in the decoration of the
arrow.

Modal logic, as a logic of possible worlds, is thus a natural way to rep-
resent this description of a quantum system: the worlds model the quantum
states and the relations of accessibility between worlds model the dynamical
behavior of the system, as a consequence of the application of measurements
and unitary transformations. To emphasize this semantic view of modal logic,
we give our deduction system in the style of labelled deduction [10, 18, 21], a
framework for giving uniform presentations of different non-classical logics.
The intuition behind labelled deduction is that the labelling (sometimes also
called prefixing, annotating or subscripting) allows one to explicitly encode in
the syntax additional information, of a semantic or proof-theoretical nature,
that is otherwise implicit in the logic one wants to capture. Most notably, in
the case of modal logic, this additional information comes from the under-
lying Kripke semantics: the labelled formula x:A intuitively means that A
holds at the world denoted by the label x within the underlying Kripke struc-
ture (i.e., model), and labels also allow one to specify at the syntactic level
how the different worlds are related in the Kripke structures (e.g., the formula
xRy specifies that the world denoted by y is accessible from that denoted by
x).

We proceed as follows. In Section 2, we discuss the main ideas underly-
ing our approach, in particular why modal logic provides a good instrument
to describe qualitatively quantum processes and quantum system transforma-
tions. In Section 3, we define the labelled modal natural deduction system
MSQS, which contains two modal operators suitable to represent and reason
about unitary transformations and total measurements of quantum states. In
Section 4, we give a possible worlds semantics that formally describes these
quantum state transformations, and prove the soundness and completeness of
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MSQS with respect to this semantics. In Section 5, we formalize MSpQS, a
variant of MSQS that provides a modal system representing all the possible
(thus not necessarily total) measurements. In Section 6, we prove a normal-
ization result for MSQS and MSpQS, showing that derivations reduce to
a normal form that satisfies a subformula property and from which we can
prove the consistency of our deduction systems. We conclude in Section 7
with a brief summary and a discussion of future work.

2 WHY MODAL LOGIC?

2.1 A qualitative modal representation of quantum state transforma-
tions

In this section, we discuss in more detail the “philosophy” of our approach.
As we remarked above, the logic that we give in this paper is not a quantum
logic that formalizes reasoning about propositions taking into account the
principles of quantum theory. Such a logic would require a semantics over
sets of unit vectors in Hilbert Space, which would bring in the foreground the
quantitative nature of the approach to reason about quantum state transfor-
mations. While such an approach would, of course, be interesting and useful,
we follow here a quite radically different one that works at a higher abstrac-
tion level: we adopt a qualitative approach whose major contributions rely
on the observations that quantum state transformations can be represented, in
an abstract way, by means of modal operators and that we can give deduction
systems that capture the properties of these transformations.

Modal logics are indeed a good and flexible instrument to describe qual-
itatively state transformations as they allow one to put the emphasis on the
underlying “transition system” (the set of possible worlds of the Kripke se-
mantics and the properties of the accessibility relations between them) rather
than on the concrete meaning of the internal structures of possible worlds.
Thanks to this abstract and adaptable nature, modal (and temporal) logics
have often been employed to reason in a higher-level way on the properties
of computational systems (e.g., [6, 11, 15]), and here we follow this path by
taking into account computational systems that are simply quantum systems
in which computational steps are given by the application of unitary opera-
tors and measurements. The systems MSQS and MSpQS that we introduce
here are pure modal systems in which accessibility relations and modal oper-
ators reflect and model general properties of quantum state transformations;
consequently, the proposed Kripke semantics abstracts away from the quan-
titative approaches that take into account Hilbert spaces and other traditional
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semantical instruments of quantum logics.†

The transition from a quantum state into another one by means of a unitary
transformation or a measurement can then simply be viewed as the transfor-
mation of a current valid description of the state into another valid description.
This is not a peculiar point of view as, for comparison, in quantum mechanics
and in quantum computing we always work with mathematical objects (nor-
malized vectors in a suitable Hilbert space) that are effectively descriptions
of concrete physical systems, and the evolution of a quantum state can thus
be viewed as a set of descriptions that hold in a discrete set of sequential in-
stants. We can thus consider sequences of the form s0, s1, . . . where each si
provides a full description of the quantum state in a specific instant of the
transformations. Now, in the spirit of modal logic, the key point is not the
description itself but rather how it can be reached from another description
and what is the set of the descriptions reachable from it. Then, working with
labeled expressions like x:A, where the label x denotes one of the si and the
formula A is built by modal operators and propositional symbols, it is not
actually crucial to say what propositional symbols stand for. In analogy, ob-
serve, for instance, that temporal logics (such as LTL [15]) developed to deal
with concurrent systems do not possess any concurrent feature. Still, it is im-
portant to consider what modal formulas, modal worlds and the accessibility
relation stand for.

Hence, to illustrate, and justify, our approach in more detail, let us consider
the standard algebraic axiomatization of quantum mechanics and the Hilbert
space formalism. For the sake of exemplification but without loss of gener-
ality, let us focus on the Hilbert space C22

, the 4-dimensional space required
to represent two qubit systems. Normalized vectors in C22

are mathematical
representations of quantum states. Then, we can interpret C22

as a Kripke
model

〈W,R1, . . . , Rn, V 〉 ,

where W is a set of possible worlds, R1, . . . , Rn are accessibility relations,
and V is an interpretation function, defined as follows. For the set of modal
worlds, we can take the set of all normalized vectors in the space C22

(i.e.,
the vectors representing quantum states):

W = {|φ〉 | ||φ|| = 1 and |φ〉 ∈ C22
}

† In other words, we can, intuitively, say that MSQS and MSpQS are (quite) standard modal
systems with a “quantum flavor”: the systems are able to capture modally (i.e., in terms of
modal operators) the properties of quantum state transformations but abstracting away from any
concrete quantitative information.
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For example, |00〉 and 1/
√

2|01〉+ 1/
√

2|11〉 are (representations of) ele-
ments of the set W .

In order to give concrete examples, we fix a set of propositional symbols
representing mathematical descriptions of normalized vectors in C22

. Let
us suppose to have a denumerable set Q ∈ C22

of quantum states and a
denumerable set U of names of unitary transforms in C22

, where U contains,
for each unitary transformation T , both the names T and T−1, the name of
the inverse. The set Prop of propositional symbols is given by:

1. the set of strings of the shape da|00〉 + b|01〉 + c|10〉 + d|11〉e, where
a|00〉+ b|01〉+ c|10〉+ d|11〉 is the representation of an element of Q
with respect to the standard computational basis, and

2. the set of string of the shape dT1(T2(· · · (Tn(a|00〉 + b|01〉 + c|10〉 +
d|11〉)) · · · ))e, where T1, . . . , Tn are in U and a|00〉+ b|01〉+ c|10〉+
d|11〉 is the representation of an element of Q.

That is, we denote a generic propositional symbol by writing d|φ〉e, where
|φ〉 is the representation of an element ofQ. For example, d|00〉e, dBell |01〉e,
dBell−1|11〉e and dcnot |01〉e are propositional symbols representing normal-
ized vectors in C22

, where cnot and Bell are names of standard unitary op-
erators.

The interpretation function V is a map W → 2Prop associating to each
w ∈ W all the propositional symbols describing equivalent quantum states.
For example, dBell |00〉e and d1/

√
2|00〉 + 1/

√
2|11〉e represent the same

quantum state. Moreover, we can write valid equivalences between proposi-
tional symbols. So, for instance,

dBell |00〉e ↔ d1/
√

2|00〉+ 1/
√

2|11〉e (1)

is a valid equivalence that describes the effect of the application of a Bell
circuit on a quantum state d|00〉e; hence, as for the previous example, the two
propositional symbols are associated to the same world w.

For the accessibility relations, we can first of all consider a relation U to
represent quantum state transformations by unitary operators. In addition to
U , we can consider two different relations depending on the type of measure-
ment that we wish to model:

1. If we focus only on total measurement, which completely reduces any
quantum world to a classical one, then we can consider the set {U,M}
of accessibility relations, where U represents unitary quantum state
transformations and M represents total measurement.

6



2. If we focus on generic, not necessarily total, measurements, then we
can consider the set {U,P} of accessibility relations, where P captures
the transformation of a state into another one by means of a generic
measurement.

An expression like (1) can be read in two different ways: we can read
it simply as an equality between logical objects, but we can also stress the
“operational information”, i.e., the computational effect of the application of
the Bell operator to the unitary vector |00〉. It is this second reading that
shows that modal logic provides a suitable and useful means for describing
quantum computation, as we can read (1) modally as follows: from a world
represented by d|00〉e we can reach, by means of a unitary operator, a world
represented by d1/

√
2|00〉+ 1/

√
2|11〉e or, equivalently, by dBell |00〉e. Let

us now describe this modal representation in more detail by considering the
cases of total and generic measurements, as well as unitary transformations.

2.2 Unitary transformations and total measurements
In the case of unitary transformations and total measurements, the underlying
Kripke model is M = 〈W,U,M, V 〉; as we will see later, this is the seman-
tics of the system MSQS. Let us consider again the example about the Bell
circuit and let us discuss an admissible modal formula. The operation, i.e.,
the mathematical application of the circuit to the quantum state |00〉, can be
expressed as a formula holding at some modal world w:

�M ,w d|00〉e ⊃ ♦d1/
√

2|00〉+ 1/
√

2|11〉e

which, by the equivalence (1) of the two mathematical descriptions, is equiv-
alent to

�M ,w d|00〉e ⊃ ♦dBell |00〉e
Here, we write �M ,w to denote truth at a world w in a model M , and ♦ is the
existential modal operator associated to the unitary transformation accessibil-
ity relation U , as formally defined in Section 3. Hence, if the formula d|00〉e
also holds at w, i.e.,

�M ,w d|00〉e
then

�M ,w ♦d1/
√

2|00〉+ 1/
√

2|11〉e
which tells us that there exists a world in M , say z, accessible from w by a
unitary transformation representing a Bell circuit application (namely, wUz
holds in M ), and in which we have d1/

√
2|00〉+ 1/

√
2|11〉e, i.e.,

�M ,z d1/
√

2|00〉+ 1/
√

2|11〉e
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The Kripke semantics that we adopt for our modal systems allows us to ab-
stract away from the Hilbert space formalism while preserving the capability
of representing the properties of unitary transformations. Although we have
not made use of them in this simple reasoning example, unitary transforma-
tions possess in fact a number of properties — namely, reflexivity, symmetry
and transitivity — that we can capture both semantically in the Kripke models
by imposing properties of the relation U , and syntactically by showing that
the standard modal axioms T, 4 and B of the modal logic S5 are provable
theorems of the modal system MSQS (and of MSpQS, which also includes
unitary transformations). For example, we can easily express modally the
unitariety of the identity operator Id , which acts as identity on quantum state
descriptions, and have equivalences like d|φ〉e ↔ dId |φ〉e hold, so that we
have the valid statement

�M ,w d|φ〉e ⊃ ♦dId |φ〉e

and, equivalently,
�M ,w d|φ〉e ⊃ ♦d|φ〉e

This can be viewed, semantically, as the reflexivity of the accessibility re-
lation U : each world w ∈ W is accessible to itself by means of a unitary
transformation, i.e., we have wUw. Graphically, we can represent this as

w GFED@ABCd|φ〉e

U

��

and our Kripke models will impose such a reflexivity. We can also formalize
this syntactically by means of the standard modal axiom T, i.e., A ⊃ ♦A, or,
dually, �A ⊃ A.

We can capture the other properties of U in a similar way: we can employ
the standard modal axiom 4, �A ⊃ ��A, to capture the compositionality
of unitary transformations (by means of transitivity), and the standard modal
axiom B, A ⊃ �♦A, to capture the reversible nature of unitary transforma-
tions (by means of symmetry). These three axioms T, 4 and B, in their labeled
version, are provable theorems of MSQS (and of MSpQS) as explained in
Section 3, where we will provide additional quantitative examples in order to
further support the intuitive meaning of these formulas.

We can reason in a similar way for what concerns total measurement and
make use of an existential modal operator �, with dual universal operator
�, associated to a total measurement accessibility relation M . Suppose, for
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example, that we have da|00〉+ b|10〉e ∈ V (w) for a w ∈W . Then

�M ,w da|00〉+ b|10〉e ⊃ �d|00〉e

means that there exists a total measurement that reduces the state to the clas-
sical value |00〉, i.e., that there exist a modal world z in M such that wMz

and d|00〉e ∈ V (z).
Similarly, the modal judgement

�M ,w d|00〉e ⊃ �d|00〉e

tells us that it is impossible to escape from a “classical world” (a world repre-
senting a state without superposition) by means of a total measurement. If we
perform a total measurement, i.e., from the current world we access another
one by means of the relation M , the reached world is terminal with respect to
total measurement and it is possible to access a different world only by means
of a unitary transformation. More generally, we have

�M ,w d|φ〉e ⊃ �d|φ〉e

and we can express graphically this “invariance” of a classical world with
respect to total measurement by forcing the models to the particular shape

w ONMLHIJKGFED@ABCd|φ〉e

M
		

M
��

?U

  

that depicts that with M we can go nowhere but to the same world (as repre-
sented by the interrupted outgoing arrow labeled byM and the double “termi-
nation” circle), which we can only leave by a possible unitary transformation
U (whose possibility is represented by the dashed arrow and the question
mark).

Total measurement imposes three properties on the corresponding acces-
sibility relation M . To begin with, as for U , we can capture the composi-
tionality of total measurement by means of the modal axiom 4, in this case
�A ⊃ ��A, and the transitivity of M . Second, given any quantum state
it is always possible to perform a total measurement, which we can capture
by means of the standard modal axiom D, i.e., �A ⊃ �A, which formalizes
the seriality of M (that from any world there exists at least one transition
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by means of total measurement). Finally, we have the standard modal axiom
�(A ↔ �A), which expresses that from each modal world w there always
exists a transition to another world z interpreted in a classical state vector (if
w is classical itself, then z is imposed to be equal to w), i.e., that it is always
possible to completely reduce a quantum state to a classical one. This corre-
sponds to the shift-reflexivity of the total measurement accessibility relation.

Also these three axioms, in their labeled version, are provable theorems of
MSQS as explained in Section 3, where we will provide additional numerical
examples.

2.3 Generic measurements
In the case of unitary transformations and generic measurements, the under-
lying Kripke model is M = 〈W,U, P, V 〉. Everything that we explained for
U in the previous case still holds, while the generic measurement relation P
behaves differently than the total measurement relation M . This is because,
as we mentioned above, a generic measurement does not necessarily induce
the reduction to a classical state, but rather it is possible to obtain another
state with superposition. In fact, after a total measurement we always obtain
a classical world and only classical worlds are invariant with respect to the
relation M , while it is not possible to say the same in the generic case.

Let us associate the accessibility relation P to the dual modal operators �
and � that relate quantum (interpreted into superpositional vectors) worlds.
This allows us, for example, to write

�M ,w da|00〉+ b|01〉e ⊃ �da|00〉+ b|01〉e

to express modally that there exists a generic measurement (actually, the mea-
surement of the first qubit) that leaves unchanged the quantum state |ψ〉 =
a|00〉+ b|01〉.

In the case of total measurements, we adopted models in which it is not
possible to escape from a classical world by means of the accessibility rela-
tion M . This permitted us to adopt reflexive (i.e., self-referred, by means of
measurement) worlds as classical states. In the case of generic, partial, mea-
surements this is not a good choice: in fact, as we saw, a state with quantum
superposition can be invariant with respect to a particular generic measure-
ment. We thus opt for the following representation: if a state is invariant with
respect to a specific partial measurement, we do not use the reflexive relation
but we make the transition to a “duplicate” of the world, i.e., to a world that
has a different name but is otherwise equivalent (i.e., it is interpreted by the
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function V into the same set of propositional symbols). Then, we assume that
uPu if and only if u is a world representing a classical state.

The following example represents this graphically, where we we duplicate
the state |φ〉 into a copy-state (as displayed by the squiggly line), and only if
the measurement is total (on |ψ〉) then we have a reflexive world:

ONMLHIJKd|φ〉e P ///o/o/o

?U/P

##

ONMLHIJKd|φ〉e P //

?U/P

$$

ONMLHIJKGFED@ABCd|ψ〉e

P
		

P
��

?U

  

Other properties of generic measurements are captured modally along the
lines of what we saw before for U and M . For instance, the standard modal
axiom �A ⊃ � � A expresses the composability of generic measurements,
and the standard modal axiom �(A ⊃ �A) expresses that also in the case
of generic measurement it is always possible to perform a measurement with
complete reduction to a classical state (i.e., total measurement is a particular
case of the generic one). The labeled versions of these axioms are provable
theorems of MSpQS and in Section 5 we give a numerical example.

2.4 Taking stock
We close this discussion with some further considerations. As classical, pure,
modal systems, MSQS and MSpQS are able to represent and reason about
transformations of quantum states in an abstract way, and thus provide the
qualitative representation that we are aiming at here, but they possess no
quantum features. This is obviously payed in terms of concreteness and ex-
pressiveness (in the sense that we do not represent the quantitative internals
of quantum computations), but, in exchange, our systems enjoy important
meta-theoretical properties such as normalization and the subformula prop-
erty, which make them attractive from the proof-theoretical point of view,
differently from some quantum logics.

Moreover, stressing the qualitative nature of our investigation, Kripke se-
mantics is a good semantics for the description of quantum state transforma-
tions. Hence, modal logic is not incompatible with the Hilbert space formal-
ism but it simply abstracts away from concrete descriptions and underlines
other informations. Different semantics, such as the “classical” semantical
approach of quantum logic closely related to the Hilbert space formalism, are
interesting but completely different. They are oriented towards the axioma-
tization of quantum mechanics, and this requires a totally different approach
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in which modal logic, probably, would not be of much help. We leave a more
detailed investigation of this for future work and instead now focus on our
modal systems MSQS and MSpQS.

3 THE DEDUCTION SYSTEM MSQS

3.1 The language of MSQS
Our labelled modal natural deduction system MSQS, which formally rep-
resents unitary transformations and total measurements of quantum states,
comprises of rules that derive formulas of two kinds: modal formulas and re-
lational formulas. We thus define a modal language and a relational language.

The alphabet of the relational language consists of:

• the binary symbols U and M,

• a denumerable set x0, x1, . . . of labels.

Metavariables x, y, z, possibly annotated with subscripts and superscripts,
range over the set of labels. For brevity, we will sometimes speak of a “world”
xmeaning that the label x stands for a world I (x), where I is an interpreta-
tion function mapping labels into worlds as formalized in Definition 2 below.

The set of relational formulas (r-formulas for short) is given by expres-
sions of the form xUy and xMy. We write xRy to denote a generic r-formula,
with R ∈ {U,M}.

The alphabet of the modal language consists of:

• a denumerable set r, r0, r1, . . . of propositional symbols (for instance,
as discussed in Section 2),

• the standard propositional connectives ⊥ and ⊃,

• the unary modal operators � and �.

The set of modal formulas (m-formulas for short) is the least set that contains
⊥ and the propositional symbols, and is closed under ⊃ and the modal oper-
ators. Metavariables A, B, C, possibly indexed, range over modal formulas.
Other connectives can be defined in the usual manner, e.g., ¬A ≡ A ⊃ ⊥,
A ∧ B ≡ ¬(A ⊃ ¬B), A ↔ B ≡ (A ⊃ B) ∧ (B ⊃ A), ♦A ≡ ¬�¬A,
�A ≡ ¬�¬A, etc.

Let us give, in a rather informal way, the intuitive meaning of the modal
operators of our language:
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• �Ameans: A is true in each quantum state obtained by a unitary trans-
formation.

• �A means: A is true in each quantum state obtained by a total mea-
surement.

A labelled formula (l-formula for short) is an expression x:A, where x is a
label andA is an m-formula. A formula is either an r-formula or an l-formula.
The metavariable α, possibly indexed, ranges over formulas. We write α(x)
to denote that the label x occurs in the formula α, so that α(y/x) denotes the
substitution of the label y for all occurrences of x in α. Furthermore, we say
that an l-formula x:A is atomic when A is atomic, which is the case when A
is a propositional symbol or ⊥. Finally, we define the grade of an l-formula
x:A, in symbols grade(x:A), to be the number of times ⊃, � and � occur in
A, so that grade(x:A) = 0 for an atomic A.

3.2 The rules of MSQS
Figure 1 shows the rules of MSQS, where the notion of discharged/open
assumption is standard [16, 19], e.g., the formula [x:A] is discharged in the
rule ⊃ I:

Propositional rules: The rules ⊃ I , ⊃ E and RAA are just the labelled
version of the standard (e.g., [16, 19]) natural deduction rules for im-
plication introduction and elimination and for reductio ad absurdum,
where we enforce Prawitz’s side condition that A 6= ⊥. The “mixed”
rule ⊥E allows us to derive a generic formula α whenever we have
obtained a contradiction ⊥ at a world x; in this case, we do not enforce
the side condition thatA 6= ⊥ but allow the rule to derive y:⊥ for some
y from x:⊥.‡

Modal rules: We give the rules for a generic modal operator F, with a
corresponding generic relation R, since all the modal operators share
the structure of these basic introduction/elimination rules; this holds
because, for instance, we express x:�A as the metalevel implication
xUy =⇒ y:A for an arbitrary (fresh) y accessible from x. In particu-
lar:

• ifF is � then R is U,

‡ See [21] for a detailed discussion of the rules for ⊥, which in particular explains how, in
order to maintain the duality of modal operators like � and ♦, it must be possible to propagate a
⊥ at a world x to any other different world y.
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[x:A]....
x:B

x:A ⊃ B
⊃ I

x:A ⊃ B x:A
x:B ⊃ E

[x:¬A]....
y:⊥
x:A RAA

x:⊥
α ⊥E

[xRy]....
y:A
x:FA

FI
x:FA xRy

y:A
FE

xUx
Urefl

xUy

yUx
Usymm

xUy yUz

xUz
Utrans

xMy

xUy
UI

[xMy]....
α
α Mser

xMy

yMy
Msrefl

α(x) xMx xMy

α(y/x) Msub1
α(y) xMx xMy

α(x/y) Msub2

In RAA, A 6= ⊥.
InFI , y is fresh: it is different from x and does not occur in any assumption
on which y:A depends other than xRy.
In Mser , y is fresh: it is different from x and does not occur in α nor in any
assumption on which α depends other than xMy.

FIGURE 1
The rules of MSQS

• ifF is � then R is M.

Other rules:

• In order to axiomatize�, we add rules Urefl , Usymm , and Utrans ,
formalizing that U is an equivalence relation.
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• In order to axiomatize �, we add rules formalizing the following
properties:

– If xMy then there is a specific unitary transformation (de-
pending on x and y) that generates y from x: rule UI .

– The total measurement process is serial: rule Mser says that
if from the assumption xMy we can derive α for a fresh y
(i.e., y is different from x and does not occur in α nor in any
assumption on which α depends other than xMy), then we
can discharge the assumption (since there always is some y
such that xMy) and conclude α.

– The total measurement process is shift-reflexive: rule Msrefl .

– Invariance with respect to classical worlds: rules Msub1 and
Msub2 say that if xMx and xMy, then y must be equal to x
and so we can substitute the one for the other in any formula
α.

We refer to the fresh y inFI and Mser as the parameter of the rule.

3.3 Derivations and proofs
Definition 1 (Derivations and proofs). A derivation of a formula α from a set
of formulas Γ in MSQS (an MSQS-derivation, for short, or just “deriva-
tion” when MSQS is clear from context or is not needed) is a tree formed
using the rules in MSQS, ending with α and depending only on a finite sub-
set of Γ. We write Γ ` α to denote that there exists an MSQS-derivation of
α from Γ, and denote such a derivation Π graphically as

Γ
Π
α

A derivation in MSQS of α depending on the empty set is called a proof of
α and we then write ` α as an abbreviation of ∅ ` α and say that α is a
theorem of MSQS.

For instance, the following labelled formula schemata, corresponding to
standard modal axioms, are all provable in MSQS (where, in parentheses, we
give the intuitive meaning of each formula in terms of quantum state trans-
formations):

1. x:�A ⊃ A

(the identity transformation is unitary).
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2. x:A ⊃ �♦A
(each unitary transformation is invertible).

3. x:�A ⊃ ��A
(unitary transformations are composable).

4. x:�A ⊃ �A
(it is always possible to perform a total measurement of a quantum
state).

5. x:�(A↔ �A)
(it is always possible to perform a total measurement with a complete
reduction of a quantum state to a classical one).

6. x:�A ⊃ ��A
(total measurements are composable).

Some concrete, numerical, examples explaining the intuitive meaning of
these theorems are given in Section 4.2. Before doing that, we give some
examples of derivations and formalize a Kripke semantics.

As examples of derivations, Figure 2 contains the proofs of the formulas 5
and 6, where, for simplicity, here and in the following (cf. Figure 5), we
employ the rules for equivalence (↔ I) and for negation (¬I and ¬E), which
are derived from the propositional rules as is standard. For instance,

[x:A]1
Π
y:⊥
x:¬A ¬I1

abbreviates

[x:A]1
Π
y:⊥
x:⊥ ⊥E

x:A ⊃ ⊥ ⊃ I1

where, here and in the figure, we decorate, as is standard [16, 19], discharged
formulas and the rule applications discharging them with the same numeric
superscript.

We can similarly derive rules about r-formulas. For instance, we can derive
a rule for the transitivity of M as shown at the top of the proof of the formula 6
in Figure 2:

xMy yMz

xMz
Mtrans

abbreviates

xMy

xMy

yMy
Msrefl

yMz

xMz
Msub1
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[y:A]2
[xMy]1

yMy
Msrefl

[yMz]3

z:A Msub1

y:�A �I
3

y:A ⊃ �A ⊃ I2

[y:�A]4
[xMy]1

yMy
Msrefl

y:A �E

y:�A ⊃ A ⊃ I4

y:A↔ �A ↔ I

x:�(A↔ �A) �I
1

[x:�A]1
[xMy]2

[xMy]2

yMy
Msrefl

[yMz]3

xMz
Msub1

z:A �E

y:�A �I
3

x:��A �I
2

x:�A ⊃ ��A ⊃ I1

FIGURE 2
Examples of proofs in MSQS

4 A SEMANTICS FOR UNITARY TRANSFORMATIONS AND TO-
TAL MEASUREMENTS

We give a semantics that formally describes unitary transformations and total
measurements of quantum states in terms of accessibility relations between
worlds, and then prove that MSQS is sound and complete with respect to this
semantics. Together with the corresponding result for generic measurements
in MSpQS described in Section 5, this means that our modal systems indeed
provide a representation of quantum states and operations on them, which
was one of the main goals of the paper.

4.1 Frames, models, structures and truth
In order to define truth of l-formulas, we first define frames (consisting of a
set of possible worlds and accessibility relations), models (a frame plus an
interpretation function mapping worlds into sets of formulas), and structures
(a model plus an interpretation function mapping labels into possible worlds,
so to be able to deal with l-formulas x:A and not just m-formulas A).
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Definition 2 (Frames, models, structures). A frame is a tuple F = 〈W,U,M〉,
where:

• W is a non-empty set of worlds
(representing abstractly the quantum states);

• U ⊆W ×W is an equivalence relation
(vUw means that w is obtained by applying a unitary transformation
to v; U is an equivalence relation since identity is a unitary trans-
formation, each unitary transformation must be invertible, and unitary
transformations are composable);

• M ⊆W ×W

(vMw means that w is obtained by means of a total measurement of
v);

with the following properties:

(i) ∀v, w. vMw =⇒ vUw

(ii) ∀v. ∃w. vMw

(iii) ∀v, w. vMw =⇒ wMw

(iv) ∀v, w. vMv & vMw =⇒ v = w

(i) means that although it is not true that measurement is a unitary transfor-
mation, locally for each v, if vMw then there is a particular unitary trans-
formation, depending on v and w, that generates w from v; the vice versa
cannot hold, since in quantum theory measurements cannot be used to obtain
the unitary evolution of a quantum system. (ii) means that each quantum state
is totally measurable. (iii) and (iv) together mean that after a total measure-
ment we obtain a classical world. Figure 3 shows properties (ii), (iii) and
(iv), respectively, as well as the combination of (iii) and (iv).¶

A model is a pair M = 〈F , V 〉, where F is a frame and V :W → 2Prop

is an interpretation function mapping worlds into sets of formulas.
A structure is a pair S = 〈M ,I 〉, where M is a model and I :Var →

W is an interpretation function mapping variables (labels) into worlds in W .
We write R to denote a generic frame relation, i.e., R ∈ {U,M}, and,

slightly abusing notation, we write I (R) to denote the corresponding R.

¶ Note that while (iv) says that v is invariant with respect to M , a unitary transformation U

could still be applied to v (and hence the dotted arrow decorated with a “?” for U ). Note also
that here we use a more abstract graphical representation than the figures of Section 2 as here we
are talking about the relations between worlds, and are abstracting away from the propositional
symbols.
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v
M // w v

M // w

M


v

M



M
��

?
U

��

v
M // w

M



M
��

?
U

  

(ii) (iii) (iv) (iii) and (iv)

FIGURE 3
Some properties of the relation M

Given this semantics, we can define what it means for formulas to be true,
and then prove the soundness and completeness of MSQS.

Definition 3 (Truth). Truth for an m-formula at a world w in a model M =
〈W,U,M, V 〉 is the smallest relation � satisfying:

�M ,w r iff r ∈ V (w)
�M ,w A ⊃ B iff �M ,w A =⇒ �M ,w B

�M ,w �A iff ∀w′. wUw′ =⇒ �M ,w′
A

�M ,w �A iff ∀w′. wMw′ =⇒ �M ,w′
A

Hence, 2M ,w ⊥ for any M and w. For an m-formula A, we write �M A iff
�M ,w A for all w.

Truth for a formula α in a structure S = 〈M ,I 〉 is then the smallest
relation � satisfying:

�M ,I xMy iff I (x)MI (y)
�M ,I xUy iff I (x)UI (y)
�M ,I x:A iff �M ,I (x) A

Hence, �M ,I xRy iff I (x)I (R)I (y) iff I (x)RI (y). Moreover, 2M ,I

x:⊥ for any x, M and I .
By extension, �M ,I Γ iff �M ,I α for all α in the set of formulas Γ.

Thus, for a set of formulas Γ and a formula α,

Γ � α iff ∀S . Γ �S α

iff ∀M ,I . Γ �M ,I α

iff ∀M ,I . �M ,I Γ =⇒ �M ,I α
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We omit M when it is not relevant and, for example, write Γ �I α when
�I Γ implies �I α.

4.2 Some concrete examples
Now that we have defined a Kripke semantics, we can give some concrete,
numerical, examples explaining the intuitive meaning of the theorems stated
in Section 3.3.

Let us thus consider a structure 〈M ,I 〉 where M = 〈W,U,M, V 〉 is
the Kripke model defined in Section 2.2, and I is a generic interpretation
function. With a little abuse of language for the sake of brevity, we identify,
via the interpretation function I , the labels with the corresponding concrete
worlds of the semantics, and the syntactic relations U, M with their semantical
counterparts U and M . Then we will write expressions like d|00〉e ∈ V (x)
in order to say that d|00〉e ∈ V (I (x)). Moreover, under such a convention
we will refer to labels as worlds.

Consider the formula 2, x:A ⊃ �♦A, which states the symmetric property
of the relation U and captures the reversible nature of unitary transformations.
Roughly speaking, if we start from a normalized vector |φ〉 and we apply a
unitary operator, then we can always “come back” to the starting vector, as for
a symmetric property. That is, A holds at x and for each world y accessible
from x there is a world accessible from y such that A holds: that world is
x itself. For example, suppose we have x:d|00〉e ⊃ ♦dT (|00〉)e for a world
x and a generic unitary transformation T ; namely, given x:d|00〉e, there is a
world y such that xUy and y:dT (|00〉)e. Since for each unitary transformation
T there exists the inverse one T−1, then there exists a world z such that yUz
and z:dT−1(T (|00〉))e. But dT−1(T (|00〉))e ↔ d|00〉e, and thus z is x.
Graphically, this amounts to the symmetry of unitary transformations U:

x ONMLHIJKd|φ〉e
U
,, ONMLHIJKd|ψ〉e

U

ll
y

Formula 3, x:�A ⊃ ��A, models the transitivity of U, i.e., given two
unitary transformations, there always exists the transformation defined by
means of composition. As a concrete example, let us consider the follow-
ing equivalences between propositional symbols: dcnot |11〉e ↔ d|10〉e and
dBell |10〉e ↔ d1/

√
2|00〉 − 1/

√
2|11〉e. In terms of accessibility relation,

given three modal worlds x, y and z such that d|11〉e ∈ V (x), d|10〉e ∈
V (y) and d1/

√
2|00〉 − 1/

√
2|11〉e ∈ V (z), then we have xUy and yUz by

means of transformations Bell and cnot , respectively. The transformations
can be expressed by the modal operator ♦ as x:d|11〉e ⊃ ♦dcnot |11〉e and
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y:dcnot |11〉e ⊃ ♦dBell(cnot |11〉)e, where y is the world we access by the
transformation, and x:d|11〉e ⊃ ♦dBell(cnot |11〉)e. Summing up, graphi-
cally, this amounts to the transitivity of unitary transformations U:

y ONMLHIJKd|φ2〉e
U

��

x ONMLHIJKd|φ1〉e

U

77

U

// ONMLHIJKd|φ3〉e z

Now, let us consider the formula 5, x:�(A↔ �A). If, for some world x,
we have x:�(d|01〉e ↔ �d|01〉e), then, for each world y reachable by means
of total measurement (i.e., such that xMy), we have that y:d|01〉e ↔ �d|01〉e.
In fact, it is immediate to check that after a total measurement we always ob-
tain a “stable” state with respect to further measurements. The double impli-
cation here expresses the impossibility to escape from the description d|01〉e
by means of relation M, or, in other words, that we are in a classical state.

The following diagram graphically sums up the main characteristics of M:

y

x ONMLHIJKd|φ〉e M // ONMLHIJKGFED@ABCd|ψ〉e

M

JJ M
��

?U

!!

(2)

4.3 Soundness and completeness
By adapting standard proofs to the case of labelled deduction (see, e.g., [10,
16, 18, 19, 21]), we can show:

Theorem 1 (Soundness and completeness of MSQS). Γ ` α iff Γ � α. �

Theorem 1 follows from Theorems 2 and 3 below.

Theorem 2 (Soundness of MSQS). Γ ` α implies Γ � α.

Proof. We let M be an arbitrary model and prove that if Γ ` α then Γ �I α

for any I , i.e., �I Γ implies �I α for any I . The proof proceeds by
induction on the structure of the derivation of α from Γ. The base case, where
α ∈ Γ, is trivial. There is one step case for each rule of MSQS.
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Consider an application of the rule RAA,

[x:¬A]....
y:⊥
x:A RAA

where Γ′ � y:⊥ with Γ′ = Γ ∪ {x:¬A}. By the induction hypothesis, Γ′ `
y:⊥ implies Γ′ �I y:⊥ for any I . We assume �I Γ and prove �I x:A.
Since 2w ⊥ for any worldw, from the induction hypothesis we obtain 2I Γ′,
and thus 2I x:¬A, i.e., �I x:A and 2I x:⊥.

Consider an application of the rule ⊥E,

x:⊥
α ⊥E

with Γ ` x:⊥. By the induction hypothesis, Γ ` x:⊥ implies Γ �I x:⊥
for any I . We assume �I Γ and prove �I α for an arbitrary formula α.
If �I Γ then �I x:⊥ by the induction hypothesis, i.e., �I (x) ⊥. But since
2w ⊥ for any world w, then 2I Γ and thus �I α for any α.

Consider an application of the ruleFI ,

[xRy]....
y:A
x:FA

FI

where Γ′ ` y:A with y fresh and with Γ′ = Γ ∪ {xRy}. By the induction
hypothesis, for all interpretations I , if �I Γ then �I y:A. We let I be any
interpretation such that �I Γ, and show that �I x:FA. Let w be any world
such that I (x)I (R)w. Since I can be trivially extended to another inter-
pretation (still called I for simplicity) by setting I (y) = w, the induction
hypothesis yields �I y:A, i.e., �w A, and thus �I (x) FA, i.e., �I x:FA.

Consider an application of the ruleFE,

x:FA xRy

y:A
FE

with Γ1 ` x:FA and Γ2 ` xRy, and Γ ⊇ Γ1 ∪ Γ2. We assume �I Γ
and prove �I y:A. By the induction hypothesis, for all interpretations I , if
�I Γ1 then �I x:FA and if �I Γ2 then I (x)I (R)I (y). If �I Γ, then
�I x:FA and I (x)I (R)I (y), and thus �I y:A.

The rules Urefl , Usymm , and Utrans are sound by the properties of U .
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The rule UI is sound by property (i) in Definition 2.
Consider an application of the rule Mser ,

[xMy]....
α
α Mser

with Γ′ = Γ ∪ {xMy}, for y fresh. By the induction hypothesis, Γ′ ` α

implies Γ′ �I α for any I . Let us suppose that there is an I ′ such that
�I ′

Γ′ and 2I ′
α. Let us consider an I ′′ such that I ′′(z) = I ′(z) for

all z such that z 6= y and I ′′(y) is the world w such that I ′′(y)Mw, which
exists by property (ii) in Definition 2. Since y does not occur in Γ nor in α,
we then have that �I ′′

Γ′ and 2I ′′
α, contradicting the universality of the

consequence of the induction hypothesis. Hence, Mser is sound.
The rule Msrefl is sound by property (iii) in Definition 2.
Consider an application of the rule Msub1 ,

α(x) xMx xMy

α(y/x) Msub1

with Γ1 ` α(x), Γ2 ` xMx, Γ3 ` xMy, and Γ ⊇ Γ1 ∪ Γ2 ∪ Γ3. We
assume �I Γ and prove �I α(y/x). By the induction hypothesis, Γ1 ` α(x)
implies Γ1 �I α(x), Γ2 ` xMx implies if �I Γ2 then I (x)MI (x),
and Γ3 ` xMy implies if �I Γ3 then I (x)MI (y). By property (iv) in
Definition 2, we then have I (x) = I (y) and thus �I α(y/x):A. The case
for rule Msub2 follows analogously.

To prove completeness (Theorem 3), we give some preliminary defini-
tions and results. For simplicity, we split each set of formulas Γ into a pair
(LF ,RF ) of the subsets of l-formulas and r-formulas of Γ, and then prove
(LF ,RF ) � α implies (LF ,RF ) ` α. We call (LF ,RF ) a context and,
slightly abusing notation, we write α ∈ (LF ,RF ) whenever α ∈ LF or
α ∈ RF , and write x ∈ (LF ,RF ) whenever the label x occurs in some α ∈
(LF ,RF ). We say that a context (LF ,RF ) is consistent iff (LF ,RF ) 0 x:⊥
for every x, so that we have:

Fact 1. If (LF ,RF ) is consistent, then for every x and everyA, either (LF ∪
{x:A},RF ) is consistent or (LF ∪ {x:¬A},RF ) is consistent.

Let (LF ,RF ) be the deductive closure of (LF ,RF ) for r-formulas under
the rules of MSQS, i.e.,

(LF ,RF ) ≡ {xRy | (LF ,RF ) ` xRy}
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for R ∈ {U,M}. We say that a context (LF ,RF ) is maximally consistent iff

1. it is consistent,

2. it is deductively closed for r-formulas, i.e., (LF ,RF ) = (LF ,RF ),
and

3. for every x and everyA, either x:A ∈ (LF ,RF ) or x:¬A ∈ (LF ,RF ).

Completeness follows by a Henkin–style proof, where a canonical structure

S c = 〈M c,I c〉 = 〈W c, U c,M c, V c,I c〉

is built to show that (LF ,RF ) 0 α implies (LF ,RF ) 2S c

α, i.e., �S c

(LF ,RF ) and 2S c

α.
In standard proofs for unlabelled modal logics (e.g., [7]) and for other non-

classical logics, the set W c is obtained by progressively building maximally
consistent sets of formulas, where consistency is locally checked within each
set. In our case, given the presence of l-formulas and r-formulas, we modify
the Lindenbaum lemma to extend (LF ,RF ) to one single maximally con-
sistent context (LF ∗,RF ∗), where consistency is “globally” checked also
against the additional assumptions in RF .§ The elements of W c are then
built by partitioning LF ∗ and RF ∗ with respect to the labels, and the re-
lations R between the worlds are defined by exploiting the information in
RF ∗.

In the Lindenbaum lemma for predicate logic, a maximally consistent and
ω-complete set of formulas is inductively built by adding for every formula
¬∀x.A a witness to its truth, namely a formula ¬A[c/x] for some new indi-
vidual constant c. This ensures that the resulting set is ω-complete, i.e., that if,
for every closed term t,A[t/x] is contained in the set, then so is ∀x.A. A sim-
ilar procedure applies here in the case of l-formulas of the form x:¬FA. That
is, together with x:¬FA we consistently add y:¬A and xRy for some new y,
which acts as a witness world to the truth of x:¬FA. This ensures that the
maximally consistent context (LF ∗,RF ∗) is such that if xRz ∈ (LF ∗,RF ∗)
implies z:B ∈ (LF ∗,RF ∗) for every z, then x:FB ∈ (LF ∗,RF ∗), as
shown in Lemma 2 below. Note that in the standard completeness proof for
unlabelled modal logics, one instead considers a canonical model M c and

§ We consider only consistent contexts. If (LF ,RF ) is inconsistent, then LF ,RF ` x:A

for all x:A, and thus completeness immediately holds for l-formulas. Our language does not
allow us to define inconsistency for a set of r-formulas, but, whenever (LF ,RF ) is inconsistent,
the canonical model built in the following is nonetheless a counter-model to non-derivable r-
formulas.
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shows that if w ∈ W c and �Mc,w ¬FA, then W c also contains a world w′

accessible from w that serves as a witness world to the truth of ¬FA at w,
i.e., �Mc,w′ ¬A.

Lemma 1. Every consistent context (LF ,RF ) can be extended to a maxi-
mally consistent context (LF ∗,RF ∗).

Proof. We first extend the language of MSQS with infinitely many new con-
stants for witness worlds. Systematically let b range over labels, c range
over the new constants for witness worlds, and a range over both. All these
may be subscripted. Let l1, l2, . . . be an enumeration of all l-formulas in the
extended language; when li is a:A, we write ¬li for a:¬A. Starting from
(LF 0,RF 0) = (LF ,RF ), we inductively build a sequence of consistent
contexts by defining (LF i+1,RF i+1) to be:

• (LF i,RF i), if (LF i ∪ {li+1},RF i) is inconsistent; else

• (LF i ∪ {li+1},RF i), if li+1 is not a:¬FA; else

• (LF i ∪ {a:¬FA, c:¬A},RF i ∪ {aRc}) for a c 6∈ (LF i ∪ {a:¬FA},
RF i), if li+1 is a:¬FA.

Every (LF i,RF i) is consistent. To show this, we show that if (LF i ∪
{a:¬FA},RF i) is consistent, then so is (LF i ∪ {a:¬FA, c:¬A},RF i ∪
{aRc}) for a c 6∈ (LF i ∪ {a:¬FA},RF i); the other cases follow by con-
struction. We proceed by contraposition. Suppose that

(LF i ∪ {a:¬FA, c:¬A},RF i ∪ {aRc}) ` aj :⊥

where c 6∈ (LF i ∪ {a:¬FA},RF i). Then, by RAA,

(LF i ∪ {a:¬FA},RF i ∪ {aRc}) ` c:A ,

andFI yields
(LF i ∪ {a:¬FA},RF i) ` a:FA .||

|| Note that if A = ⊥, then we cannot apply RAA. But in that case, if

(LF i ∪ {a:¬F⊥, c:¬⊥},RF i ∪ {aRc}) ` aj :⊥

then also
(LF i ∪ {a:¬F⊥},RF i ∪ {aRc}) ` aj :⊥ ,

which can only be the case if either LF i contains for some B both a:F¬B and a:FB, which
give rise to a ⊥ at c via aRc, or LF i contains a:FA, i.e., a:F⊥. In both such cases, it must be
that (LF i ∪ {a:¬FA},RF i) is inconsistent, which contradicts the assumption.

25



Since also
(LF i ∪ {a:¬FA},RF i) ` a:¬FA ,

by ¬E we have
(LF i ∪ {a:¬FA},RF i) ` a:⊥ ,

i.e., (LF i ∪ {a:¬FA},RF i) is inconsistent. Contradiction.
Now define

(LF ∗,RF ∗) = (
⋃
i≥0

LF i,
⋃
i≥0

RF i)

We show that (LF ∗,RF ∗) is maximally consistent, by showing that it satis-
fies the three conditions in the definition of maximal consistency. For the first
condition, note that if

(
⋃
i≥0

LF i,
⋃
i≥0

RF i)

is consistent, then so is
(
⋃
i≥0

LF i,
⋃
i≥0

RF i) .

Now suppose that (LF ∗,RF ∗) is inconsistent. Then for some finite (LF ′,

RF ′) included in (LF ∗,RF ∗) there exists an a such that (LF ′,RF ′) `
a:⊥. Every l-formula l ∈ (LF ′,RF ′) is in some (LF j ,RF j). For each
l ∈ (LF ′,RF ′), let il be the least j such that l ∈ (LF j ,RF j), and let
i = max{il | l ∈ (LF ′,RF ′)}. Then (LF ′,RF ′) ⊆ (LF i,RF i), and
(LF i,RF i) is inconsistent, which is not the case.

The second condition is satisfied by definition of (LF ∗,RF ∗).
For the third condition, suppose that li+1 6∈ (LF ∗,RF ∗). Then li+1 6∈

(LF i+1, RF i+1) and (LF i ∪ {li+1},RF i) is inconsistent. Thus, by Fact 1,
(LF i ∪ {¬li+1},RF i) is consistent, and ¬li+1 is consistently added to some
(LF j ,RF j) during the construction, and therefore ¬li+1 ∈ (LF ∗,RF ∗).

The following lemma states some properties of maximally consistent con-
texts.

Lemma 2. Let (LF ∗,RF ∗) be a maximally consistent context. Then

1. (LF ∗,RF ∗) ` aiRaj iff aiRaj ∈ (LF ∗,RF ∗).

2. (LF ∗,RF ∗) ` a:A iff a:A ∈ (LF ∗,RF ∗).

3. a:B ⊃ C ∈ (LF ∗,RF ∗) iff a:B ∈ (LF ∗,RF ∗) implies a:C ∈
(LF ∗,RF ∗).

26



4. ai:FB ∈ (LF ∗,RF ∗) iff aiRaj ∈ (LF ∗,RF ∗) implies aj :B ∈
(LF ∗,RF ∗) for all aj .

Proof. 1 and 2 follow immediately by definition. We only treat 4 as 3 fol-
lows analogously. For the left-to-right direction, suppose that ai:FB ∈
(LF ∗,RF ∗). Then, by (ii), (LF ∗,RF ∗) ` ai:FB, and, by FE, we have
(LF ∗,RF ∗) ` aiRaj implies (LF ∗,RF ∗) ` aj :B for all aj . By 1 and
2, conclude aiRaj ∈ (LF ∗,RF ∗) implies aj :B ∈ (LF ∗,RF ∗) for all aj .
For the converse, suppose that ai:FB 6∈ (LF ∗,RF ∗). Then ai:¬FB ∈
(LF ∗,RF ∗), and, by the construction of (LF ∗,RF ∗), there exists an aj such
that aiRaj ∈ (LF ∗,RF ∗) and aj :B 6∈ (LF ∗,RF ∗).

We can now define the canonical structure

S c = 〈M c,I c〉 = 〈W c, U c,M c, V c,I c〉 .

Definition 4. Given a maximally consistent context (LF ∗,RF ∗), we define
the canonical structure S c as follows:

• W c = {a | a ∈ (LF ∗,RF ∗)},

• (ai, aj) ∈ U c iff aiUaj ∈ (LF ∗,RF ∗),

• (ai, aj) ∈M c iff aiMaj ∈ (LF ∗,RF ∗),

• V c(r) = a iff a:r ∈ (LF ∗,RF ∗),

• I c(a) = a.

Note that the standard definition of Rc adopted for unlabelled modal log-
ics, i.e.

(ai, aj) ∈ Rc iff {A | �A ∈ ai} ⊆ aj ,

is not applicable in our setting, since {A | �A ∈ ai} ⊆ aj does not im-
ply ` aiRaj . We would therefore be unable to prove completeness for r-
formulas, since there would be cases, e.g., when RF = {}, where 0 aiRaj
but (ai, aj) ∈ Rc and thus �S c

aiRaj . Hence, we instead define (ai, aj) ∈
Rc iff aiRaj ∈ (LF ∗,RF ∗); note that therefore aiRaj ∈ (LF ∗,RF ∗) im-
plies {A | �A ∈ ai} ⊆ aj . As a further comparison with the standard
definition, note that in the canonical model the label a can be identified with
the set of formulas {A | a:A ∈ (LF ∗,RF ∗)}. Moreover, we immediately
have:

Fact 2. aiRaj ∈ (LF ∗,RF ∗) iff (LF ∗,RF ∗) �S c

aiRaj .
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The deductive closure of (LF ∗,RF ∗) for r-formulas ensures not only
completeness for r-formulas, as shown in Theorem 3 below, but also that
the conditions on Rc are satisfied, so that S c is really a structure for MSQS.
More concretely:

• U c is an equivalence relation by construction and rules Urefl , Usymm ,
and Utrans . For instance, for transitivity, consider an arbitrary con-
text (LF ,RF ) from which we build S c. Assume (ai, aj) ∈ U c and
(aj , ak) ∈ U c. Then aiUaj ∈ (LF ∗,RF ∗) and ajUak ∈ (LF ∗,RF ∗).
Since (LF ∗,RF ∗) is deductively closed, by 1 in Lemma 2 and rule
Utrans , we have aiUak ∈ (LF ∗,RF ∗). Thus, (ai, uk) ∈ U c and U c

is indeed transitive.

• ∀v, w ∈W c. vMw =⇒ vUw holds by construction and rule UI .

• ∀v ∈ W c. ∃w ∈ W c. vMw holds by construction and rule Mser .
For the sake of contradiction, consider an arbitrary ai and a variable a′j
that do not satisfy the property. Define (LF ′,RF ′) = (LF ∗,RF ∗) ∪
{aiMa′j}. Then it cannot be the case that (LF ′,RF ′) ` α, for oth-
erwise (LF ∗,RF ∗) ` α would be derivable by an application of the
rule Mser . Thus, (LF ′,RF ′) 0 α. But then (LF ′,RF ′) must be
in the chain of contexts built in Lemma 2. So, by the maximality of
(LF ∗,RF ∗), we have that (LF ′,RF ′) = (LF ∗,RF ∗), contradict-
ing our assumption. Hence, for some aj , the r-formula aiMaj is in
(LF ∗,RF ∗), which is what we had to show.

• ∀v, w ∈W c. vMw =⇒ wMw holds by construction and rule Msrefl .

• ∀v, w ∈ W c. vMv & vMw =⇒ v = w holds by construction and
rules Msub1 and Msub2 since v is a classical world. Consider an arbi-
trary context (LF ,RF ) from which we build S c and assume (ai, ai) ∈
M c and (ai, aj) ∈ M c. Then aiMai ∈ (LF ∗,RF ∗) and aiMaj ∈
(LF ∗,RF ∗). Thus, for each ai:A ∈ (LF ∗,RF ∗), we also have aj :A ∈
(LF ∗,RF ∗); otherwise, since (LF ∗,RF ∗) is deductively closed, we
would have aj :¬A ∈ (LF ∗,RF ∗) and also aj :A ∈ (LF ∗,RF ∗) by
1 in Lemma 2 and rule Msub1 , and thus a contradiction. Similarly,
if aj :A ∈ (LF ∗,RF ∗) then ai:A ∈ (LF ∗,RF ∗) by rule Msub2 .
Hence, for each m-formula A, we have that ai:A ∈ (LF ∗,RF ∗) iff
aj :A ∈ (LF ∗,RF ∗), which means that ai and aj are equal with re-
spect to m-formulas.

28



Under the same assumptions, we can similarly show that ai and aj
are equal with respect to r-formulas, i.e., that whenever (LF ∗,RF ∗)
contains an r-formula that includes ai then it also contains the same
r-formula with aj substituted for ai, and vice versa. To this end, we
must consider eight different cases corresponding to eight different r-
formulas.

1. If akUai ∈ (LF ∗,RF ∗) for some ak, then from the assumption
that aiMaj ∈ (LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1
in Lemma 2 and rule UI . Therefore, akUaj ∈ (LF ∗,RF ∗) by
rule Utrans .

2. We can reason similarly for ajUak ∈ (LF ∗,RF ∗) and also ap-
ply rules UI and Utrans to conclude that then also aiUak ∈
(LF ∗,RF ∗).

3. If aiUak ∈ (LF ∗,RF ∗) for some ak, then from the assumption
that aiMaj ∈ (LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1
in Lemma 2 and rule UI , and thus ajUai ∈ (LF ∗,RF ∗), by rule
Usymm . Therefore, ajUak ∈ (LF ∗,RF ∗) by rule Utrans .

4. We can reason similarly for akUaj ∈ (LF ∗,RF ∗) and also apply
rules UI , Usymm , and Utrans to conclude that then also akUai ∈
(LF ∗,RF ∗).

5. If akMai ∈ (LF ∗,RF ∗) for some ak, then from the assumption
that aiMaj ∈ (LF ∗,RF ∗) we have akMaj ∈ (LF ∗,RF ∗), by 1
in Lemma 2 and the derived rule Mtrans .

6. We can reason similarly for ajMak ∈ (LF ∗,RF ∗) and also apply
rule Mtrans to conclude that then also aiUak ∈ (LF ∗,RF ∗).

7. If aiMak ∈ (LF ∗,RF ∗) for some ak, then from the assumptions
that aiMai ∈ (LF ∗,RF ∗) and aiMaj ∈ (LF ∗,RF ∗) we have
ajMak ∈ (LF ∗,RF ∗), by 1 in Lemma 2 and rule Msub1 .

8. We can reason similarly for akMaj ∈ (LF ∗,RF ∗) and apply rule
Msub2 to conclude that then also akMai ∈ (LF ∗,RF ∗).

Hence, ai and aj are equal also with respect to r-formulas, and thus
ai = aj whenever (ai, ai) ∈M c and (ai, aj) ∈M c, which is what we
had to show.

By Lemma 2 and Fact 2, it follows that:

Lemma 3. a:A ∈ (LF ∗,RF ∗) iff (LF ∗,RF ∗) �S c

a:A.
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Proof. We proceed by induction on the grade of a:A, and we treat only the
step case where a:A is ai:FB; the other cases follow analogously. For the
left-to-right direction, assume ai:FB ∈ (LF ∗,RF ∗). Then, by Lemma 2,
aiRaj ∈ (LF ∗,RF ∗) implies aj :B ∈ (LF ∗,RF ∗), for all aj . Fact 2 and the
induction hypothesis yield that (LF ∗,RF ∗) �S c

aj :B for all aj such that
(LF ∗,RF ∗) �S c

aiRaj , i.e. (LF ∗,RF ∗) �S c

ai:FB by Definition 3. For
the converse, assume ai:¬FB ∈ (LF ∗,RF ∗). Then, by Lemma 2, aiRaj ∈
(LF ∗,RF ∗) and aj :¬B ∈ (LF ∗,RF ∗), for some aj . Fact 2 and the induc-
tion hypothesis yield (LF ∗,RF ∗) �S c

aiRaj and (LF ∗,RF ∗) �S c

aj :¬B,
i.e., (LF ∗,RF ∗) �S c

ai:¬FB by Definition 3.

We can now finally show:

Theorem 3 (Completeness of MSQS). Γ � α implies Γ ` α.

Proof. If (LF ,RF ) 0 biRbj , then biRbj 6∈ (LF ∗,RF ∗), and thus, by Fact 2,
(LF ∗,RF ∗) 2S c

biRbj .
If (LF ,RF ) 0 b:A, then (LF ∪ {b:¬A},RF ) is consistent; otherwise

there exists a bi such that (LF ∪ {b:¬A},RF ) ` bi:⊥, and then (LF ,RF ) `
b:A. Therefore, by Lemma 1, (LF ∪{b:¬A},RF ) is included in a maximally
consistent context ((LF ∪ {b:¬A})∗,RF ∗). Then, by Lemma 3, ((LF ∪
{b:¬A})∗,RF ∗) �S C

b:¬A, i.e., ((LF ∪ {b:¬A})∗,RF ∗) 2S c

b:A, and
thus (LF ,RF ) 2S c

b:A.

5 GENERIC MEASUREMENTS

5.1 The rules of MSpQS
In quantum computing, not all measurements are required to be total: think,
for example, of the case of observing only the first qubit of a quantum state.
To this end, in this section, we propose MSpQS, a variant of MSQS that pro-
vides a modal system representing all the partial (thus not necessarily total)
measurements. We obtain MSpQS from MSQS by means of the following
changes:

• The alphabet of the modal language contains the unary modal operator
� instead of �, with corresponding �, where �A intuitively means
that A is true in each quantum state obtained by a measurement.

• The set of relational formulas contains expressions of the form xPy

instead of xMy, and we now write xRy to denote a generic r-formula,
with R ∈ {U,P}.
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• The rules of MSpQS are given in Figure 4. In particular, F is either
� (as before) or �, for which then R is P, and whose properties are
formalized by the following additional rules:

– If xPy then there is a specific unitary transformation (depending
on x and y) that generates y from x: rule PUI .

– The measurement process is transitive: rule Ptrans .

– There are (always reachable) classical worlds: class says that y
is a classical world reachable from world x by a measurement.

– Invariance with respect to classical worlds for measurement: rules
Psub1 and Psub2 .

We refer to the fresh y inFI and class as the parameter of the rule.
Some concrete, numerical, examples explaining the intuitive meaning of

these theorems are given in Section 5.3. Before doing that, we consider
derivations and show the soundness and completeness of the system.

Derivations and proofs in MSpQS are defined as for MSQS. For instance,
in addition to the formulas for � already listed for MSQS, the following
labelled formula schemata, corresponding to standard modal axioms, are all
provable in MSpQS (as shown, e.g., for formula 3 in Figure 5):

1. x: �A ⊃ �A
(it is always possible to perform a measurement of a quantum state).

2. x: �A ⊃ � �A

(measurements are composable).

3. x:�(A ⊃ �A), i.e., x:¬� ¬(A ⊃ �A)
(it is always possible to perform a measurement with a complete reduc-
tion of a quantum state to a classical one).

5.2 The semantics of MSpQS
The semantics of MSpQS is also obtained by simple changes with respect
to the definitions of Section 4. A frame is a tuple F = 〈W,U, P 〉, where
P ⊆W ×W and vPw means that w is obtained by means of a measurement
of v, with the following properties:

(i) ∀v, w. vPw =⇒ vUw

(as for (i) in Section 4).
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⊃ I, ⊃ E, RAA, ⊥E, FI, FE, Urefl , Usymm, Utrans,

xPy

xUy
PUI

xPy yPz

xPz
Ptrans

[xPy] [yPy]....
α
α class

α(x) xPx xPy

α(y/x) Psub1
α(y) xPx xPy

α(x/y) Psub2

InFI , y is fresh: it is different from x and does not occur in any assumption
on which y:A depends other than xRy.
In class , y is fresh: it is different from x and does not occur in α nor in any
assumption on which α depends other than xPy and yPy.

FIGURE 4
The rules of MSpQS

[x: � ¬(A ⊃ �A)]2 [xPy]1

y:¬(A ⊃ �A)
�E

[y:A]3 [yPy]1 [yPz]4

z:A Psub1

y: �A
�I4

y:A ⊃ �A ⊃ I3

y:⊥ ¬E

x:¬� ¬(A ⊃ �A) ¬I
2

x:¬� ¬(A ⊃ �A) class1

FIGURE 5
An example proof in MSpQS

(ii) ∀v, w′, w′′. vPw′ & w′Pw′′ =⇒ vPw′′

(measurements are composable).

(iii) ∀v. ∃w. vPw & wPw
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(each quantum state v can be reduced to a classical one w by means of
a measurement).

(iv) ∀v, w. vPv & vPw =⇒ v = w

(each measurement of a classical state v has v as outcome).

Models and structures are defined as before, with I (P) = P , while the truth
relation now comprises the clauses

�M ,w �A iff ∀w′. wPw′ =⇒ �M ,w′
A

�M ,I xPy iff I (x)PI (y)

Finally, MSpQS is also sound and complete.

Theorem 4 (Soundness and completeness of MSpQS). Γ ` α iff Γ � α. �

We can reason similarly to what we did for MSQS to show the soundness
and completeness of MSpQS with respect to the corresponding semantics:
Theorem 4 follows from Theorems 5 and 6 below.

Theorem 5 (Soundness of MSpQS). Γ ` α implies Γ � α.

Proof. We let M be an arbitrary model and prove that if Γ ` α then �I Γ
implies �I α for any I . The proof proceeds by induction on the structure
of the derivation of α from Γ. The base case, where α ∈ Γ, is trivial. There is
one step case for each rule of MSpQS, where the soundness of the rules ⊃ I ,
⊃ E, RAA, ⊥E, Urefl , Usymm , Utrans follows exactly like in the proof of
Theorem 2.

Also the soundness of the rules FI and FE follows exactly like in the
proof of Theorem 2, with the only difference that whenF is � then R is P.

The rules PUI and Ptrans are sound by properties (i) and (ii) in the defi-
nition of the semantics for MSpQS, respectively.

The soundness of the rule class follows like for the soundness of the rule
Mser in the proof of Theorem 2, this time exploiting property (iii) in the
definition of the semantics for MSpQS.

The soundness of the rules Psub1 and Psub2 follows like for the sound-
ness of the rules Msub1 and Msub2 in the proof of Theorem 2, this time
exploiting property (iv) in the definition of the semantics for MSpQS.

To prove completeness (Theorem 3), we proceed like for MSQS, mutatis
mutandis in the construction of the canonical model. In particular, given a
maximally consistent context (LF ∗,RF ∗), we define the canonical structure
S c = 〈W c, U c, P c, V c,I c〉 by setting
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• (ai, aj) ∈ P c iff aiPaj ∈ (LF ∗,RF ∗).

To show that the conditions onRc are satisfied, so that S c is really a structure
for MSpQS, we reuse the results proved for MSQS and in addition show the
following:

• ∀v, w ∈W c. vPw =⇒ vUw holds by construction and rule PUI .

• ∀v, w′, w′′ ∈ W c. vPw′ & w′Pw′′ =⇒ vPw′′ holds by construction
and rule Ptrans .

• ∀v ∈ W c. ∃w ∈ W c. vPw & wPw holds by construction and rule
class . For the sake of contradiction, consider an arbitrary ai and a
variable a′j that do not satisfy the property. Define (LF ′,RF ′) =
(LF ∗,RF ∗) ∪ {aiPa′j , a′jPa′j}. Then it cannot be the case that (LF ′,

RF ′) ` α, for otherwise (LF ∗,RF ∗) ` α would be derivable by
an application of the rule class . Thus, (LF ′,RF ′) 0 α. But then
(LF ′,RF ′) must be in the chain of contexts built in Lemma 2. So,
by the maximality of (LF ∗,RF ∗), we have that (LF ′,RF ′) = (LF ∗,

RF ∗), contradicting our assumption. Hence, for some aj , the r-formu-
las aiPaj and ajPaj are both in (LF ∗,RF ∗), which is what we had to
show.

• ∀v, w ∈ W c. vPv & vPw =⇒ v = w holds by construction and rules
Psub1 and Psub2 since v is a classical world. Consider an arbitrary
context (LF ,RF ) from which we build S c and assume (ai, ai) ∈
P c and (ai, aj) ∈ P c. Then aiPai ∈ (LF ∗,RF ∗) and aiPaj ∈
(LF ∗,RF ∗). Thus, for each ai:A ∈ (LF ∗,RF ∗), we also have aj :A ∈
(LF ∗,RF ∗); otherwise, since (LF ∗,RF ∗) is deductively closed, we
would have aj :¬A ∈ (LF ∗,RF ∗) and also aj :A ∈ (LF ∗,RF ∗) by
1 in Lemma 2 and rule Psub1 , and thus a contradiction. Similarly,
if aj :A ∈ (LF ∗,RF ∗) then ai:A ∈ (LF ∗,RF ∗) by rule Psub2 .
Hence, for each m-formula A, we have that ai:A ∈ (LF ∗,RF ∗) iff
aj :A ∈ (LF ∗,RF ∗), which means that ai and aj are equal with re-
spect to m-formulas.

Under the same assumptions, we can similarly show that ai and aj
are equal with respect to r-formulas, i.e., that whenever (LF ∗,RF ∗)
contains an r-formula that includes ai then it also contains the same
r-formula with aj substituted for ai, and vice versa. To this end, we
must consider eight different cases corresponding to eight different r-
formulas.
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1. If akUai ∈ (LF ∗,RF ∗) for some ak, then from the assumption
that aiPaj ∈ (LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1
in Lemma 2 and rule PUI . Therefore, akUaj ∈ (LF ∗,RF ∗) by
rule Utrans .

2. We can reason similarly for ajUak ∈ (LF ∗,RF ∗) and also ap-
ply rules PUI and Utrans to conclude that then also aiUak ∈
(LF ∗,RF ∗).

3. If aiUak ∈ (LF ∗,RF ∗) for some ak, then from the assumption
that aiPaj ∈ (LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1
in Lemma 2 and rule PUI , and thus ajUai ∈ (LF ∗,RF ∗), by
rule Usymm . Therefore, ajUak ∈ (LF ∗,RF ∗) by rule Utrans .

4. We can reason similarly for akUaj ∈ (LF ∗,RF ∗) and also ap-
ply rules PUI , Usymm , and Utrans to conclude that then also
akUai ∈ (LF ∗,RF ∗).

5. If akPai ∈ (LF ∗,RF ∗) for some ak, then from the assumption
that aiPaj ∈ (LF ∗,RF ∗) we have akPaj ∈ (LF ∗,RF ∗), by 1
in Lemma 2 and the rule Ptrans .

6. We can reason similarly for ajPak ∈ (LF ∗,RF ∗) and also apply
rule Ptrans to conclude that then also aiUak ∈ (LF ∗,RF ∗).

7. If aiPak ∈ (LF ∗,RF ∗) for some ak, then from the assumptions
that aiPai ∈ (LF ∗,RF ∗) and aiPaj ∈ (LF ∗,RF ∗) we have
ajPak ∈ (LF ∗, RF ∗), by 1 in Lemma 2 and rule Psub1 .

8. We can reason similarly for akPaj ∈ (LF ∗,RF ∗) and apply rule
Psub2 to conclude that then also akPai ∈ (LF ∗,RF ∗).

Hence, ai and aj are equal also with respect to r-formulas, and thus
ai = aj whenever (ai, ai) ∈ P c and (ai, aj) ∈ P c, which is what we
had to show.

Proceeding like for MSQS, we then have:

Theorem 6 (Completeness of MSpQS). Γ � α implies Γ ` α. �

5.3 Some concrete examples
We give some concrete, numerical, examples explaining the intuitive mean-
ing of the theorems stated in Section 5.1. As done in examples 4.2, let us
consider a structure 〈M ,I 〉 where M = 〈W,U, P, V 〉 is the Kripke model
defined in Section 2.3, and I is a generic interpretation function. With a little

35



abuse of language for the sake of brevity, we identify, via the interpretation
function I , the labels with the corresponding concrete worlds of the seman-
tics, and the syntactic relations U, P with their semantical counterparts U and
P . Under such a convention we will refer to labels as worlds.

Theorems 1 and 2 are exactly axioms D and 4 for �, as explained in Sec-
tion 2 for relations U and M, respectively. As we remarked above, axiom D
expresses the seriality of U, which suggests models like

ONMLHIJKd|φ1〉e
P // ONMLHIJKd|φ2〉e

P // ONMLHIJKd|φ3〉e
P // ...

in the sense that it is always possible to make a partial measurement of a state.
Let us consider theorem 3, x:�(A ⊃ �A), i.e., x:¬�¬(A ⊃ �A), and let

x and y be two worlds such that xPy with d1/
√

2|00〉+ 1/
√

2|01〉e ∈ V (x)
and d|00〉e ∈ V (y). Then we have x:d1/

√
2|00〉+ 1/

√
2|01〉e ⊃ �d|00〉e,

y:d|00〉e ⊃ �d|00〉e and finally �(d|φ〉e ⊃ �d|φ〉e). More generally, we
have that for each world x there is a classical reachable world y. Graphically:

y

x ONMLHIJKd|φ〉e P //___ ONMLHIJKGFED@ABCd|ψ〉e

P

JJ P
��

?U

!!

where the dashed line denotes that y is that particular classical world reach-
able from x; this is in contrast to the similar figure (2) for total measurements
where the line is solid meaning that after a total measurement we always ob-
tain a state that is stable with respect to further measurements (i.e., all worlds
reachable by a total measurement are classical).

6 NORMALIZATION

In this section, we show that each derivation of an l-formula in MSQS and
MSpQS can be reduced to a normal form that does not contain unneces-
sary detours and satisfies a subformula property, from which we then obtain
syntactic proofs of the consistency of both MSQS and MSpQS. We first
consider MSQS and then discuss the extensions and changes needed in the
case of MSpQS.
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6.1 Normalization for MSQS
We begin by proving a useful lemma about parameters, i.e., as we mentioned
above, the fresh variables used in the applications of FI and Mser . By ex-
tension, we speak of a parameter y of a derivation if y is the parameter of
some application ofFI or Mser in the derivation.

Lemma 4 (Parameter condition). Let Π be an MSQS-derivation of x:A from
a set Γ of assumptions. Then we can build an MSQS-derivation Π′ of x:A
from Γ such that:

• each parameter is the parameter of exactly one application of FI or
Mser , and

• the parameter of any application of FI or Mser occurs only in the
sub-derivation above that application of the rule.

Proof. The lemma follows quite straightforwardly by induction on the deriva-
tion of Γ ` x:A, where the proof essentially boils down to a systematic re-
naming of the parameters.

In the remainder of the paper, we thus assume that all the derivations sat-
isfy the parameter condition.

To show normalization, we follow, where possible, standard presentations
such as [16, 17, 19, 20]. We begin by introducing some restrictions to simplify
the development; in particular, we restrict applications of RAA and⊥E to the
case where the conclusion x:A is atomic, i.e., A is atomic.# Moreover, we
also restrict applications of Msub1 , Msub2 and Mser to atomic conclusions.

Lemma 5. If Γ ` α in MSQS, then there is an MSQS-derivation of α from
Γ where the conclusions of applications of RAA, ⊥E, Msub1 , Msub2 , and
Mser are atomic.

Note that we do not need to consider derivations of r-formulas, e.g., by
⊥E, since in MSQS we only have atomic r-formulas by definition; the same
holds for MSpQS. We can then prove Lemma 5 as follows.

# When presenting classical first-order logic, Prawitz [16] first introduces a natural deduction
system consisting of an elimination rule for ⊥ and introduction and elimination rules for all
the other connectives, and then, to show normalization, restricts his attention to the functionally
complete ⊥, ∧, ⊃, ∀ fragment, where RAA is restricted to atomic conclusions (that are also
different from ⊥). In this way, he avoids having to treat the rules for ∨ and ∃, which behave
‘badly’ for normalization. Here, since we have already focused on the functionally complete
⊥, ⊃, F system, we do not need further restrictions than the ones on RAA and ⊥E (where,
however, we allow the atomic conclusion A to be falsum itself, albeit labelled differently), as
well as on Msub1 , Msub2 , and Mser .
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Proof. We first show that any application of RAA with a non-atomic con-
clusion can be replaced with a derivation in which RAA is applied only to
l-formulas of smaller grade. Note that we only show the part of the derivation
where the transformation, denoted by  , actually takes place; the missing
parts remain unchanged. There are two possible cases, depending on whether
the conclusion is x:B ⊃ C or x:FB.
Case 1: We distinguish two subcases, depending on whether C is ⊥ or not. If
C 6= ⊥, then

[x:(B ⊃ C) ⊃ ⊥]1
Π
y:⊥

x:B ⊃ C RAA1

 

[x:C ⊃ ⊥]2
[x:B ⊃ C]1 [x:B]3

x:C ⊃ E

x:⊥ ⊃ E

x:(B ⊃ C) ⊃ ⊥ ⊃ I1

Π
y:⊥
x:C RAA2

x:B ⊃ C ⊃ I3

If C = ⊥, then

[x:(B ⊃ ⊥) ⊃ ⊥]1
Π
y:⊥

x:B ⊃ ⊥ RAA1

 

[x:B ⊃ ⊥]1 [x:B]2

x:⊥ ⊃ E

x:(B ⊃ ⊥) ⊃ ⊥ ⊃ I1

Π
y:⊥
x:⊥ ⊥E

x:B ⊃ ⊥ ⊃ I2

Case 2: We distinguish two subcases, depending on whether B is ⊥ or not. If
B 6= ⊥, then

[x:FB ⊃ ⊥]1
Π
y:⊥
x:FB RAA1

 

[y:B ⊃ ⊥]2
[x:FB]1 [xRy]3

y:B
FE

y:⊥ ⊃ E

x:⊥ ⊥E
x:FB ⊃ ⊥ ⊃ I1

Π
y:⊥
y:B RAA2

x:FB FI
3

where, if necessary, we follow Lemma 4 to rename the parameters in the
derivation to avoid possible clashes due to the new application ofFI .
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If B = ⊥, then

[x:F⊥ ⊃ ⊥]1
Π
y:⊥
x:F⊥ RAA1

 

[x:F⊥]1 [xRy]2

y:⊥ ⊃ E

x:⊥ ⊥E
x:F⊥ ⊃ ⊥ ⊃ I1

Π
y:⊥
x:FB FI

2

We proceed analogously for ⊥E: we show that any application of ⊥E
with a non-atomic conclusion can be replaced with a derivation in which ⊥E
is applied only to l-formulas of smaller grade. Hence, there are again two
possible cases, depending on whether the conclusion is x:B ⊃ C or x:FB.
Case 1:

Π
y:⊥

x:B ⊃ C
⊥E  

Π
y:⊥
x:C ⊥E

x:B ⊃ C
⊃ I

Case 2:

Π
y:⊥
x:FB ⊥E  

Π
y:⊥
z:B ⊥E
x:FB

FI

Applications of Msub1 and Msub2 can be reduced to atomic formulas as
follows, where we now consider the two subcases for � and � explicitly:
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Π1

x:A ⊃ B
Π2

xMx
Π3

xMy

y:A ⊃ B
Msub1

 

Π1

x:A ⊃ B

[y:A]1
Π2

xMx
Π3

xMy

x:A Msub2

x:B ⊃ E Π2

xMx
Π3

xMy

y:B Msub1

y:A ⊃ B ⊃ I1

Π1

y:A ⊃ B
Π2

xMx
Π3

xMy

x:A ⊃ B
Msub2

 

Π1

y:A ⊃ B

[x:A]1
Π2

xMx
Π3

xMy

y:A Msub1

y:B ⊃ E Π2

xMx
Π3

xMy

x:B Msub2

x:A ⊃ B ⊃ I1

Π1

x:�A
Π2

xMx
Π3

xMy

y:�A Msub1
 

Π1

x:�A
[yUz]1

Π2

xMx
Π3

xMy

xUz
Msub2

z:A �E

y:�A �I
1

Π1

y:�A
Π2

xMx
Π3

xMy

x:�A Msub2
 

Π1

y:�A
[xUz]1

Π2

xMx
Π3

xMy

yUz
Msub1

z:A �E

x:�A �I
1
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Π1

x:�A
Π2

xMx
Π3

xMy

y:�A Msub1
 

Π1

x:�A
[yMz]1

Π2

xMx
Π3

xMy

xMz
Msub2

z:A �E

y:�A �I
1

Π1

y:�A
Π2

xMx
Π3

xMy

x:�A Msub2
 

Π1

y:�A
[xMz]1

Π2

xMx
Π3

xMy

yMz
Msub1

z:A �E

x:�A �I
1

We proceed in the same way for the Mser rule.
Case 1:

[xMy]1
Π

u:B ⊃ C
u:B ⊃ C Mser1

 

[xMy]1
Π

u:B ⊃ C [u:B]2

u:C ⊃ E

u:C Mser1

u:B ⊃ C ⊃ I2

Case 2:

[xMy]1
Π

u:FA
x:FA Mser1

 

[xMy]1
Π

u:FA [uRw]2

w:A
FE

w:A Mser1

u:FA FI
2

where we choose the parameter w so to allow for the application ofFI .
By iterating these transformations, we transform an arbitrary MSQS-deri-

vation Γ ` α into an MSQS-derivation of α from Γ where the conclusions of
applications of RAA, ⊥E, Msub1 , Msub2 , and Mser are atomic.

An immediate consequence of this lemma is the equivalence of the re-
stricted and the unrestricted natural deduction systems. In the rest of this sec-
tion, we will therefore assume applications of RAA, ⊥E, Msub1 , Msub2 ,
and Mser to be restricted in this way.

In a generic derivation, we can have a detour caused by the application of
an elimination rule immediately below the application of the corresponding
introduction rule. That is, if an l-formula is introduced and then immediately
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eliminated, then we can avoid introducing it in the first place; recall that in
MSQS we only have atomic r-formulas by definition, so we do not need to
consider the detours that would arise from non-atomic r-formulas. Formally,
since the same formula may appear several times in a derivation, we distin-
guish these different formula occurrences to define:

Definition 5. An l-formula occurrence x:A is a cut in an MSQS-derivation
when it is both the conclusion of an introduction rule and the major premise
of an elimination rule. We call x:A the cut-formula of the cut.

An MSQS-derivation is in normal form (is a normal MSQS-derivation)
iff it contains no cut-formulas.

Like for any “good” deduction system, we prove a normalization result
that shows how to transform (in an effective way) each MSQS-derivation
into a normal one. In order to remove cut-formulas, we introduce the notion
of contraction, where the contraction relation . is defined as follows:

[x:A]
Π1

x:B
x:A ⊃ B

⊃ I Π2

x:A
x:B ⊃ E

.

Π2

x:A
Π1

x:B

(.⊃)

[xRy]
Π1

y:A
x:FA

FI Π2

xRz

z:A
FE

.

Π2

xRz
Π1[z/y]
z:A

(.F)

where Π′[z/y] is obtained from Π by systematically substituting z for y. Note
that the correctness of the contractions, and also of the substitution Π′[z/y],
is guaranteed by the assumption that all the derivations satisfy the parameter
condition of Lemma 4. Note also that it suffices to consider the generic modal
operator F since the two modal operators � and � do not interfere (nor do
the corresponding contractions).

Cuts are removed from a derivation by finitely many applications of con-
tractions. Context closure of the contraction relation leads to the formal defi-
nition of the notions of reduction and normalization.

Definition 6. We say that an MSQS-derivation Π1 immediately reduces
to an MSQS-derivation Π2, in symbols Π1 � Π2, iff there exist MSQS-
derivations Π3 and Π4 such that Π3 .Π4 and Π2 is obtained by replacing Π3

with Π4 in Π1 .
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Hence, if Π is a normal MSQS-derivation (i.e., it contains no cut-formulas),
there is no Π′ such that Π � Π′.

Definition 7. Writing � for the reflexive and transitive closure of �, we say
that an MSQS-derivation Π normalizes to another MSQS-derivation Π′ if
Π � Π′ and Π′ is in normal form.

Definition 8. We define the rank of an l-formula as rank(x:A) = rank(A)
where

• rank(A) = 0 if A is atomic;

• rank(A ⊃ B) = max{rank(A), rank(B)}+ 1;

• rank(FA) = rank(A) + 1 .

Then, for Π a derivation in MSQS,

• a maximal cut-formula in Π is a cut-formula in Π with maximal rank;

• d = max{rank(x:A) | x:A is a cut-formula in Π}, where max{} =
0;

• cr(Π) = (d, n) is the cut rank of Π, where n is the number of maximal
cut-formulas in Π and where cr(Π) = (0, 0) when Π has no cuts.

The ordering on cut ranks is lexicographic: (d, n) < (d′, n′) iff d < d′ or
both d = d′ and n < n′. To prove our normalization result, we will system-
atically lower the cut rank of a derivation until all cuts have been eliminated.
Before we do that, we prove a useful lemma:

Lemma 6. Let Π be an MSQS-derivation with a cut at the bottom, and let
this cut have rank q while all the other cuts in Π have rank < q. Then the
contraction of Π at this lowest cut yields a derivation with only cuts of rank
< q.

Proof. Consider all the possible cuts at the bottom of Π and check the ranks
of the cuts after the contraction. The proof follows since the two contrac-
tions (.⊃) and (.F) explicitly give formulas with lower rank, while nothing
happens in Π1 and Π2, so all the cuts in the derivation resulting from the
contraction have rank < q.

Lemma 7. Let Π be an MSQS-derivation. If cr(Π) > (0, 0), then there is
an MSQS-derivation Π′ with Π .Π′ and cr(Π′) < cr(Π).
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Proof. Select a maximal cut-formula in Π such that all cuts above it have
lower rank. Apply the appropriate contraction to this maximal cut. Then the
part of Π ending in the conclusion of the cut is replaced, by Lemma 6, by
a sub-derivation in which all cut-formulas have lower rank. If the maximal
cut-formula was the only one, then d is lowered by 1, otherwise n is lowered
by 1 and d remains unchanged. In both cases, cr(Π) gets smaller. (Note that
in the first case n may become much larger, but that does not matter in the
lexicographic order.)

We are now in a position to give our desired normalization results.

Theorem 7. Every MSQS-derivation of x:A from Γ reduces to an MSQS-
derivation in normal form.

Proof. By Lemma 7, the cut rank can be lowered to (0, 0) in a finite number
of steps, and therefore the last derivation in the reduction sequence has no
more cuts.

Normal MSQS-derivations possess a well-defined structure that has sev-
eral desirable properties. Specifically, by analyzing the structure of a normal
MSQS-derivation, we can characterize its form: we can identify particular
sequences of formulas, and show that in these sequences there is an ordering
on inferences. By exploiting this ordering, we can then show a subformula
property for MSQS.

Definition 9. A thread in an MSQS-derivation Π is a sequence of formulas
α1, . . . , αn such that (i) α1 is an assumption of Π, (ii) αi stands immediately
above αi+1, for 1 ≤ i < n− 1, and (iii) αn is the conclusion of Π.

We further characterize a thread in terms of the formulas occurring in it:
an l-formula-thread is a thread where α1, . . . , αn are all l-formulas, and an
r-formula-thread is a thread where α1, . . . , αn are all r-formulas.

A track in an MSQS-derivation Π is an initial part of a thread in Π which
stops either at the first minor premise of an elimination rule in the thread or
at the conclusion of the thread. We call main track a track that is also a thread
and ends at the conclusion of the derivation.

Definition 10. B is a subformula ofA iff (i)A isB; or (ii)A isA1 ⊃ A2 and
B is a subformula of A1 or A2; or (iii) A isFA1 and B is a subformula of
A1. We say that y:B is a labelled subformula (or, slightly abusing notation,
simply “subformula”) of x:A iff B is a subformula of A.
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One interesting property of normal MSQS-derivations, which can be read
off from their structure, is that tracks in a normal MSQS-derivation have a
standard form:

Lemma 8. Let Π be a normal MSQS-derivation, and let t be a track α1,
. . . , αn in Π. Then t contains a subsequence of formulas αi, . . . , αk, called
the minimal part, which separates two possibly empty parts of t, called the
elimination part and the introduction part of t, where:

• each formula αj in the elimination part, i.e., for j < i, is an l-formula
and is the major premise of an application of an elimination rule and
contains αj+1 as a subformula;

• each formula αs in the minimal part except the last one is the premise of
an application of RAA, ⊥E, Msub1 , Msub2 , Mser , Urefl , Usymm ,
Utrans , UI , or Msrefl ;

• each formula αj in the introduction part except the last one, i.e., for
k < j < n, is an l-formula, is a premise of an introduction rule, and is
a subformula of αj+1;

• Π has at least one main track, ending in the conclusion.

The lemma follows quite straightforwardly by observing that in a track in
a normal MSQS-derivation no introduction rule application can precede an
application of an elimination rule; hence, if the first rule is an elimination,
then all eliminations come first.

From these considerations, we can derive some other properties of normal
tracks. For example, we can observe that if a thread t has an r-formula as top
formula, then t is an r-formula–thread and if we extract a track t′ from t, then
we have empty elimination and introduction parts. Moreover, let α1, . . . , αn
be a thread and let α1, . . . , αi be l-formulas; if αi+1 is an r-formula, then all
αj , for i < j ≤ n, are r-formulas.

We can further observe that a “mixed” track (i.e., a track consisting of
l-formulas and r-formulas) has the following structure: an introduction part
of l-formulas; a minimal part in which an r-formula is introduced by an ap-
plication of ⊥E and a (possibly empty) sequence of applications of RAA,
Msub1 , Msub2 , Mser , Urefl , Usymm , Utrans , UI , Msrefl ; and an empty
introduction part.

The above results allow us to show that normal derivations in MSQS sat-
isfy the following subformula property.
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Definition 11. Given an MSQS-derivation Π of x:A from a set Γ of as-
sumptions, let S be the set of subformulas of the formulas in {C | z:C ∈
Γ ∪ {x:A} for some z}, i.e., S is the set consisting of the subformulas of the
assumptions Γ and of the conclusion x:A.

We say that Π satisfies the subformula property iff for each l-formula oc-
currence y:B in the derivation (i) B ∈ S; or (ii) B is an assumption D ⊃ ⊥
discharged by an application of RAA, where D ∈ S; or (iii) B is an occur-
rence of ⊥ obtained by ⊃ E from an assumption D ⊃ ⊥ discharged by an
application of RAA, where D ∈ S; or (iv) B is an occurrence of ⊥ obtained
by an application of ⊥E.

In other words, we define an MSQS-derivation to have the subformula
property iff for all y:B in the derivation, either B is a subformula of the
assumptions or of the conclusion of the derivation, or B is the negation of
such a subformula and is discharged by RAA, or B is an occurrence of ⊥
immediately below the negation of a subformula, or B is an occurrence of ⊥
immediately below another occurrence of ⊥ that is labelled differently.

Theorem 8. Every normal derivation of x:A from Γ in MSQS satisfies the
subformula property.

Proof. We introduce an ordering of the tracks in a normal MSQS-derivation
depending on their distance from the main track: the order of a track is
o(tm) = 0 for a main track tm, and o(t) = o(t′) +1 if the end formula of
a generic track t is a minor premise belonging to a major premise in t′.

Consider now an l-formula occurrence y:B in a normal derivation Π of
x:A from Γ in MSQS. If y:B occurs in the elimination part of its track t,
then it is a subformula of the assumptions at the top of t. If not, then it is a
subformula of the l-formula z:C at the end of t. Hence, z:C is a subformula
of an l-formula w:D of a track t1 with o(t1) < o(t). Repeating the argument,
we find that y:B is a subformula of an assumption in Γ or of the conclusion
x:A. This closes the case for all assumptions, so let us now consider the other
formulas.

If y:B is a subformula of a discharged assumption, then it must be a sub-
formula of the resulting implicational l-formula in the case of an application
of ⊃ I , or of the resulting l-formula in the case of an application of RAA, or
(and these are the only exceptions) it is itself discharged by an application of
RAA or it is z:⊥ (for some z) immediately following such an assumption or
an application of ⊥E.

Corollary 1. MSQS is consistent.
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Proof. Suppose, for the sake of contradiction, that ` x:⊥ in MSQS. Then
there is a normal derivation ending in ` x:⊥ with all assumptions discharged.
There is a track through the conclusion; in this track there are no introduction
rules, so the top assumption is not discharged. Contradiction.

6.2 Normalization for MSpQS

We can again simplify the development by restricting applications of RAA
and ⊥E to the case where the conclusion x:A is atomic, and we can also re-
strict applications of Psub1 , Psub2 , and class to atomic conclusions, where,
as for MSQS, we do not need to consider derivations of r-formulas, e.g., by
⊥E, since also in MSpQS we only have atomic r-formulas by definition.

Lemma 9. If Γ ` α in MSpQS, then there is an MSpQS-derivation of α
from Γ where the conclusions of applications of RAA, ⊥E, Psub1 , Psub2 ,
and class are atomic.

Recalling that the grade of an l-formula x:A is the number of times ⊃
andF occur in A, whereF is either � or � for MSpQS, we can prove the
lemma and thus the equivalence of the restricted and the unrestricted system
MSpQS as follows.

Proof. By considering the same transformations that we employed for MSQS
in Lemma 5, we can replace applications of RAA and ⊥E with non-atomic
conclusions with derivations in which RAA and ⊥E are applied only to l-
formulas of smaller grade.

Applications of Psub1 and Psub2 can be reduced to atomic formulas as
follows, where we consider only the two subcases for � and �, as the sub-
cases for ⊃ follow like those in Lemma 5:
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Π1

x:�A
Π2

xPx
Π3

xPy

y:�A Psub1
 

Π1

x:�A
[yUz]1

Π2

xPx
Π3

xPy

xUz
Psub2

z:A �E

y:�A �I
1

Π1

y:�A
Π2

xPx
Π3

xPy

x:�A Psub2
 

Π1

y:�A
[xUz]1

Π2

xPx
Π3

xPy

yUz
Psub1

z:A �E

x:�A �I
1

Π1

x: �A
Π2

xPx
Π3

xPy

y: �A
Psub1

 
Π1

x: �A

[yPz]1
Π2

xPx
Π3

xPy

xPz
Psub2

z:A �E

y: �A
�I1

Π1

y: �A
Π2

xPx
Π3

xPy

x: �A
Psub2

 
Π1

y: �A

[xPz]1
Π2

xPx
Π3

xPy

yPz
Psub1

z:A �E

x: �A
�I1

For class , similarly to Mser in Lemma 5, we have

[xPy]1 [yPy]1
Π

u:B ⊃ C
u:B ⊃ C class1

 

[xPx]1 [yPy]1
Π

u:B ⊃ C [u:B]2

u:C ⊃ E

u:C class1

u:B ⊃ C ⊃ I2

[xPy]1 [yPy]1
Π

u:FA
u:FA class1

 

[xPy]1 [yPy]1
Π

u:FA [uRw]2

w:A
FE

w:A class1

w:A FE
2
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where we choose the parameter w so to allow for the application ofFI .
By iterating these transformations, we transform an arbitrary MSpQS-

derivation Γ ` α into an MSpQS-derivation of α from Γ where the conclu-
sions of applications of RAA, ⊥E, Psub1 , Psub2 and class are atomic.

The contractions that remove cut-formulas from a derivation in MSpQS
are the same as the ones for MSQS, where in this case F stands for � and
�. Hence, proceeding as in the previous section, mutatis mutandis, we obtain
a normalization result for MSpQS and the corresponding consequences.

Theorem 9. Every MSpQS-derivation of x:A from Γ reduces to an MSpQS-
derivation in normal form. �

Theorem 10. Every normal derivation of x:A from Γ in MSpQS satisfies
the subformula property. �

Corollary 2. MSpQS is consistent. �

7 CONCLUSIONS AND FUTURE WORK

We have shown that our modal natural deduction systems MSQS and MSpQS
provide suitable qualitative representations of quantum state transformations.
We have also studied the proof theory of our systems showing that all deriva-
tions can be reduced to a normal form that satisfies a subformula property and
yields a syntactic proof of the consistency of our systems. As future work, we
plan to further investigate the proof theory of our systems, focusing in par-
ticular on (un)decidability, in view of a possible mechanization of reasoning
in MSQS and MSpQS (e.g., encoding them into a logical framework [14]).
Moreover, and perhaps more importantly, we are also working at suitable
extensions of our approach in order to represent and reason about quantum
entanglement phenomena and further quantum notions.
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