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Abstract

We introduce two modal natural deduction systems that
are suitable to represent and reason about transforma-
tions of quantum registers in an abstract, qualitative, way.
Quantum registers represent quantum systems, and can be
viewed as the structure of quantum data for quantum oper-
ations. Our systems provide a modal framework for reason-
ing about operations on quantum registers (unitary trans-
formations and measurements) in terms of possible worlds
(as abstractions of quantum registers) and accessibility re-
lations between these worlds. We give a Kripke–style se-
mantics that formally describes quantum register transfor-
mations, and prove the soundness and completeness of our
systems with respect to this semantics.

1. Introduction

Quantum computing defines an alternative computa-
tional paradigm, based on a quantum model [4] rather than
a classical one. The basic units of the quantum model are
the quantum bits, or qubits for short (mathematically, nor-
malized vectors of the Hilbert Space C2). Qubits represent
informational units and can assume both classical values 0
and 1, and all their superpositional values.

A quantum register is a generalization of the qubit: a
generic quantum register is the representation of a quantum
state of n qubits (mathematically, it is a normalized vec-
tor of the Hilbert space C2n

). In this paper, we are not in-
terested in the structure of quantum registers, but rather in
the way quantum registers are transformed. Hence, we will
abstract away from the internals of quantum registers and
represent them in a generic way in order to describe how
operations transform a register into another one.

It is possible to modify a quantum register in two ways:
by applying a unitary transformation or by measuring. Uni-
tary transformations (corresponding to the so-called unitary
operators of the Hilbert space) model the internal evolution
of a quantum system, whereas measurements correspond to

the results of the interaction between a quantum system and
an observer. The outcome of an observation can be either
the reduction to a quantum state or the reduction to a classi-
cal (non quantum) state. In particular, in this paper, we say
that a quantum register w is classical iff w is idempotent
with respect to measurement, i.e. each measurement of w
has w as outcome. We call a measurement total when the
outcome of the measurement is a classical register.

We propose to model measurement and unitary transfor-
mations by means of suitable modal operators. More specif-
ically, the main contribution of this paper is the formaliza-
tion of a modal natural deduction system [12, 14] in order
to represent (in an abstract, qualitative, way) the fundamen-
tal operations on quantum registers: unitary transformations
and total measurements. We call this system MSQR. We
also formalize a variant of this system, called MSpQR, to
represent the case of generic (not necessarily total) mea-
surements.

It is important to observe that our logical systems are
not a quantum logic. Since 1936 [5], various logics have
been investigated as a means to formalize reasoning about
propositions taking into account the principles of quantum
theory, e.g. [6, 7]. In general, it is possible to view quantum
logic as a logical axiomatization of quantum theory, which
provides an adequate foundation for a theory of reversible
quantum processes, e.g. [1, 2, 3, 10].

Our work moves from quite a different point of view:
we do not aim to propose a general logical formalization
of quantum theory, rather we describe how it is possible
to use modal logic to reason in a simple way about quan-
tum register transformations. Informally, in our proposal, a
modal world represents (an abstraction of) a quantum reg-
ister. The discrete temporal evolution of a quantum regis-
ter is controlled and determined by a sequence of unitary
transformations and measurements that can change the de-
scription of a quantum state into other descriptions. So, the
evolution of a quantum register can be viewed as a graph,
where the nodes are the (abstract) quantum registers and
the arrows represent quantum transformations. The arrows
give us the so-called accessibility relations of Kripke mod-
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els and two nodes linked by an arrow represent two related
quantum states: the target node is obtained from the source
node by means of the operation specified in the decoration
of the arrow.

Modal logic, as a logic of possible worlds, is thus a nat-
ural way to represent this description of a quantum system:
the worlds model the quantum registers and the relations of
accessibility between worlds model the dinamical behavior
of the system, as a consequence of the application of mea-
surements and unitary transformations. To emphasize this
semantic view of modal logic, we give our deduction system
in the style of labelled deduction [8, 13, 15], a framework
for giving uniform presentations of different non-classical
logics. The intuition behind labelled deduction is that the
labelling (sometimes also called prefixing, annotating or
subscripting) allows one to explicitly encode in the syntax
additional information, of a semantic or proof-theoretical
nature, that is otherwise implicit in the logic one wants to
capture. Most notably, in the case of modal logic, this ad-
ditional information comes from the underlying Kripke se-
mantics: the labelled formula x:A intuitively means that A
holds at the world denoted by the label x within the underly-
ing Kripke structure (i.e. model), and labels also allow one
to specify at the syntactic level how the different worlds
are related in the Kripke structures (e.g. the formula xRy
specifies that the world denoted by y is accessible from that
denoted by x).

We proceed as follows. In Section 2, we define the la-
belled modal natural deduction system MSQR, which con-
tains two modal operators suitable to represent and reason
about unitary transformations and total measurements of
quantum registers. In Section 3, we give a possible worlds
semantics that formally describes these quantum register
transformations, and prove the soundness and completeness
of MSQR with respect to this semantics. In Section 4,
we formalize MSpQR, a variant of MSQR that provides a
modal system representing all the possible (thus not neces-
sarily total) measurements. We conclude in Section 5 with a
brief summary and a discussion of future work. Full proofs
of the technical results are given in [9].

2 The deduction system MSQR

Our labelled modal natural deduction system MSQR,
which formally represents unitary transformations and to-
tal measurements of quantum registers, comprises of rules
that derive formulas of two kinds: modal formulas and re-
lational formulas. We thus define a modal language and a
relational language.

The alphabet of the relational language consists of:

• the binary symbols U and M,

• a denumerable set x0, x1, . . . of labels.

Metavariables x, y, z, possibly annotated with subscripts
and superscripts, range over the set of labels. For brevity,
we will sometimes speak of a “world” x meaning that the
label x stands for a world I (x), where I is an interpre-
tation function mapping labels into worlds as formalized in
Definition 2 below.

The set of relational formulas (r–formulas) is given by
expressions of the form xUy and xMy.

The alphabet of the modal language consists of:

• a denumerable set r, r0, r1, . . . of propositional sym-
bols,

• the standard propositional connectives ⊥ and ⊃,

• the unary modal operators � and �.

The set of modal formulas (m–formulas) is the least set that
contains ⊥ and the propositional symbols, and is closed un-
der the propositional connectives and the modal operators.
Metavariables A, B, C, possibly indexed, range over modal
formulas. Other connectives can be defined in the usual
manner, e.g. ¬A ≡ A ⊃ ⊥, A ∧ B ≡ ¬(A ⊃ ¬B),
A ↔ B ≡ (A ⊃ B) ∧ (B ⊃ A), ♦A ≡ ¬�¬A,
�A ≡ ¬�¬A, etc.

Let us give, in a rather informal way, the intuitive mean-
ing of the modal operators of our language:

• �A means: A is true after the application of any uni-
tary transformation.

• �A means: A is true in each quantum register obtained
by a total measurement.

A labelled formula (l–formula) is an expression x:A,
where x is a label and A is an m–formula. A formula is ei-
ther an r–formula or an l–formula. The metavariable α, pos-
sibly indexed, ranges over formulas. We write α(x) to de-
note that the label x occurs in the formula α, so that α(y/x)
denotes the substitution of the label y for all occurences of
x in α.

Figure 1 shows the rules of MSQR, where the notion of
discharged/open assumption is standard [12, 14], e.g. the
formula [x:A] is discharged in the rule ⊃ I:

Propositional rules: The rules ⊃ I , ⊃ E and RAA are
just the labelled version of the standard ([12, 14]) nat-
ural deduction rules for implication introduction and
elimination and for reductio ad absurdum, where we
do not enforce Prawitz’s side condition that A 6= ⊥.1

The “mixed” rule⊥E allows us to derive a generic for-
mula α whenever we have obtained a contradiction ⊥
at a world x.

1See [15] for a detailed discussion on the rule RAA, which in particular
explains how, in order to maintain the duality of modal operators like �
and ♦, the rule must allow one to derive x:A from a contradiction ⊥ at a
possibly different world y, and thereby discharge the assumption x:¬A.
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[x:A]....
x:B

x:A ⊃ B
⊃ I

x:A ⊃ B x:B
x:B ⊃ E

[x:¬A]....
y:⊥
x:A RAA x:⊥

α ⊥E

[xRy]....
y:A

x:FA
FI∗ x:FA xRy

y:A
FE

xUx
Urefl

xUy

yUx
Usymm

xUy yUz

xUz
Utrans

xMy

xUy
UI

[xMy]....
α
α Mser∗

xMy

yMy
Msrefl

α(x) xMx xMy

α(y/x) Msub1
α(y) xMx xMy

α(x/y) Msub2

In FI , y is fresh: it is different from x and does not occur in any assumption on which y:A depends other than xRy.
In Mser , y is fresh: it is different from x and does not occur in α nor in any assumption on which α depends other than xMy.

Figure 1. The rules of MSQR

Modal rules: We give the rules for a generic modal oper-
ator F, with a corresponding generic accessibility re-
lation R, since all the modal operators share the struc-
ture of these basic introduction/elimination rules; this
holds because, for instance, we express x:�A as the
metalevel implication xUy =⇒ y:A for an arbitrary y
accessible from x. In particular:

• if F is � then R is U,
• if F is � then R is M.

Other rules:

• In order to axiomatize �, we add rules Urefl ,
Usymm , and Utrans , formalizing that U is an
equivalence relation.

• In order to axiomatize �, we add rules formaliz-
ing the following properties:

– If xMy then there is specific unitary trans-
formation (depending on x and y) that gen-
erates y from x: rule UI .

– The total measurement process is serial: rule
Mser says that if from the assumption xMy
we can derive α for a fresh y (i.e. y is differ-
ent from x and does not occur in α nor in any
assumption on which α depends other than
xMy), then we can discharge the assumption
(since there always is some y such that xMy)
and conclude α.

– The total measurement process is shift-
reflexive: rule Msrefl .

– Invariance with respect to classical worlds:
rules Msub1 and Msub2 say that, if xMx

and xMy, then y must be equal to x and so
we can substitute the one for the other in any
formula α.

Definition 1 (Derivations and proofs). A derivation of a for-
mula α from a set of formulas Γ in MSQR is a tree formed
using the rules in MSQR, ending with α and depending
only on a finite subset of Γ; we then write Γ ` α. A deriva-
tion of α in MSQR depending on the empty set, ` α, is a
proof of α in MSQR and we then say that α is a theorem of
MSQR.

For instance, the following labelled formula schemata
are all provable in MSQR (where, in parentheses, we give
the intuitive meaning of each formula in terms of quantum
register transformations):

1. x:�A ⊃ A
(the identity transformation is unitary).

2. x:A ⊃ �♦A
(each unitary transformation is invertible).

3. x:�A ⊃ ��A
(unitary transformations are composable).

4. x:�A ⊃ �A
(it is always possible to perform a total measurement
of a quantum register).

5. x:�(A ↔ �A)
(it is always possible to perform a total measurement
with a complete reduction of a quantum register to a
classical one).
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6. x:�A ⊃ ��A
(total measurements are composable).

As concrete examples, Figure 2 contains the proofs of the
formulas 5 and 6, where, for simplicity, here and in the fol-
lowing (cf. Figure 5), we employ the rules for equivalence
(↔ I) and for negation (¬I and ¬E), which are derived
from the propositional rules as is standard. For instance,

[x:A]1....
y:⊥

x:¬A ¬I1

abbreviates

[x:A]1....
y:⊥
x:⊥ ⊥E (or RAA)

x:A ⊃ ⊥ ⊃ I1

We can similarly derive rules about r–formulas. For in-
stance, we can derive a rule for the transitivity of M as
shown at the top of the proof of the formula 6 in Figure 2:

xMy yMz

xMz
Mtrans

abbreviates

yMz

yMz

zMz
Msrefl

xMy

xMz
Msub1

3. A semantics for unitary transformations and
total measurements

We give a semantics that formally describes unitary
transformations and total measurements of quantum regis-
ters, and then prove that MSQR is sound and complete with
respect to this semantics. Together with the corresponding
result for generic measurements in Section 4, this means
that our modal systems indeed provide a representation of
quantum registers and operations on them, which was the
main goal of the paper.

Definition 2 (Frames, models, structures). A frame is a tu-
ple F = 〈W,U,M〉, where:

• W is a non-empty set of worlds
(representing abstractly the quantum registers);

• U ⊆ W ×W is an equivalence relation
(vUw means that w is obtained by applying a uni-
tary transformation to v; U is an equivalence relation
since identity is a unitary transformation, each unitary
transformation must be invertible, and unitary trans-
formations are composable);

• M ⊆ W ×W
(vMw means that w is obtained by means of a total
measurement of v);

with the following properties:

(i) ∀v, w. vMw =⇒ vUw

(ii) ∀v. ∃w. vMw

(iii) ∀v, w. vMw =⇒ wMw

(iv) ∀v, w. vMv & vMw =⇒ v = w

(i) means that although it is not true that measurement is
a unitary transformation, locally for each v, if vMw then
there is a particular unitary transformation, depending on v
and w, that generates w from v; the vice versa cannot hold,
since in quantum theory measurements cannot be used to
obtain the unitary evolution of a quantum system. (ii) means
that each quantum register is totally measurable. (iii) and
(iv) together mean that after a total measurement we obtain
a classical world. Figure 3 shows properties (ii), (iii) and
(iv), respectively, as well as the combination of (iii) and
(iv).2

A model is a pair M = 〈F , V 〉, where F is a frame
and V :W → 2Prop is an interpretation function mapping
worlds into sets of formulas.

A structure is a pair S = 〈M ,I 〉, where M is a model
and I :Var → W is an interpretation function mapping
variables (labels) into worlds in W , and mapping a rela-
tion symbol R ∈ {U,M} into the corresponding frame re-
lation I (R) ∈ {U,M}. We extend I to formulas and
sets of formulas in the obvious way: I (x:A) = I (x):A,
I (xRy) = I (x)I (R)I (y), and I ({α1, . . . , αn}) =
{I (α1), . . . ,I (αn)}.

Given this semantics, we can define what it means for
formulas to be true, and then prove the soundness and com-
pleteness of MSQR.

Definition 3 (Truth). Truth for an m–formula in a model
M = 〈W,U,M, V 〉 is the smallest relation � satisfying:

M , w � r iff r ∈ V (w)
M , w � A ⊃ B iff M , w � A =⇒ M , w � B
M , w � �A iff ∀w′. wUw′ =⇒ M , w′ � A
M , w � �A iff ∀w′. wMw′ =⇒ M , w′ � A

Thus, for an m–formula A, we write M � A iff M , w � A
for all w.

Truth for a formula α in a structure S = 〈M ,I 〉 is
then the smallest relation � satisfying:

M ,I � xMy iff I (x)MI (y)
M ,I � xUy iff I (x)UI (y)
M ,I � x:A iff M ,I (x) � A

We will omit M when it is not relevant, and we will denote
I � x:A also by � I (x):A or even � w:A for I (x) = w.

2Note that while (iv) says that v is idempotent with respect to M , a
unitary transformation U could still be applied to v (and hence the dotted
arrow decorated with a “?” for U ).
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[y:A]2
[xMy]1

yMy
Msrefl

[yMz]3

z:A Msub1

y:�A �I3

y:A ⊃ �A ⊃ I2

[y:�A]4
[xMy]1

yMy
Msrefl

y:A Msub1

y:�A ⊃ A ⊃ I4

y:A ↔ �A
↔ I

x:�(A ↔ �A) �I1

[x:�A]1
[yMz]3

[yMz]3

zMz
Msrefl

[xMy]2

xMz
Msub1

z:A �E

y:�A �I3

x:��A �I2

x:�A ⊃ ��A ⊃ I1

Figure 2. Examples of proofs in MSQR

v
M // w v

M // w

M


v

M


M

��

?
U ��

v
M // w

M


M

��

?
U

  

(ii) (iii) (iv) (iii) and (iv)

Figure 3. Some properties of the relation M

By extension, M ,I � Γ iff M ,I � α for all α in the set
of formulas Γ. Thus, for a set of formulas Γ and a formula
α,

Γ � α iff ∀M ,I . M � I (Γ) =⇒ M � I (α)
iff ∀M ,I . M ,I � Γ =⇒ M ,I � α

By adapting standard proofs (see, e.g., [8, 12, 13, 14, 15]
and the proofs in [9]), we have:

Theorem 1 (Soundness and completeness of MSQR). Γ `
α iff Γ � α.

4. Generic measurements

In quantum computing, not all measurements are re-
quired to be total: think, for example, of the case of observ-
ing only the first qubit of a quantum register. To this end, in
this section, we formalize MSpQR, a variant of MSQR that
provides a modal system representing all the possible (thus
not necessarily total) measurements. We obtain MSpQR
from MSQR by means of the following changes:

• The alphabet of the modal language contains the unary
modal operator � instead of �, with corresponding

�, where �A intuitively means that A is true in each
quantum register obtained by a measurement.

• The set of relational formulas contains expressions of
the form xPy instead of xMy.

• The rules of MSpQR are given in Figure 4. In particu-
lar, F is either � (as before) or �, for which then R is
P, and whose properties are formalized by the follow-
ing additional rules:

– If xPy then there is a specific unitary transforma-
tion (depending on x and y) that generates y from
x: rule PUI .

– The measurement process is transitive: rule
Ptrans .

– There are (always reachable) classical worlds:
class says that y is a classical world reachable
from world x by a measurement.

– Invariance with respect to classical worlds for
measurement: rules Psub1 and Psub2 .

Derivations and proofs in MSpQR are defined as for
MSQR. For instance, in addition to the formulas for
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⊃ I, ⊃ E, RAA, ⊥E, FI∗, FE, Urefl , Usymm, Utrans,

xPy

xUy
PUI

xPy yPz

xPz
Ptrans

[xPy] [yPy]....
α
α class∗

α(x) xPx xPy

α(y/x) Psub1
α(y) xPx xPy

α(x/y) Psub2

In FI , y is fresh: it is different from x and does not occur in any assumption on which y:A depends other than xRy.
In class , y is fresh: it is different from x and does not occur in α nor in any assumption on which α depends other than xPy
and yPy.

Figure 4. The rules of MSpQR

[x: � ¬(A ⊃ �A)]2 [xPy]1

y:¬(A ⊃ �A)
�E

[y:A]3 [yPy]1 [yPz]4

z:A Psub1

y: � A
�I4

y:A ⊃ �A ⊃ I3

y:⊥ ¬E

x:¬� ¬(A ⊃ �A) ¬I2

x:¬� ¬(A ⊃ �A) class1

Figure 5. An example proof in MSpQR

� already listed for MSQR, the following labelled for-
mula schemata are all provable in MSpQR (as shown,
e.g., for formula 3 in Figure 5):

1. x: � A ⊃ �A
(it is always possible to perform a measurement
of a quantum register).

2. x: � A ⊃ � � A
(measurements are composable).

3. x:�(A ⊃ �A), i.e. x:¬� ¬(A ⊃ �A)
(it is always possible to perform a measurement
with a complete reduction of a quantum register
to a classical one).

The semantics is also obtained by simple changes with
respect to the definitions of Section 3. A frame is a tuple
F = 〈W,U, P 〉, where P ⊆ W ×W and vPw means that
w is obtained by means of a measurement of v, with the
following properties:

(i) ∀v, w. vPw =⇒ vUw
(as for (i) in Section 3).

(ii) ∀v, w′, w′′. vPw′ & w′Pw′′ =⇒ vPw′′

(measurements are composable).
(iii) ∀v. ∃w. vPw & wPw

(each quantum register v can be reduced to a classical
one w by means of a measurement).

(iv) ∀v, w. vPv & vPw =⇒ v = w
(each measurement of a classical register v has v as
outcome).

Models and structures are defined as before, with I (P) =
P , while the truth relation now comprises the clauses

M , w � �A iff ∀w′. wPw′ =⇒ M , w′ � A
M ,I � xPy iff I (x)PI (y)

Finally, MSpQR is also sound and complete.

Theorem 2 (Soundness and completeness of MSpQR).
Γ ` α iff Γ � α.

5. Conclusions and future work

We have shown that our modal natural deduction sys-
tems MSQR and MSpQR provide suitable representa-
tions of quantum register transformations. As future work,
we plan to investigate the proof theory of our systems
(e.g. normalization, subformula property, (un)decidability),
in view of a possible mechanization of reasoning in MSQR
and MSpQR (e.g. encoding them into a logical frame-
work [11]). We are also working at extending our approach
to represent and reason about further quantum notions, such
as entanglement.
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