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Particle-style token machines are a way to interpret proofs and programs, when the latter are written
following the principles of linear logic. In this paper, we show that token machines also make sense
when the programs at hand are those of a simple quantum λ -calculus with implicit qubits. This,
however, requires generalising the concept of a token machine to one in which more than one particle
travel around the term at the same time. The presence of multiple tokens is intimately related to
entanglement and allows us to give a simple operational semantics to the calculus, coherently with
the principles of quantum computation.

1 Introduction

One of the strongest trends in computer science is the (relatively recent) interest in exploiting new com-
puting paradigms which go beyond the usual, classical one. Among these paradigms, quantum comput-
ing plays an important role. In particular, the quantum paradigm is having a deep impact on the notion
of a computationally (in)tractable problem [18].

Even if quantum computing has catalysed the interest of a quite large scientific community, several
theoretical aspects are still unexplored. As an example, the definition of a robust theoretical framework
for quantum programming is nowadays still a challenge. A number of (paradigmatic) calculi for quantum
computing have been introduced in the last ten years. Among them, some functional calculi, typed and
untyped, have been proposed [5, 6, 7, 16, 19, 22], but we are still at a stage where it is not clear whether
one calculus could be considered canonical. Since quantum data have to undergo restrictions such as no-
cloning and no-erasing, it is not surprising that in most of the cited quantum calculi the use of resources is
controlled. Linear logic therefore provides an ideal framework for quantum data treatment, since weak-
ening and contraction (to which linear logic gives a special status) precisely correspond to erasing and
copying via the Curry-Howard correspondence. But linear logic also offers another tool which has not
been widely exploited in the quantum setting: its mathematical model in terms of operator algebras, i.e.
the Geometry of Interaction (GoI in the following). Indeed, the latter provides a dynamical interpretation
and a semantic account of the cut-elimination procedure as a flow of information circulating into a net
structure. This idea can be formulated both as an algebra of bounded operators on a infinite-dimensional
Hilbert space [11] or as a token-based machine [12, 14]. On the one hand, the Hilbert space on top of
which the first formulation of GoI is given is precisely the canonical state space of a quantum Turing
machine [2]. On the other hand, the definition of a token machine provides a mathematically simpler
setting, which has already found a role in this context [4, 13].

In this paper, we show that token machines are also a model of a linear quantum λ -calculus with
implicit quantum bits (qubits), called QΛ and defined along the lines of van Tonder’s λq [19]. This
allows us to give an operational semantics to QΛ which renders the quantum nature of QΛ explicit: type
derivations become quantum circuits on the set of gates occurring in the underlying λ -term. This frees
us from the burden of having to define the operational semantics of quantum calculi in reduction style,
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which is known to be technically challenging in a similar setting [19]. On the other hand, the power of
β -style axioms is retained in the form of an equational theory for which our operational semantics can
be proved sound. Technically, the design of our token machine for QΛ, called IAMQΛ, is arguably more
challenging than the one of classical token machines. Indeed, the principles of quantum computing, and
the so-called entanglement in particular, force us to go towards wave-style machines, i.e., to machines
where more than one particle can travel inside the program at the same time. Moreover, the possibly
many tokens at hand are subject to synchronisation points, each one corresponding to unitary operators
of arity greater than 1. This means that IAMQΛ, in principle, could suffer from deadlocks, let alone the
possibility of non-termination. We here prove that these pathological situations can never happen. In
the present paper we also establish a soundness theorem: we state and prove that the semantics induced
by the token machine IAMQΛ is sound with respect to QΛ’s equational theory, i.e. it is invariant with
respect to term equivalence. The proof, which we only sketch and which can anyway be found in [8], is
not trivial, since our notion of term has to deal with quantum superposition [15] and is thus non-standard.
Finally, it is mandatory to recall that, even if the possibility of observing quantum data is a useful and
expressive programming tool, considering a measurement-free calculus is a theoretically well-founded
choice, since measurements can always been postponed [15]. Thus, this is not a limitation when one
addresses computability issues.

The calculus QΛ and its token machine IAMQΛ are introduced in Section 2 and Section 3, respec-
tively. Main results about IAMQΛ are in Section 4. An extended version of this paper with more details,
proofs and a gentle introduction to quantum computing is available [8].

2 The Calculus QΛ

An essential property of quantum programs is that quantum data, i.e. quantum bits, should always be
uniquely referenced. This restriction follows from the well-known no-cloning and no-erasing properties
of quantum physics, which state that a quantum bit cannot in general be duplicated nor canceled [15].
Syntactically, one captures this restriction by means of linearity: if every abstraction λx.M is such that
there is exactly one free occurrence of x in M, then the substitution triggered by firing any redex is neither
copying nor erasing and, as a consequence, coherent with the just stated principles. In this Section, we
introduce a quantum linear λ -calculus in the style of van Tonder’s λq [19] and give an equational theory
for it. This is the main object of study of this paper, and is the calculus for which we will give a wave-style
token machine in the coming sections.

2.1 The Language of Terms

Let us fix a finite set U of unitary operators, each on a finite-dimensional Hilbert space C2n
, where n

can be arbitrary. To each such U ∈U we associate a symbol U and call n the arity of U . The syntactic
categories of patterns, bit constants, constants and terms are defined by the following grammar:

P ::= x | 〈x,y〉; patterns

B ::= |b〉n; bit constants

C ::= B | U ; constants

M,N ::= x | C | M⊗N | MN | λP.M. terms
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(av)
x : A ` x : A

(aq0)
· ` |0〉 : B

(aq1)
· ` |1〉 : B

(aU)
· `U : Bn( Bn

Γ,x : A `M : B
(I1()

Γ ` λx.M : A( B

Γ,x : A,y : B `M : C
(I2()

Γ ` λ 〈x,y〉.M : (A⊗B)(C

Γ `M : A( B ∆ ` N : A
(E()

Γ,∆ `MN : B

Γ `M : A ∆ ` N : B
(I⊗)

Γ,∆ `M⊗N : A⊗B

Figure 1: Typing Rules.

where n ranges over N, b ranges over {0,1}, and x ranges over a denumerable, totally ordered set of
variables V. We always assume that the natural numbers occurring next to bits in any term M are pairwise
distinct. This condition, by the way, is preserved by substitution when the substituted variable occurs
(free) exactly once. Whenever this does not cause ambiguity, we elide labels and simply write |b〉 for a
bit constant. Notice that pairs are formed via the binary operator ⊗.

We will sometime write |b1b2 . . .bk〉 for |b1〉⊗ |b2〉⊗ . . .⊗|bk〉 (where b1, . . . ,bn ∈ {0,1}). We work
modulo variable renaming; in other words, terms are equivalence classes modulo α-conversion. Substi-
tution up to α-equivalence is defined in the usual way. Observe that the terms of QΛ are the ones of
a λ -calculus with pairs (which are accessed by pattern-matching) endowed with constants for bits and
unitary operators. We don’t consider measurements here, and discuss the possibility of extending the
language of terms in sections 5 and 6.

2.2 Judgements and Typing Rules.

We want terms to be non-duplicable and non-erasable by construction and, as a consequence, we adopt
a linear type discipline. Formally, the set of types is defined as follows

A ::= B | A( B | A⊗B,

where B is the ground type of bits. We write Bn for the n-fold tensor product

n times︷ ︸︸ ︷
B⊗ . . .⊗B. Judgements

and environments are defined as follows:
• A linear environment Γ is a (possibly empty) finite set of assignments in the form x : A. We impose

that in a linear environment, each variable x occurs at most once;
• If Γ and ∆ are two linear environments assigning types to distinct sets of variables, Γ,∆ denotes their

union;
• A judgement is an expression Γ `M : A, where Γ is a linear environment, M is a term, and A is a type

in QΛ.
Typing rules are in Figure 1. Observe that contexts are treated multiplicatively and, as a consequence,
variables always appear exactly once in terms. In other words, a strictly linear type discipline is enforced.

Example 1 (EPR States) Consider the term MEPR = λ 〈x,y〉.CNOT(Hx⊗ y). MEPR encodes the quan-
tum circuit on two input qubits which has the ability to produce an entangled state from any element of
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the underlying computational basis1. It can be given the type B⊗B( B⊗B in the empty context. The
following is a type derivation πEPR for it:

· ` CNOT : B⊗B( B⊗B

· ` H : B( B x : B ` x : B
(E()

x : B ` Hx : B y : B ` y : B
(I⊗)

x : B,y : B ` Hx⊗ y : B⊗B
(E()

x : B,y : B ` CNOT(Hx⊗ y) : B⊗B
(I2()

· `MEPR : B⊗B( B⊗B
MEPR and πEPR will be used as running examples in the rest of this paper, together with the following
type derivation ρEPR:

πEPR . · `MEPR : B⊗B( B⊗B

· ` |0〉1 : B · ` |1〉2 : B
(I⊗)

· ` |0〉1⊗|1〉2 : B⊗B
(E()

· `MEPR(|0〉1⊗|1〉2) : B⊗B

If π .Γ ` (λx.M)N : A, one can build a type derivation ρ with conclusion Γ `M{x/N} : A in a canonical
way, and similarly when π . Γ ` (λ 〈x,y〉.M)(N ⊗ L) : A. This, as expected, is a consequence of the
following:
Lemma 1 (Substitution Lemma) If π .Γ,x1 : A1, . . . ,xn : An ` M : B and for every 1 ≤ i ≤ n there is
ρi .∆i ` Ni : Ai, then there is a canonically defined derivation π{x1, . . . ,xn/ρ1, . . . ,ρn} of Γ,∆1, . . . ,∆n `
M{x1, . . . ,xn/N1, . . . ,Nn} : B.

Proof. Just proceed by the usual, simple induction on π . �

2.3 An Equational Theory.

The λ -calculus is usually endowed with notions of reduction or equality, both centred around the β -rule,
according to which a function λx.M applied to an argument N reduces to (or can be considered equal to)
the term M{N/x} obtained by replacing all free occurrences of x with N. A reduction relation implicitly
provides the underlying calculus with a notion of computation, while an equational theory is more akin to
a reasoning technique. Giving a reduction relation on QΛ terms directly, however, is problematic. What
happens when a n-ary unitary operator U is faced with an n-tuple of qubits |b1 . . .bn〉? Superposition
should somehow arise, but how can we capture it?

In this section, an equational theory for QΛ will be introduced. In the next sections, we will show
that the semantics induced by token machines is sound with respect to it. The equational theory we are
going to introduce will be a binary relation on formal, weighted sums of QΛ terms:
Definition 1 (Superposed Term) A superposed term of type (Γ,A) is a formal sum

T =
n

∑
i=1

κiMi

1The quantum circuit EPR is built out from the unitary gates H (the so-called Hadamard gate) and CNOT . The unary gate
H is able to create a superposition of elements of the computational basis |0〉 and |1〉, i.e. a linear combination in the form

1√
2
(|0〉+|1〉) or 1√

2
(|0〉−|1〉). The binary gate CNOT negates its second argument, according to the value of the first one. We

provide two simple examples of entangled and non-entangled quantum states. The state |ψ〉 = 1√
2
|00〉+ 1√

2
|11〉 is entangled

whereas any state φ = α|00〉+β |01〉 is not. In fact, it is possible to express the latter in the mathematically equivalent form
φ = |0〉⊗ (α|0〉+β |1〉). See [8] for a gentle introduction to quantum computing essential notions.
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where for every 1 ≤ i ≤ n, κi ∈ C and there is πi such that that πi .Γ ` Mi : A. In this case, we write
Γ `T : A.
Superposed terms will be denoted by metavariables like T or S . Please observe that terms in a super-
posed term are uniformly typed, i.e., they can be given the same type in the same context. Please, notice
that:
• If π . · `U |b1 . . .bk〉 : Bk, then there is a naturally defined superposed term of type (·,Bk) which is

nothing more than the element of C2k
obtained by applying U to the vector |b1 . . .bk〉 With a slight

abuse of notation, this superposed term will be indicated with U|b1 . . .bk〉.
• All the term constructs can be generalised to operators on superposed terms, with the proviso that the

types match. As an example if T = ∑i αiMi where πi .Γ `Mi : A( B and ρ .∆ ` N : A, then T N
denotes the superposed term S = ∑i αi(MiN). Indeed, there exist type derivations σi .Γ,∆ `MiN : B
each obtained applying the rule (E() to πi and ρ .

It is now time to define our equational theory, which will be defined on superposed terms of the same
type. Formally, ≈ is a binary relation on superposed terms, indexed by contexts and types. The fact
that T ≈Γ,A S is indicated with Γ ` T ≈S : A. The relation ≈ is defined inductively, by the rules in
Figure 2. Notice that for each Γ,A, ≈Γ,A is by construction an equivalence relation.
Example 2 As an example, consider the term MEPR(|0〉1⊗|1〉2) from Example 1. The equations in the
following chain can all be derived through axioms and context closure rules:

MEPR(|0〉⊗ |1〉)≈ CNOT(H|0〉⊗ |1〉)≈ 1√
2

CNOT(|0〉⊗ |1〉)+ 1√
2

CNOT(|1〉⊗ |1〉)

≈ 1√
2
|0〉⊗ |1〉+ 1√

2
CNOT(|1〉⊗ |1〉)≈ 1√

2
|0〉⊗ |1〉+ 1√

2
|1〉⊗ |0〉.

The context (which is ·) and the type (which is B2) have been elided for the sake of readability. By rule
trans, we can derive that

· ` EPR(|0〉⊗ |1〉)≈ 1√
2
|0〉⊗ |1〉+ 1√

2
|1〉⊗ |0〉 : B2.

In other words, EPR, when fed with |0〉⊗ |1〉, produces an entangled pair of qubits. The fourth super-
posed term in the chain above has the remarkable property of not being homogeneous, i.e., of being the
sum of two terms which are not identical up to the value of bit constants.
Please observe that the equational theory we have just defined can hardly be seen as an operational
semantics for QΛ. Although equations can of course be oriented, it is the very nature of a superposed
term which is in principle problematic from the point of view of quantum computation: what is the
mathematical nature of a superposed term? Is it an element of an Hilbert Space? And if so, of which
one? If we consider a simple language such as QΛ, the questions above may appear overly rhetorical, but
we claim they are not. For example, what would be the quantum meaning of linear beta-reduction? If we
want to design beta-reduction according to the principles of quantum computation, it has to be, at least,
easily reversible (unless measurement is implicit in it). Moving towards more expressive languages, this
non-trivial issue becomes more difficult and a number of constraints have to be imposed (for example,
superposition of terms can be allowed, but only between homogenous terms [19]). This is the reason for
which promising calculi [19] fail to be canonical models for quantum programming languages. This issue
has been faced in literature without satisfactory answers, yielding a number of convincing arguments in
favour of the (implicit or explicit) classical control of quantum data [5, 16]. As observed above, our
equational theory permits non-homogeneous superposed terms in a very natural way.
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Axioms

Γ ` (λ 〈x,y〉.M)(N⊗L) : A
beta.pair

Γ ` (λ 〈x,y〉.M)(N⊗L)≈M{x,y/N,L} : A

Γ ` (λx.M)N : A
beta

Γ ` (λx.M)N ≈M{x/N} : A

· `U |b1 . . .bk〉 : Bk

quant
· `U |b1 . . .bk〉 ≈ U|b1 . . .bk〉 : Bk

Context Closure

Γ `T ≈S : A( B
∆ `M : A

l.a
Γ,∆ `T M ≈S M : B

Γ `M : A( B
∆ `T ≈S : A

r.a
Γ,∆ `MT ≈MS : B

Γ,x : A `T ≈S : B
in.λ

Γ ` λx.T ≈ λx.S : A( B

Γ,x : A,y : B `T ≈S : C
in.λ .pair

Γ ` λ 〈x,y〉.T ≈ λ 〈x,y〉.S : A⊗B(C

Γ `T ≈S : A
∆ `M : B

l.in.tens
Γ,∆ `T ⊗M ≈S ⊗M : A⊗B

Γ `M : A
∆ `T ≈S : B

r.in.tens
Γ,∆ `M⊗T ≈M⊗S : A⊗B

Γ `T ≈S : A
Γ ` V : A

sum
Γ ` αT +V ≈ αS +V : A

Reflexive, Symmetric and Transitive Closure

Γ `T : A
refl

Γ `T ≈T : A

Γ `T ≈S : A
sym

Γ `S ≈T : A

Γ `T ≈S : A
Γ `S ≈ V : A

trans
Γ `T ≈ V : A

Figure 2: Equational Theory
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3 A Token Machine for QΛ

In this section we describe an interpretation of QΛ type derivations in terms of a specific token machine
called IAMQΛ. Before formally defining IAMQΛ, it is necessary to give some preliminary concepts.

With a slight abuse of notation, a permutation σ : {1, . . . ,n} → {1, . . . ,n} will be often applied to
sequences of length n with the obvious meaning: σ(a1, . . . ,an) = aσ(1), . . . ,aσ(n). Similarly, such a
permutation can be seen as the unique unitary operator on C2n

which sends |b1 · · ·bn〉 to |bσ(1) · · ·bσ(n)〉.
Suppose given a unitary operator U∈U of arity n∈N. Now, take a natural number m≥ n and n dis-

tinct natural numbers j1, . . . , jn, all of them smaller or equal to m. With U j1,..., jn
m (or simply with U j1,..., jn)

we indicate the unitary operator of arity m which acts like U on the quantum bits indexed with j1, . . . , jn
and leave all the other qubits unchanged. In the following, with a slight abuse of notation, occurrences
of types in type derivations are confused with types themselves. On the other hand, occurrences of types
inside other types will be defined quite precisely, as follows.

Contexts (types with a hole) are denoted by metavariables like C or D. A context C is said to be a
context for a type A if C[B] = A. Negative contexts (i.e., contexts where the hole is in negative position)
are denoted by metavariables like N,M. Positive ones are denoted by metavariables like P,Q. An occur-
rence of B in the type derivation π is a pair O = (A,C), where A is an occurrence of a type in π and C is
a context for A. Sequences of occurrences are indicated with metavariables like ϕ,ψ (possibly indexed).
All sequences of occurrences we will deal with do not contain duplicates. Type constructors( and ⊗
can be generalised to operators on occurrences and sequences of occurrences, e.g. (A,C)( B is just
(A( B,C( B). If a sequence of occurrences ϕ contains the occurrences O1, . . . ,On, we emphasise it
by indicating it with ϕ(O1, . . . ,On).

Given (an occurrence of) a type A, all positive and negative occurrences of B inside A form sequences
called P(A) and N (A), respectively. These are defined as follows (where · is sequence concatenation):

P(B) = (B, [·]);
N (B) = ε;

P(A⊗B) = (P(A)⊗B) · (A⊗P(B));

N (A⊗B) = (N (A)⊗B) · (A⊗N (B));

P(A( B) = (N (A)( B) · (A(P(B));

N (A( B) = (P(A)( B) · (A(N (B)).

Example 3 As an example, the positive occurrences in the type B( B⊗B should be the two rightmost
ones. And, indeed,

P(B( B⊗B) = (N (B)( B⊗B) · (B(P(B⊗B))
= ε · (B(P(B⊗B))
= B(P(B⊗B)
= (B( (P(B)⊗B)) · (B( (B⊗P(B)))
= (B,B( ([·]⊗B)),(B,B( (B⊗ [·])).

Similarly, one can prove that N (B( B⊗B) = (B, [·]( (B⊗B)).
For every type derivation π , B(π) is the sequence of all these occurrences of B in π which are introduced
by the rules (aq0) and (aq1) (recall Figure 1). Similarly, V (π) is the corresponding sequence of binary
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digits, seen as a vector in C2|B(π)|
. Both in B(π) and in V (π), the order is the one induced by the natural

number labeling the underlying bit in π .
Example 4 Consider the following type derivation, and call it τ:

· ` |0〉2 : B1 · ` |1〉1 : B2
(I⊗)

· ` |0〉2⊗|1〉1 : B3⊗B4

There are four occurrences of B in it, and we have indexed it with the first four positive natural numbers,
just to be able to point at them without being forced to use the formal, context machinery. Only two of
them, namely the upper ones, are introduced by instances of the rules (aq0) and (aq1). Moreover, the
rightmost one serves to type a bit having an index (namely 1) greater than the one in the other instance
(namely 2). As a consequence, B(τ) is the sequence B2,B1. The two instances introduces bits 0 and 1;
then V (π) = |1〉⊗|0〉. As another example, one can easily compute B(πEPR) and V (πEPR) (where πEPR

is from Example 1), finding out that both are the empty sequence.
We are finally able to define, for every type derivation π , the abstract machine Aπ interpreting it:
• The states of Aπ form a set Sπ and are in the form S = (O1, . . . ,On,Q) where:
• O1, . . . ,On are occurrences of the type B in π;
• Q is a quantum register on n quantum bits, i.e. a normalised vector in C2n

.
• The transition relation→π⊆Sπ ×Sπ is defined based on π , following the rules from Figure 3. In

the last rule, B in the type of U is simply denoted through its index, and for every 1≤ k≤m, ik is the
position of Bk in the sequence ϕ . The transition rules induced by (I2() have been elided for the sake
of simplicity (see [8]).

The number of positive (negative, respectively) occurrences of B in the conclusion of π is said to be
the output arity (the input arity, respectively) of π . Suppose, for the sake of simplicity, that π is a type
derivation of · `M : A. An initial state for a quantum register Q is a state in the form (N (A) ·B(π),Q⊗
V (π)). Given a permutation σ on n elements, a final state for a quantum register Q and σ is a state in
the form (ϕ,Q), where ϕ = σ(P(A)). A run of Aπ is simply a finite or infinite sequence S1,S2, . . . of
states from Sπ such that Si→π Si+1 for every i.
Example 5 (A run of IAMQΛ) Consider the term MEPR and its type derivation πEPR (see Example 1).
Forgetting about terms and marking different occurrences of B with distinct indices, we obtain:

· ` B9⊗B10( B11⊗B12

· `: B21( B22 B23 ` B24
(E()

B17 ` B18 B19 ` B20
(I⊗)

B13,B14 ` B15⊗B16
(E()

B5,B6 ` B7⊗B8
(I2()

· ` B1⊗B2( B3⊗B4

Let us consider the following computation of AπEPR:

(B1,B2,Q)→∗π (B5,B6,Q)→∗π (B13,B14,Q)→π (B17,B19,Q)→∗π (B23,B20,Q)

→∗π (B24,B16)→π (B24,B10,Q)→π (B21,B10,Q)→π (B22,B10,H1(Q))

→π (B18,B10,H1(Q))→π (B15,B10,H1(Q))→π (B9,B10,H1(Q))

→π (B11,B12,CNOT1,2(H1(Q)))→∗π (B7,B8,CNOT1,2(H1(Q)))

→π (B3,B4,CNOT1,2(H1(Q))).
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(av)
x : A1 ` x : A2

((ϕ,(A1,P),ψ),Q) →π ((ϕ,(A2,P),ψ),Q)

((ϕ,(A2,N),ψ),Q) →π ((ϕ,(A1,N),ψ),Q)

Γ1,x : A1 `M : B1
(I1()

Γ2 ` λx.M : A2( B2

((ϕ,(A1,N),ψ),Q)→π ((ϕ,(A2( B2,N( B2),ψ),Q)

((ϕ,(A2( B2,P( B2),ψ),Q)→π ((ϕ,(A1,P),ψ),Q)

((ϕ,(B1,P),ψ),Q)→π ((ϕ,(A2( B2,A2( P),ψ),Q)

((ϕ,(A2( B2,A2( N),ψ),Q)→π ((ϕ,(B1,N),ψ),Q)

((ϕ,(Γ2,P),ψ),Q)→π ((ϕ,(Γ1,P),ψ),Q)

((ϕ,(Γ1,N),ψ),Q)→π ((ϕ,(Γ2,N),ψ),Q)

Γ1 `M : A1( B1 ∆1 ` N : A2
(E()

Γ2,∆2 `MN : B2

((ϕ,(A2,P),ψ),Q)→π ((ϕ,(A1( B1,P( B1),ψ),Q)

((ϕ,(A1( B1,N( B1),ψ),Q)→π ((ϕ,(A2,N),ψ),Q)

((ϕ,(A1( B1,A1( P),ψ),Q)→π ((ϕ,(B2,P),ψ),Q)

((ϕ,(B2,N),ψ),Q)→π ((ϕ,(A1( B1,A( N),ψ),Q)

((ϕ,(Γ2,P),ψ),Q)→π ((ϕ,(Γ1,P),ψ),Q)

((ϕ,(Γ1,N),ψ),Q)→π ((ϕ,(Γ2,N),ψ),Q)

((ϕ,(∆2,P),ψ),Q)→π ((ϕ,(∆1,P),ψ),Q)

((ϕ,(∆1,N),ψ),Q)→π ((ϕ,(∆2,N),ψ),Q)

Γ1 `M : A1 ∆1 ` N : B1
(I⊗)

Γ2,∆2 `M⊗N : A2⊗B2

((ϕ,(A2⊗B2,N⊗B2),ψ),Q)→π ((ϕ,(A1,N),ψ),Q)

((ϕ,(A2⊗B2,A2⊗N),ψ),Q)→π ((ϕ,(B1,N),ψ),Q)

((ϕ,(A1,P),ψ),Q)→π ((ϕ,(A2⊗B2,P⊗B2),ψ),Q)

((ϕ,(B1P),ψ),Q)→π ((ϕ,(A2⊗B2,A2⊗P),ψ),Q)

((ϕ,(Γ1,N),ψ),Q)→π ((ϕ,(Γ2,N),ψ),Q)

((ϕ,(∆1,N),ψ),Q)→π ((ϕ,(∆2,N),ψ),Q)

((ϕ,(Γ2,P),ψ),Q)→π ((ϕ,(Γ1,P),ψ),Q)

((ϕ,(∆2,P),ψ),Q)→π ((ϕ,(∆1,P),ψ),Q)

(aU)
· `U : B1⊗ . . .⊗Bm( Bm+1⊗ . . .⊗B2m

(ϕ(B1, . . . ,Bm),Q)
→π

(ϕ(Bm+1, . . . ,B2m),Ui1,...,im (Q))

Figure 3: IAMQΛ Transition Rules
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Notice that the occurrence of CNOT acts as a synchronisation operator: the second token is stuck at the
occurrence B10 until the first token arrives (from the occurrence B15) as a control input of the CNOT and
the corresponding reduction step actually occurs.

What the example above shows, indeed, is that the presence of a potential entanglement in π is intimately
related to the necessity of synchronisation in the underlying machine Aπ : if all unitary operators in π

can be expressed as the tensor product of unitary operators of arity one (and, thus, entanglement is not
possible), then synchronisation is simply not necessary.

Given a type derivation π , the relation→π enjoys a strong form of confluence:

Proposition 1 (One-step Confluence of→π ) Let S,R,T ∈Sπ be such that S→π R and S→π T. Then
either R = T or there exists a state U such that R→π U and T→π U.

Proof. By simply inspecting the various rules. Notice that there are no critical pairs in→π . �

The way Aπ is built by following a type derivation π induces the following notion:

Definition 2 Given a type derivation π , the partial function computed by π is denoted as [π], has domain
C2n

and codomain C2m
(where n and m are the input and output arity of π) and is defined by stipulating

that [π](Q) = R iff any initial state for Q rewrites into a final state for S and σ , where S = σ−1(R).

Given a type derivation π , [π] is either always undefined or always defined. Indeed, the fact any initial
configuration (for, say, Q) rewrites to a final configuration or not does not depend on Q but only on π:

Lemma 2 (Uniformity) For every type derivation π and for every occurrences O1, . . . ,On, P1, . . . ,Pn,
there is a unitary operator U such that whenever (O1, . . . ,On,Q)→π (P1, . . . ,Pn,R) it holds that R =
U(Q).

Proof. Observe that for every O1, . . . ,On, P1, . . . ,Pn there is at most one of the rules defining→π which
can be applied. Moreover, notice that each rule acts uniformly on the underlying quantum register. �

In the following section, we will prove that [π] is always a total function, and that it makes perfect sense
from a quantum point of view.

4 Main Properties of IAMQΛ

In this section, we will give some crucial results about IAMQΛ. More specifically, we prove that runs of
this token machine are indeed finite and end in final states. We proceed by putting QΛ in correspondence
to MLL, inheriting its very elegant proof theory and token machines.

4.1 A Correspondence Between MLL and QΛ

Let A = {α,β , . . .} be a countable set of propositional atoms. A formula A of Multiplicative Linear
Logic (MLL) is given by the following grammar:

A,B ::= α | α
⊥ | A⊗B | A`B.

Linear negation can be extended to all formulas in the usual way:

(α⊥)⊥ = α; A⊗B⊥ = A⊥`B⊥; A`B⊥ = A⊥⊗B⊥.
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This way, A⊥⊥ is just A. The one-sided sequent calculus for MLL is very simple:

ax
` A,A⊥

` Γ,A ` ∆,A⊥
cut

` Γ,∆

` Γ,A ` ∆,B
⊗

` Γ,∆,A⊗B

` Γ,A,B `
` Γ,A`B

The logic MLL enjoys cut-elimination: there is a terminating algorithm turning any MLL proof into a
cut-free proof of the same conclusion. A notion of structural equivalence between two MLL proofs ξ ,µ
having the same conclusion ` Γ can be easily defined and holds only if ξ and µ are essentially the same
proof modulo renaming of the formulas occurring in ξ and µ . Remarkably, two MLL proofs which are
structurally equivalent are actually the same proof, a result which does not hold in more expressive logics
like MELL. More details on that can be found in [8].

Any QΛ type derivation π can be put in correspondence with some MLL proofs. We inductively
define the map (·)• from QΛ types to MLL formulas as follows:

(B)• = α; (A( B)• = (A)•⊥` (B)•; (A⊗B)• = (A)•⊗ (B)•

Given a judgment J = Γ `M : A and a natural number n ∈N, the MLL sequent corresponding to J and n
is the following one:

` α
⊥, . . . ,α⊥︸ ︷︷ ︸
n times

,((B1)
•)⊥, . . . ,((Bm)

•)⊥,(A)•,

where Γ = x1 : B1, . . . ,xm : Bm. For every π , we define now a set of MLL proofs I (π). This way, every
type derivation π for J = Γ `M : A such that n bits occur in M, is put in relation to possibly many MLL
proofs of the sequent corresponding to J and n. One among them is called the canonical proof for π . The
set I (π) and canonical proofs are defined by induction on the structure of the underlying type derivation
π . The type constructions of QΛ are mapped to the corresponding MLL logical operators, rules (aq0) and
(aq1) are mapped to axioms, and rule (aU) is mapped to a proof encoding a permutation of the involved
atoms. When the latter is the identity, we get the canonical proof for π . For more details, please refer
to [8].

Given an MLL proof ξ , let us denote as Tξ the class of all finite sequences of atom occurrences in ξ .
The relation 7→ξ can be extended to a relation on Tξ by stipulating that

(O1, . . . ,On−1,P,On+1, . . . ,Om) 7→ξ (O1, . . . ,On−1,R,On+1, . . . ,Om)

whenever P 7→ξ R. As usual, 7→+
ξ

is the transitive closure of 7→ξ .
Let us now consider a type derivation π in QΛ, its quantum token machine Aπ , and any ξ ∈I (π).

States of Aπ can be mapped to Tξ by simply forgetting the underlying quantum register and mapping
any occurrence of π to the corresponding atom occurrence in ξ . This way one gets a map

Rπ,ξ : Sπ → Tξ

such that, given a state S = (O1, . . . ,On,Q) in Sπ , |Rπ,ξ (S)|= n, i.e., the number of occurrences in S is
the same as the length of Rπ,ξ (S). Each reduction step on the token machine Aπ corresponds to at least
one reduction step in the MLL machine Mξ , where ξ ∈I (π) is the canonical proof:
Lemma 3 Let us consider a token machine Aπ and two states S,R ∈Sπ . If S→π R and ξ ∈I (π) is
canonical, then Rπ,ξ (S) 7→+

ξ
Rπ,ξ (R).

Proof. This goes by induction on the structure of π . �

Any (possible) pathological situation on the quantum token machine, then, can be brought back to a
corresponding (absurd) pathological situation in the MLL token machine. This is the principle that will
guide us in the rest of this section.
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4.2 Termination, Progress and Soundness

The first property we want to be sure about is that every computation of any token machine Aπ always
terminates. The second one is progress (i.e. deadlock-freedom). In both cases, we use in an essential
way the correspondence between QΛ and MLL.

Proposition 2 (Termination) For any quantum token machine Aπ , any sequence S→π R→π . . . is
finite.

Proof. Suppose, for the sake of contradiction, than there exists an infinite computation in Aπ . This
implies by Lemma 3 that there exists an infinite path in the token machine Mξ where ξ is the canonical
MLL proof for π . This is a contradiction, because paths in MLL proofs are well-known to be always
finite. �

Progress (i.e. deadlock-freedom) is more difficult to prove than termination. Given a type derivation
π , an argument occurrence is any negative occurrence (A,N) of B in a (aU) axiom. We extend this def-
inition to the corresponding atom occurrence when ξ ∈I (π). A result occurrence is defined similarly,
but the occurrence has to be positive.

Proposition 3 (Progress) Suppose π is a type derivation in QΛ and S∈Sπ is initial. Moreover, suppose
that S→∗π R. Then either R is final or R→π T for some T ∈Sπ .

Proof. Let us consider a computation S1→π . . .→π Sk on a quantum token machine Aπ . Suppose that
the state Sk is a deadlocked state, i.e. Sk is not a final state, and that there exists no Sm such that Sk→π Sm.
The fact Sk is a deadlocked state means that l ≥ 1 occurrences in Sk are argument occurrences, since the
latter are the only points of synchronisation of the machine. Let us consider any maximal sequence

Rπ,ξ (S1) 7→ξ . . . 7→ξ Rπ,ξ (Sk) 7→ξ Q1 7→ξ . . . 7→ξ Qn, (1)

where ξ ∈I (π) is the canonical proof corresponding to π . Observe that in (1), all occurrences of atoms
in ξ are visited exactly once, including those corresponding to argument and result occurrences from π .
Notice, however, that the argument and result occurrences of the unitary operators affected by Sk cannot
have been visited along the subsequence Rπ,ξ (S1) 7→ξ . . . 7→ξ Rπ,ξ (Sk) (otherwise we would visit the
occurrences in Sk at least twice, which is not possible). Now, form a directed graph whose nodes are
the unitary constants U1, . . . ,Uh which block Sk, plus a node F (representing the conclusion of π), and
whose edges are defined as follows:
• there is an edge from Ui to U j iff along Q1 7→ξ . . . 7→ξ Qn one of the l independent computations

corresponding to a blocked occurrence in Sk is such that a result occurrence of Ui is followed by
an argument occurrence of U j and the occurrences between them are neither argument nor result
occurrences.
• there is an edge from Ui to F iff along Q1 7→ξ . . . 7→ξ Qn one of the l traces is such that a result

occurrence of Ui is followed by a final occurrence of an atom and the occurrences between them are
neither argument nor result occurrences.

The thus obtained graph has the following properties:
• Every node Ui has at least one incoming edge, because otherwise the configuration Sk would not be

deadlocked.
• As a consequence, the graph must be cyclic, because otherwise we could topologically sort it and get

a node with no incoming edges (meaning that some of the Ui would not be blocked!). Moreover, the
cycle does not include F , because the latter only has incoming nodes.
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From any cycle involving the U j, one can induce the presence of a cycle in the token machine Mµ

for some µ ∈ I (π). Indeed, such a µ can be formed by simply choosing, for each U j, the “good”
permutation, namely the one linking the incoming edge and the outgoing edge which are part of the
cycle. This way, we have reached the absurd starting from the existence of a deadlocked computation. �

The immediate consequence of the termination and progress results is that [π] is always a total
function. The way Aπ is defined ensures that [π] is obtained by feeding some of the inputs of a unitary
operator U with some bits (namely those occurring in π). U is itself obtained by composing the unitary
operators occurring in π , which can thus be seen as a program computing a quantum circuit. In a
way, then, token machines both show that QΛ is a truly quantum calculus and can be seen as the right
operational semantics for it.

The last step consists in understanding the relation between token machines and the equational theory
on superposed terms introduced in Section 2.3. First of all, observe that T = ∑

n
i=1 κiMi has type A in the

context Γ, then M1, . . . ,Mn all have type A in the context Γ. But there is more to that: for every 1≤ i≤ n,
there is exactly one type derivation πi .Γ `Mi : A. This holds because two such type derivations πi and
ρi are such that the canonical proofs in I (πi) and I (ρi) are structurally equivalent, thus identical. It is
then possible to extend the definition of [·] to superposed terms: if T = ∑

n
i=1 κiMi has type A in Γ, then

[T ], when fed with a vector x, returns ∑
n
i=1 κi[πi](x), where πi is the unique derivation giving type A to

Mi in the context Γ. Remarkably, token machines behave in accordance to the equational theory: this is
our Soundness Theorem.

Theorem 1 (Soundness) Given T and S superposed terms, if Γ `T ≈S : A, then [T ] = [S ].

Proof. We only give a sketch of the proof. More details can been found in [8]. The first step consists in
proving that any derivation of Γ `T ≈S : A can be put in normal form, a concept defined by giving an
order on the rules in Figure 2. More specifically, define the following two sets of rules:

AX = {beta,beta.pair,quant};
CC = {l.a, r.a, in.λ , in.λ .pair, l.in.tens, r.in.tens}.

A derivation of Γ `T ≈S : A is said to be in normal form (and we write Γ `T ∼S : A) iff
• either the derivation is obtained by applying rule refl;
• or any branch in the derivation consists in instances of rules from AX, possibly followed by instances

of rules in CC, possibly followed by instances of sum, possibly followed by instances of sym possibly
followed by instances of trans.

In other words, a derivation of Γ ` T ≈S : A is in normal form iff rules are applied in a certain order.
As an example, we cannot apply transitivity or symmetry closure rules too early, i.e., before context
closure rules. One may wonder whether this restricts the class of provable equivalences. Infact it does
not: ΓΓT ≈S : A iff ΓΓT ∼S : A, a result which is not particularly deep although a bit tedious to
prove [8]. Once we have this result in our hands, however, proving Soundness becomes much easier,
since the difficult and problematic rules, namely those in CC, are applied to superposed terms of a very
specific shape, namely those obtained through AX. �

5 Related Work

In [13], a geometry of interaction model for Selinger and Valiron’s quantum λ -calculus [16] is defined.
The model is formulated in particle-style. In [4] QMLL, an extension of MLL with a new kind of
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modality, is studied. QMLL is sound and complete with respect to quantum circuits, and an interac-
tive (particle-style) abstract machine is defined. In both cases, adopting a particle-style approach has a
bad consequence: the “quantum” tensor product does not coincide with the tensor product in the sense
of linear logic. Here we show that adopting the wave-style approach solves the problem. Quantum ex-
tensions of game semantics are partially connected to this work. See, for example [10, 9]. Purely linear
quantum lambda-calculi (with measurements) can be given a fully abstract denotational semantics, like
the one proposed by Selinger and Valiron [17]. In their work, closure (necessary to interpret higher-order
functions) is not obtained via traces and is not directly related in any way to the geometry of interaction.
Moreover, morphisms are just linear maps, and so the model is far from being a quantum operational
semantics. A language of terms similar to QΛ has been also studied in [21], where the calculus of
proof-nets MLLqm is introduced. MLLqm’s syntax also includes a measurement box-like operator (which
models the possibility of “observe” the value of a quantum bit [15]). A multi-token machine semantics
for MLLqm proof-nets is defined and proved to be sound, i.e. invariant along reduction of proof nets.
Moreover, although a λ -calculus is given, together with a compilation scheme to MLLqm proof-nets, the
considered λ -calculus is one with explicit qubits, contrary to QΛ. Finally, Arrighi and Dowek’s work
shows that turning a sum-based algebraic λ -calculus into a quantum computational model can be highly
non-trivial [1].

6 Conclusions

We have introduced IAMQΛ, an interactive abstract machine which provides a sound operational charac-
terisation of any type derivation in a linear quantum λ -calculus QΛ. This is an example of a concrete
wave-style token machine whose runs cannot be seen simply as the asynchronous parallel composition
of particle-style runs. Interestingly, synchronisation is intimately related to entanglement: if, for ex-
ample, only unary operators occur in a term (i.e. entanglement is not possible), synchronisation is not
needed and everything collapses to the particle-style. Our investigation is open to some possible future
directions. A natural step will be to extend the syntax of terms and types with an exponential modality.
The generalisation of the token machine to this more expressive language would be an interesting and
technically challenging subject. Moreover, giving a formal status to the connection between wave-style
and the presence of entanglement is a fascinating subject which we definitely aim to investigate further.
Finally, an interesting proof-theoretical investigation would consist in analysing the possible connections
the with the deep inference-oriented graph formalism developed in [3].
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