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a b s t r a c t

We introduce a quantum lambda calculus inspired by Lafont’s Soft Linear Logic and
capturing the polynomial quantum complexity classes EQP, BQP and ZQP. The calculus is
based on the ‘‘classical control and quantum data’’ paradigm. This is the first example of a
formal systemcapturing quantumcomplexity classes in the spirit of implicit computational
complexity — it is machine-free and no explicit bound (e.g., polynomials) appears in its
syntax.
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1. Introduction

This paper is about quantum computation and implicit computational complexity. More precisely, a lambda calculus is
defined and proved to capture some (polynomial time) quantumcomplexity classes. The language under consideration is not
built up from any notion of polynomials or from any concrete machine. To the authors’ knowledge, this is the first example
of an implicit characterization of some classes of problems coming from quantum complexity theory. A brief introduction
to these two research areas is now in order.

Quantumcomputation. QuantumComputation (QC) [7,10–12,18,14,23] is nowadays one of themost promising computation
paradigms between those going beyond classical computation (e.g. biological computation, nanocomputing, etc.). An
extraordinary research effort is being put on the task of proving quantum computation to be both feasible in practice
and worthwhile from a theoretical point of view. Since its very birth [13,10], in particular, one of the main motivations
for studying computational applications of quantum mechanics is the potentiality of exploiting parallelism to reduce the
computational complexity of some (classically) hard problems. Indeed, some of these hopes havematerialized. For example,
factoring of natural numbers has been shown to be solvable in polynomial time by quantum hardware [27,28]. However,
quantum algorithmics is still in its early days (especially when compared with classical algorithmics), and the number of
genuinely quantum algorithmic techniques can be counted on the fingers of one hand. One obstacle against progress in
this field is the lack of a universally accepted formalism able to express quantum algorithms naturally, i.e. a programming
language fitted for quantum computation. But even more fundamentally, similar problems affect quantum complexity
theory: there is no general agreement on what should be the quantum computational model, i.e., the computational model
on top of which one define the complexity of any computational problem (classically, this rôle is played by random
access machines). Summing up, quantum computation is a very promising paradigm with many potentially interesting
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complexity theoretic properties; its foundations, however, have not stabilized yet. A paper by Bernstein and Vazirani [7]
can be considered as the most widely accepted reference for quantum computational complexity. There, quantum Turing
machines are the computational model over which complexity classes are defined. A quantum Turing machine is defined
similarly to a (classical) Turing machine. However, in classical Turing machines, any configuration is a pair C = (q, t),
where q is a state from a finite set and t is the content of the machine’s tape, while in the quantum case, configurations are
elements of anHilbert space over the space of pairswe have just described. Apparently, thismakes the computational power
of quantum Turing machines higher than the one of their classical counterparts, since each base vector in the superposition
can evolve independently (provided the overall evolution stays reversible). When computation stops (and defining this is
not at all easy, see [7] for possible solutions), the result of the computation is obtained by quantum measurement, applied
to the current configuration. As a consequence, the outcome of quantum computation is not uniquely determined, since
quantummeasurement is inherently probabilistic. Once a computationalmodel is fixed, defining complexity classes over it is
relatively simple. But even if we focus on problems decidable in polynomial time, one could define three distinct complexity
classes, since different constraints can be imposed on success and error probabilities:

• EQP, if we impose the success probability to be 1 on all input instances.
• BQP, if we impose the success probability to be strictly greater than 1/2 on all input instances.
• ZQP, if we impose the success probability to be strictly greater than 1/2 and the error probability to be 0.

Implicit computational complexity. The aim of implicit computational complexity (ICC) [6,16] is giving machine-free,
mathematical-logic-based characterizations of complexity classes, with particular emphasis on small complexity classes
like the one of polynomial time computable functions. Many characterizations of polynomial time functions based onmodel
theory, recursion theory and proof theory have appeared in the last twenty years [8,6,16,22]. Potential applications of
implicit computational complexity lie in the areas of programming language theory (because controlling resource usage
is crucial when programs are run in constrained environments) and complexity theory (since traditional, combinatorial
techniques have so far failed in solving open problems about separation between complexity classes).

Linear logic. Linear logic [15] has been introduced by Jean-Yves Girard twenty years ago. It is both a decomposition and a
refinement of intuitionistic logic. As such, it sheds some light on the dynamics of normalization. In particular, the copying
phenomenon is put in evidence byway ofmodalities. Linear Logic has leveraged research inmany branches of programming
language theory, including functional and logic programming.

Quantum computation, ICC and linear logic. Controlling copying (and erasing) as made possible by Linear Logic is essential
in both quantum computation and implicit computational complexity, for different reasons.
Classically, copying the value of a bit is always possible (think at boolean circuits). In quantum computation, on the other

hand, copying a (quantum) bit is not possible in general: this is the so-called non-cloning property. Moreover, erasing a bit
corresponds to an implicit measurement, which is often restricted to happen at the end of the computation. One technique
enforcing these properties comes from linear logic: linearity corresponds to the impossibility of copying and erasing
arguments during reduction. Moreover, the syntax of linear logic makes it simple to keep everything under control even
if copying is permitted. Two different calculi, designed starting from the above ideas, can be found in the literature [31,26].
In both cases, only data are quantum, while control remains classical. Some developments on the same ideas can be found
in a recent paper by the authors [9], which introduces a calculus called Q.
On the other hand, the possibility of copying subproofs (in a wild way) during cut-elimination is the only reason why

cut-elimination is in general a computationally heavy process, for if copying is not allowed (like in plain, multiplicative
linear logic), normalization can be done in polynomial time for very simple reasons: every cut-elimination step makes the
underlying proof strictly smaller (and, as a consequence, cut-elimination can be performed in a linear number of steps).
Ten years ago, Jean-Yves Girard wrote [16]: ‘‘We are seeking a 〈〈logic of polytime〉〉. Not yet one more axiomatization, but

an intrinsically polytime system.’’, where the expressive power of the system was given by the computational complexity of
the cut elimination procedure. Girard’s main breakthrough was to understand that the problem of exponential blowup (in
time and space) of cut elimination is essentially caused by structural rules (in particular contraction, responsible, during the
cut elimination process, of duplications). In order to solve the problem Girard proposed a light version of linear logic [16],
where duplication is controlled by restricting exponential rules; this way he was able to master the expressive power (in
the Curry-Howard sense) of the logical system.
This idea has been subsequently simplified and extended into one of the most promising branches of ICC. Many distinct

lambda calculi and logical systems characterizing complexity classes being inspired by linear logic have appeared since then.
Some of them descend from Asperti’s light affine logic [1,2,4], others from Lafont’s soft linear logic [17]. Indeed, this is one
of the more fertile and vital areas of implicit computational complexity. Linear lambda-calculi corresponding (in the Curry-
Howard sense) to light affine logic [30] or to soft linear logic [3] both enjoy the following remarkable property: polynomial
bounds on normalization time hold in the absence of types, too. In other words, types are not necessary to get polytime
soundness.
One of the main motivations for studying QC is the potential speed-up in execution time induced by quantum

superposition. Shor [27,28] surprised the scientific community, by showing (roughly speaking) that an ideal quantum
computer could factorize an integer in polytime. The hope is that quantum machines could properly go beyond (from a
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computational complexity point of view1) classical computing machines. In this perspective the research area of quantum
abstract complexity theory has been recently developed (see, e.g., [7,19]), with a particular emphasis on polynomial time.
A quite natural question could be: is it possible to investigate quantum complexity by means of ICC? This paper is the very

first answer to the question.

This paper. In this paper, we give an implicit characterization of polytime quantum complexity classes by way of a calculus
called SQ. SQ is a quantum lambda calculus based on Lafont’s soft linear logic. Like in many other proposals for quantum
calculi and programming languages [9,23–26], control is classical and only data live in a quantumworld. The correspondence
with quantum complexity classes is an extensional correspondence, proved by showing that:

• on one side, any term in the language can be evaluated in polynomial time (where the underlying polynomial depends
on the box depth of the considered term);
• on the other side, any problem P decidable in polynomial time (in a quantum sense) can be represented in the language,
i.e., there exists a termM which decides P .

This is much in the style of ICC, where results of this kind abound. To the authors’ knowledge, however, this is the first
example of an implicit characterization of quantum polytime decision problems.
Terms and configurations of SQ form proper subclasses of the ones of Q [9], an untyped lambda calculus with classical

control and quantumdata previously introduced by the authors. This implies that results like standardization and confluence
do not need to be proved. Based on suggestions by the anonymous referees, however, the authors decided to keep this paper
self-contained by giving proofs for the above results in two appendices.
The results in this paper are not unexpected, since soft linear logic is sound and complete wrt polynomial time in the

classical sense [17]. This does notmean the correspondencewith quantumpolynomial time is straightforward. In particular,
showing polytime completeness requires a relatively non-standard technique (see Section 9).

On explicit measurements. We conclude the introductionwith an important remark. The syntax of SQ does not allow to clas-
sically observe the content of the quantum register. More specifically, the language of terms does not include any measure-
ment operator which, applied to a quantum variable, had the effect of observing the value of the corresponding qubit (this in
contrast to, e.g., Selinger and Valiron’s proposal [26]). We agree with researchers that put in foreground the need of a mea-
surement operator in any respectable quantum programming language, but the concern in our proposal is quantum compu-
tation theory, not programming languages; SQ is a quantum lambda calculus that morally lives in the sameworld as the one
of quantum Turingmachines and quantum circuit families. Our choice is not a novelty, it is fully motivated by some relevant
literature on quantum computing [7,18], wheremeasurements are assumed to take place only at the end of computation.

2. Preliminaries

Before introducing the syntax of SQ, some preliminary concepts are necessary. As always when talking about quantum
computation, we cannot be exhaustive. We refer the reader to [18] for a comprehensive survey on the topic; see also
Appendix A for further notions about Hilbert spaces.
A quantum variable set (qvs) is any finite set V of quantum variables2 (ranged over by variables like p, r and q).
Given a set S, the Hilbert space with computational basisB(S) = {|s〉 | s ∈ S}will be denoted asH(S) (see Appendix A

for the relevant definitions). We will here work with slightly nonstandard Hilbert spaces. In particular, their computational
basis consists of the set of all |f 〉 where f is a map from a fixed qvs V to {0, 1}; this Hilbert space is denoted asH({0, 1}V)
or, with a slight abuse of notation, simply asH(V). If V is a qvs, a quantum register is a normalized vector inH(V).
Usually, the computational basis of a (finite dimensional) Hilbert space is rather {|v〉 | v ∈ {0, 1}n}; this way we obtain

the 2n-dimensional Hilbert spaceH({0, 1}n).
In this paper we will show that SQ is sound and complete with respect to polynomial time quantum Turing machines as

defined by Bernstein and Vazirani [7]. In particular, in order to show the ‘‘perfect’’ equivalence of the proposed calculus with
polynomial time quantum Turingmachines, we need to restrict our attention to a subclass of unitary operators, the so-called
computable operators (see, e.g., the paper of Nishimura andOzawa [20] on the perfect equivalence between quantum circuit
families and quantum Turing machines).
In the following, we will write 1n for the sequence 11 . . . 1 (n times).

Definition 1. A real number x ∈ R is polytime computable (x is in PR) iff there is a deterministic Turing machine which on
input 1n computes a binary representation of an integerm ∈ Z such that |m/2n−x| ≤ 1/2n. A complex number z = x+ iy is
polytime computable (z is in PC) iff x, y ∈ PR. A normalized vector φ in any Hilbert spaceH(S) is computable if the range of φ
(a function from S to complex numbers) is PC. A unitary operatorU : H(S)→ H(S) is computable if for every computable
normalized vector φ ofH(S), U(φ) is computable.

1 The expectation is that the class of quantum feasible problems strictly contains the class of classical feasible problems.
2 We point out that a quantum variable is not a quantum object, quantum variables will be used to give names to qubits.
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Let u ∈ H({0, 1}n) be the quantum register u = α1|0 . . . 0〉 + · · · + α2n |1 . . . 1〉 and let 〈q1, . . . , qn〉 be a sequence of
names; u〈q1,...,qn〉 is the quantum register in H({q1, . . . , qn}) defined by u〈q1,...,qn〉 = α1|q1 7→ 0, . . . , qn 7→ 0〉 + · · · +
α2n |q1 7→ 1, . . . , qn 7→ 1〉.
Let U : H({q1, . . . , qn}) → H({q1, . . . , qn}) be an computable operator and let 〈q1, . . . , qn〉 be any sequence of dis-

tinguished names in V . Considering the bijection between {0, 1}n and {0, 1}{q1,...,qn}, U and 〈q1, . . . , qn〉 induce an operator
U〈q1,...,qn〉 : H({q1, . . . , qn})→ H({q1, . . . , qn}) defined as follows: if |f 〉 = |qj1 7→ bj1 , . . . , qjn 7→ bjn〉 is an element of the
orthonormal basis ofH({q1, . . . , qn}), then

U〈q1,...,qn〉|f 〉
def
= (U|b1, . . . , bn〉)〈q1,...,qn〉

where qji 7→ bji means that we associate the element bji of the basis to the qubit named qji .
LetW = {q1, . . . , qk} ⊆ V . We naturally extend (by suitable standard isomorphisms) the unitary operator U〈qj1 ,...,qjk 〉 :

H(W)→ H(W) to the unitary operator U〈〈q1,...,qk〉〉 : H(V)→ H(V) that acts as the identity on variables not inW and as
U〈q1,...,qk〉 on variables inW .

3. Syntax

The syntax ofSQ is very similar to the one ofQ, itself introduced by the authors [9]. Here,we aim at giving a self-contained
introduction to the calculus.

3.1. The language of terms

Let us associate to each computable unitary operator U on the Hilbert spaceH({0, 1}n), a symbol U . The set of the term
expressions, or terms for short, is defined by the following grammar:

x ::= x0, x1, . . . classical variables
r ::= r0, r1, . . . quantum variables
π ::= x | 〈x1, . . . , xn〉 linear patterns (where n ≥ 2)
ψ ::= π | !x patterns
B ::= 0 | 1 boolean constants
U ::= U0,U1, . . . unitary operators
C ::= B | U constants
M ::= x | r | !N | C | new(N) | M1M2 |

〈M1, . . . ,Mn〉 | λψ.N terms (where n ≥ 2)

In the following, capital letters such asM ,N and P (possibly indexed), denote terms. Observe that, by definition, only classical
variables can be bound, i.e., abstractions can be made on patterns including classical variables. We work modulo variable
renaming; in other words, terms are equivalence classes modulo α-conversion. With M1 = M2 we denote that the terms
(equivalence classes)M1 andM2 are α-equivalent. Substitution up to α-equivalence is defined in the usual way.
Since we are working modulo α-conversion, we are authorized to use the so called Barendregt Convention on Variables

(shortly, BCV) [5]: in each mathematical context (a term, a definition, a proof...) the names chosen for bound variables will
always differ from those of the free ones.
Let us denote with Q(M1, . . . ,Mk) the set of quantum variables occurring inM1, . . . ,Mk. For every termM and for every

classical variable x the number of free occurrences NFO(x,M) of x inM is defined as follows, by induction onM:

NFO(x, x) = 1
NFO(x, y) = NFO(x, r) = NFO(x, C) = 0

NFO(x, !M) = NFO(x, new(M)) = NFO(x,M)
NFO(x, λy.M) = NFO(x, λ!y.M) = NFO(x,M)

NFO(x, λ〈x1, . . . , xn〉.M) = NFO(x,M)
NFO(x,MN) = NFO(x,M)+ NFO(x,N)

NFO(x, 〈M1, . . . ,Mn〉) =
n∑
1

NFO(x,Mi)

3.2. Judgements and well-formed terms

Judgements are defined from various notions of environments, taking into account the way the variables are used:

• A classical environment is a (possibly empty) set (denoted by ∆, possibly indexed) of classical variables. With !∆ we
denote the set !x1, . . . , !xn whenever ∆ is x1, . . . , xn. Analogously, with #∆, we denote the environment #x1, . . . ,#xn
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const
!∆ ` C

qvar
!∆, r ` r

cvar
!∆, x ` x

der1
!∆,#x ` x

der2
!∆, !x ` x

Ψ1,#∆1 ` M1 Ψ2,#∆2 ` M2
app

Ψ1,Ψ2,#∆1 ∪ #∆2 ` M1M2

Ψ1,#∆1 ` M1 · · ·Ψk,#∆k ` Mk
tens

Ψ1, . . . ,Ψk,#∆1 ∪ #∆2 ∪ · · · ∪ #∆k ` 〈M1, . . . ,Mk〉

∆1 ` M
prom

!∆2, !∆1 `!M

Γ ` M
new

Γ ` new(M)

Γ , x1, . . . , xn ` M
abs1

Γ ` λ〈x1, . . . , xn〉.M

Γ , x ` M
abs2

Γ ` λx.M

Γ ,#x ` M
abs3

Γ ` λ!x.M

Γ , !x ` M
abs4

Γ ` λ!x.M

Fig. 1.Well forming rules.

whenever∆ is x1, . . . , xn. If∆ is empty, then !∆ and #∆ are empty. Notice that if∆ is a non-empty classical environment,
both #∆ and !∆ are not classical environments.
• A quantum environment is a (possibly empty) set (denoted byΘ , possibly indexed) of quantum variables.
• A linear environment is a (possibly empty) set (denoted byΛ, possibly indexed)∆,Θ of classic and quantum variables.
• A non-contractible environment is a (possibly empty) set (denoted by Ψ , possibly indexed) Λ, !∆ where each variable
name occurs at most once.
• An environment (denoted by Γ , eventually indexed) is a (possibly empty) setΨ ,#∆where each variable name occurs at
most once.
• A judgment is an expression Γ ` M , where Γ is an environment andM is a term.
• If Γ1, . . . ,Γn are (not necessarily pairwise distinct) environments, Γ1 ∪ · · · ∪ Γn denotes the environment obtained by
means of the standard set-union of Γ1, . . . ,Γn.

In all the above definitions, we are implicitly assuming that the same (quantum or classical) variable name cannot appear
more than once in an environment, e.g. x, !y,#z is a correct environment, while x, !x is not. Given an environment Γ , var(Γ )
denotes the set of variable names in Γ .
We say that a judgement Γ ` M iswell formed (notation: FΓ ` M) if it is derivable by means of thewell forming rules in

Fig. 1. If d is a derivation of the well formed judgement Γ ` M , we write d F Γ ` M . If Γ ` M iswell formedwe say thatM
is well formed with respect to the environment Γ , or, simply, thatM is well formed.
The rôle of the underlying context in well formed judgements can be explained as follows. If Γ , x ` M is well formed,

then x appears free exactly once inM and, moreover, the only free occurrence of x does not lie in the scope of any ! construct.
On the other hand, if Γ ,#x ` M is well formed, then x appears free at least once in M and every free occurrence of x does
not lie in the scope of any ! construct. Finally, if Γ , !x ` M is well formed, then x appears at most once inM .

Proposition 1. If FQ(M) ` M then all the classical variables in M are bound.
Proof. The following, stronger, statement can be proved by structural induction on d: if dF Γ ` M then all the free variables
ofM appears in Γ . �

SQ is a language inspired by Lafont’s soft linear logic [17]: the classical fragment of SQ is very similar (essentially equiv-
alent) to the language of terms of Baillot and Mogbil’s soft lambda calculus [3], where the authors show how soft lambda
terms can be typed with formulas of soft linear logic. But many interesting properties hold for soft lambda terms even in the
absence of types, i.e., the structure of untyped terms is itself sufficient to enforce those properties. This includes soundness
and completeness wrt polynomial time. This is the main reason why we decided to present SQ as an untyped language.

4. Computations

Computations are defined by means of configurations. A preconfiguration is a triple [Q,QV,M]where:

• M is a term;
• QV is a finite quantum variable set such that Q(M) ⊆ QV;
• Q ∈ H(QV).
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β-reductions

[Q,QV, (λx.M)N] →l.β [Q,QV,M{N/x}]
[Q,QV, (λ〈x1, . . . , xn〉.M)〈r1, . . . , rn〉] →q.β [Q,QV,M{r1/x1, . . . , rn/xn}]

[Q,QV, (λ!x.M)!N] →c.β [Q,QV,M{N/x}]

Unitary transform of quantum register

[Q,QV,U〈ri1 , . . . , rin〉] →Uq [U〈〈ri1 ,...,rin 〉〉Q ,QV, 〈ri1 , . . . , rin〉]

Creation of a new qubit and quantum variable

[Q,QV, new(c)] →new [Q⊗ |r 7→ c〉,QV ∪ {r}, r] (r is fresh)

Commutative reductions

[Q,QV, L((λπ.M)N)] →l.cm [Q,QV, (λπ.LM)N]

[Q,QV, ((λπ.M)N)L] →r.cm [Q,QV, (λπ.ML)N]
Context closure

[Q,QV,Mi] →α [R,RV,Ni]
ti

[Q,QV, 〈M1, . . . ,Mi, . . . ,Mk〉] →α [R,RV, 〈M1, . . . ,Ni, . . . ,Mk〉]

[Q,QV,N] →α [R,RV, L]
r.a

[Q,QV,MN] →α [R,RV,ML]

[Q,QV,M] →α [R,RV,N]
l.a

[Q,QV,ML] →α [R,RV,NL]

[Q,QV,M] →α [R,RV,N]
in.new

[Q,QV, new(M)] →α [R,RV, new(N)]

[Q,QV,M] →α [R,RV,N]
in.λ1

[Q,QV, (λ!x.M)] →α [R,RV, (λ!x.N)]

[Q,QV,M] →α [R,RV,N]
in.λ2

[Q,QV, (λπ.M)] →α [R,RV, (λπ.N)]

Fig. 2. Reduction rules.

Let θ : QV1 → QV2 be a bijective function from a (nonempty) finite set of quantum variablesQV1 to another set of quan-
tum variablesQV2. Thenwe can extend θ to any termwhose quantum variables are included inQV1: θ(M)will be identical
toM , except on quantum variables, which are changed according to θ itself. Observe that Q(θ(M)) ⊆ QV2. Similarly, θ can
be extended to a function fromH(QV1) toH(QV2) in the obvious way.

Definition 2 (Configurations). Two preconfigurations [Q1,QV1,M1] and [Q2,QV2,M2] are equivalent iff there is a bijec-
tion θ : QV1 → QV2 such that Q2 = θ(Q1) and M2 = θ(M1). If a preconfiguration C1 is equivalent to C2, then we will
write C1 ≡ C2. The relation≡ is an equivalence relation. A configuration is an equivalence class of preconfigurations modulo
the relation≡. Let C be the set of configurations.

Remark 1. The way configurations have been defined, namely quotienting preconfigurations over≡, is very reminiscent of
usual α-conversion in lambda-terms. Indeed, it is enlightening to think at quantum variables as bound variables (or, even
better, as pointers to the quantum register) rather than free variables.

Let L = {Uq, new, l.β, q.β, c.β, l.cm, r.cm}. The set L will be ranged over by α, β . For each α ∈ L , we can define a re-
duction relation→α⊆ C × C by means of the rules in Fig. 2. Please, notice the presence of the two commutative reduction
rules l.cm and r.cm. The rôle of l.cm and r.cm is related to the standardization result presented in Section 5. Roughly speak-
ing, commutative rules prevent quantum reduction to block classical reduction. For any subset S of L , we can construct
a relation→S by just taking the union over α ∈ S of→α . In particular,→ will denote→L . The usual notation for the
transitive and reflexive closures will be used. In particular,

∗
→will denote the transitive and reflexive closure of→. Notice

we have defined→ by closing reduction rules under any context except the ones in the form !M . So→ is not a strategy.
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4.1. Subject reduction

Even if SQ is not typed, we have a strong notion of well formation for terms. As we will see the well forming rules
are strong enough to guarantee termination of computations with polynomial bounds (see Section 8). It is necessary to
introduce a suitable notion of well formed configuration and, moreover, to show that well formed configurations are closed
under reduction.

Definition 3. A configuration [Q,QV,M] is said to bewell-formed iff there is a context Γ such that Γ ` M is well-formed.

The following is the main result of this section:

Theorem 1 (Well Formation Closure). If C is awell-formed configuration and C ∗
→ D then D is well formed.

The proof is a consequence (provable by induction) of the following stronger result that, with a little abuse of language (the
calculus is untyped), we call subject-reduction theorem.

Theorem 2 (Subject Reduction). If FΛ, !∆1,#∆2 ` M1 and [Q1,QV1,M1] → [Q2,QV2,M2] then there are environments
∆3,∆4 such that∆1 = ∆3,∆4 and FΛ, !∆3,#∆4 ∪ #∆2,QV2 −QV1 ` M2. Moreover,QV2 −QV1 = Q(M2)− Q(M1).

Proof. In order to prove the theorem we need a number of intermediate results (the proofs are very easy and long
inductions).We first need to show that certain rules are admissible. The following lemmas can be easily proved by induction
on the structure of derivations:

• If FΓ ` M and x is a fresh variable then FΓ , !x ` M;
• If FΓ , x ` M , then FΓ , !x ` M;
• If FΓ , x ` M , then FΓ ,#x ` M .

As a consequence the following rules are admissible:

Γ ` M
weak

Γ , !∆ ` M

Γ ,∆ ` M
der3

Γ , !∆ ` M

Γ ,∆ ` M
der4

Γ ,#∆ ` M

with the proviso that in rule weak, each x in ∆ is a fresh variable. As always, proving subject reduction requires some
substitution lemmas. In this case, we need four distinct substitution lemmas, which can all be proved by long inductions:

Linear case. If FΨ1,#∆1, x ` P and FΨ2,#∆2 ` N , with var(Ψ1) ∩ var(Ψ2) = ∅, then FΨ1,Ψ2,#∆1 ∪ #∆2 ` P{N/x}.
Contraction case. If FΓ ,#x ` P and F∆ ` N and var(Γ ) ∩ var(∆) = ∅ then FΓ ,#∆ ` P{N/x}.
Bang case. If FΓ , !x ` P and F∆ ` N and var(Γ ) ∩ var(∆) = ∅ then FΓ , !∆ ` P{N/x}.
Quantum case. If FΓ , x1, . . . , xn ` P , F !∆, r1, . . . , rn ` 〈r1, . . . , rn〉 and r1, . . . , rn 6∈ var(Γ ) then FΓ , !∆, r1, . . . , rn `

P{r1/x1, . . . , rn/xn}

Observe how the hypotheses of the four cases are different. As an example, when a term N is substituted for a variable x
appearing more once in P , the (free) variables in N must be ‘‘contractible’’ and, moreover, N cannot contain any quantum
variable. On the other hand, if x appears exactly once in P , no constraint must be imposed on variables appearing in N .
Let Γ be an environment, a partial functionmwith domain Γ is called anmfun (for Γ ) if:

1. if α (occurring in Γ ) is either a classical variable or a quantum variable or has the shape #x, thenm(α) = α;
2. if !x occurs in Γ thenm(!x) is either !x or #x.

It is immediate to observe that if Γ = α1, . . . , αn is an environment and m is an mfun, then m[Γ ] = m(α1), . . . ,m(αn)
is an environment; We are now in a position to prove Theorem 2. We prove it in the following equivalent formulation: if
d F Γ ` M and [Q1,QV1,M1] → [Q2,QV2,M2] then there is anmfun m for Γ such that Fm[Γ ],QV2 − QV1 ` M2. The
proof is by induction on the height of d and by cases on the last rule r of d. There are several cases, we will show only some
of them.

• r is app:

d1
·
·
·

Ψ1,#∆1 ` P1

d2
·
·
·

Ψ2,#∆2 ` P2
app

Ψ1,Ψ2,#∆1 ∪ #∆2 ` P1P2

and the reduction rule is

[Q,QV, P1] →α [R,RV, P3]
l.a

[Q,QV, P1P2] →α [R,RV, P3P2]
.
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Applying the induction hypothesis to d1 there is anmfun m and a derivation d3 such that:
d3
·
·
·

m[Ψ1],#∆1,RV −QV ` P3

d2
·
·
·

Ψ2,#∆2 ` P2
app

m[Ψ1],Ψ2,RV −QV,#∆1 ∪ #∆2 ` P3P2

.

Please note that if !y occur in Ψ1 then #y cannot occur neither in #∆1 nor in #∆2, therefore even ifm(!y) = #y, the rule
app is applied correctly.
• r is app:

d1
·
·
·

Γ ,#x ` P
abs2

Γ ` λ!x.P

d2
·
·
·

∆2 ` N
prom

!∆3, !∆2 `!N
app

Γ , !∆3, !∆2 ` (λ!x.P)(!N)
and the reduction rule is:

[Q,QV, (λ!x.P)!N] →c.β [Q,QV, P{N/x}]

we have the thesis by means of the substitution lemmas above:
d3
·
·
·

Γ ,#∆2 ` P{N/x}
weak

Γ , !∆3,#∆2 ` P{N/x}

where d3 is the derivation obtained by applying the contraction case to d1 and d2.
• r is new:

!∆ ` c
new

!∆ ` new(c)
and the reduction rule is:

[Q,QV, new(c)] → [Q⊗ |p 7→ c〉,QV ∪ {p}, p]

The thesis is obtained by means of qvar:

qvar
!∆, p ` p

The other cases can be handled in the same way. �

In the rest of the paper we will restrict our attention to well-formed configurations, that we continue to call simply config-
urations to ease reading. We conclude this Section with the notions of computation and normal form.
Definition 4 (Normal Forms). A configuration C ≡ [Q,QV,M] is said to be in normal form iff there is noD such that C → D.
Let us denote with NF the set of configurations in normal form.
We define a computation as a suitable finite sequence of configurations:
Definition 5 (Computations). If C1 is any configuration, a computation of length m ∈ N starting with C1 is a sequence of
configurations {Ci}1≤i≤m such that for all 1 ≤ i < m, Ci → Ci+1 and Cm ∈ NF.
As we will see, the limitation to finite sequences of computations is perfectly reasonable. Indeed, we will prove (as a
byproduct of polytime soundness, Section 8) that SQ is strongly normalizing.
In the concrete realization of quantum algorithms, the initial quantum register is empty (it will be created during the

computation). With this hypothesis, configurations in a computation can be proved to have a certain regular shape:
Proposition 2. Let {[Qi,QV i,Mi]}1≤i≤m be a computation, such thatQV1 = ∅. Then for every i ≤ mwe haveQV i = Q(Mi).
Proof. The statement can be proved by induction on m, using in particular Theorem 2. Indeed, if m > 1 (the base case is
trivial):

QVm = (QVm −QVm−1) ∪QVm−1 = (Q(Mm)− Q(Mm−1)) ∪QVm−1

= (Q(Mm)− Q(Mm−1)) ∪ Q(Mm−1) = Q(Mm)

This concludes the proof. �

In the rest of the paper, [Q,M] denotes the configuration [Q,Q(M),M].
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4.2. Confluence

In [9] we have shown thatQ enjoys confluence. It is immediate to observe that SQ is a subcalculus ofQ (eachwell-formed
configuration of SQ is also a well-formed configuration of Q, and moreover SQ and Q have the same reduction rules). The
just stated subject reduction theorem is therefore sufficient to ensure that confluence still holds for SQ (as for simply typed
λ-calculus, where confluence is a direct consequence of confluence of pure λ-calculus).

Theorem 3 (Confluence). Let C,D, E be configurations with C ∗
−→ D and C

∗
−→ E. Then, there is a configuration F with

D
∗
−→ F and E

∗
−→ F .

Moreover, as a consequence of having adopted the so-called surface reduction, (i.e. it is not possible to reduce inside a subterm
in the form !M) it is not possible to erase a diverging term (see also [29]). Therefore it is possible to show that:

Theorem 4. A configuration C is strongly normalizing iff C is weakly normalizing.

In any case such a result will be superseded by Theorem 6: in Section 8, we prove that any configuration is in fact strongly
normalizing.
The proofs of Theorems 3 and 4 can be found in Appendix B.

5. Standardizing computations

Another interesting property, that SQ inherits from Q [9] is quantum standardization. In this section we will recall its
definition and the main ingredients needed to prove it (a detailed proof can be found in Appendix C). The idea underlying
quantum standardization is simple: for each computation there is an equivalent standard computation that:

• first performs classical reductions (namely reductions not involving neither the quantum register nor quantum
variables). We could think that this phase is responsible for the construction of a λ-term (abstractly) representing a
quantum circuit;
• secondly, builds the quantum register (by means of the new reductions);
• and finally, execute quantum reductions (as if the quantum circuit abstractly built in the first phase were applied to the
quantum register built in phase two).

First of all, we define precisely what we mean by standard computation. We distinguish three subsets of L , namely
Q = {Uq, q.β}, nC = Q ∪ {new}, and C = L − nC . Let C →α D and let M be the relevant redex in C; if α ∈ Q the
redexM is called quantum, if α ∈ C the redexM is called classical.

Definition 6. A configuration C is called non-classical if α ∈ nC whenever C →α D. Let NCL be the set of non classical
configurations. A configuration C is called essentially quantum if α ∈ Q whenever C →α D. Let EQT be the set of essentially
quantum configurations.

We define the notion of standard computation, that we call CNQ. A CNQ computation is a computation such that any new
reduction is always performed after any classical reduction and any quantum reduction is always performed after any new
reduction:

Definition 7. A CNQ computation is a computation {Ci}1≤i≤m such that

1. for every 1 < i < m, if Ci−1 →nC Ci then Ci →nC Ci+1;
2. for every 1 < i < m, if Ci−1 →Q Ci then Ci →Q Ci+1.

Quantum standardization takes the form of the following theorem, which guarantees the existence of an equivalent CNQ
computation for every computation:

Theorem 5 (Quantum Standardization). For every computation {Ci}1≤i≤m there is a CNQ computation {Di}1≤i≤n such that
C1 ≡ D1 and Cm ≡ Dn.

The proof of Theorem 5 proceeds by first showing thatNCL is closed under→Q and that EQT is closed under→new. Detailed
proofs of Theorem 5 and related lemmas can be found in Appendix C.

6. Encoding classical data structures

Classically, SQ has the expressive power of soft linear logic. The aim of this Section is to illustrate some encodings of
usual data structures (natural numbers, binary strings and lists). Notice that some of the encodings we are going to present
are non-standard: they are not the usual Church-style encodings, which are not necessarily available in a restricted setting
like the one we are considering here. The results in this section will be essential in Section 9.
In order to simplify the treatment we will consider reduction between terms rather than between configurations. If

[Q,QV,M] →α [R,RV,N], then we will simply write M →α N . This is sensible, since N only depends on M (and does
not depend onQ nor onQV).
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6.1. Natural numbers

We need to stay as abstract as possible here: there will be many distinct terms representing the same natural number.
Given a natural number n ∈ N and a termM , the class of n-banged forms of M is defined by induction on n:

• The only 0-banged form ofM isM itself;
• If N is a n-banged form ofM , any term !Lwhere L

∗
→N N is an n+ 1-banged form ofM .

Let !nM denotes !(! . . . (!︸ ︷︷ ︸
n times

M) . . .). Please notice that !nM is an n-banged form ofM for every n ∈ N and for every termM .

Given natural numbers n,m ∈ N, a termM is said to n-represent the natural numberm iff for every n-banged form L of N

ML→N λz.N(N(N(. . . (N︸ ︷︷ ︸
m times

z) . . .))).

A term M is said to (n, k)-represent a function f : N → N iff for every natural number m ∈ N, for every term N which
1-representsm, and for every n-banged form L of N

ML
∗
→N P

where P k-represents f (m).
For every natural numberm ∈ N, let dme be the term

λ!x.λy. x(x(x(. . . (x︸ ︷︷ ︸
m times

y) . . .))).

For everym, dme 1-represents the natural numberm.
For every natural numberm ∈ N and every positive natural number n ∈ N, let dmen be the term defined by induction on

n:

dme0 = dme;

dmen+1 = λ!x.dmenx.

For every n,m, dmen can be proved to n+ 1-represent the natural numberm.

Lemma 1. Let id : N→ N be the identity function. For every natural number n, there is a term Mnid which (n, 1)-represents id.
Moreover, for every m ∈ N and for every term N, Mnid!

n+mN
∗
→N !

mN.

Proof. By induction on n:

• M0id = λx.x. Indeed, for every N 1-representingm ∈ N and for every 0-banged form L of N:

M0idL = M
0
idN = (λx.x)N →N N.

• Mn+1id = λ!x.M
n
idx. Indeed, for every N 1-representingm ∈ N and for every n+ 1-banged form L of N:

Mn+1id L = M
n+1
id !P = (λ!x.M

n
idx)!P →N MnidP

∗
→N MnidQ

∗
→N R

where Q is an n-banged form of N and R 1-representsm.

This concludes the proof. �

SQ can compute any polynomial, in a strong sense:

Proposition 3. For any polynomial with natural coefficients p : N→ N of degree n, there is a term Mp that (2n + 1, 2n + 1)-
represents p.

Proof. Any polynomial can be written as an Horner’s polynomial, which is either:

• The constant polynomial x 7→ k, where k ∈ N does not depend on x.
• Or the polynomial x 7→ k+ x · p(x), where k ∈ N does not depend on x and p : N→ N is itself an Horner’s polynomial.

So, proving that the thesis holds for Horner’s polynomials suffices. We go by induction, following the above recursion
schema:

• Any constant polynomial p : N→ N in the form x 7→ k is (1, 1)-representable. Just take.Mp = λ!x.dke. Indeed:

Mp!N → dke.
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• Suppose r : N→ N is a polynomial of degree nwhich can be (2n+ 1, 2n+ 1)-represented byMr . Suppose k ∈ N and let
p : N→ N be the polynomial x 7→ k+ x · r(x). Consider the term

Mp = λ!x.λ!y.λz.(dke2n+2y)((M2n+2id x)((λ!w.λ!u.!(Mrwu))xy)z)

Let now N be a term 1-representing a natural number i, L be any term, !P be any (2n + 3)-banged form of N and !Q be
any (2n+ 3)-banged form of L. Then

Mp!P!Q
∗
→N λz.(dke2n+2Q )((M2n+2id P)((λ!w.λ!u.!(Mrwu))PQ )z)
∗
→N λz.(dke2n+2Q )((M2n+2id P)((λ!w.λ!u.!(Mrwu))!R!S)z)
∗
→N λz.(dke2n+2!S)((M2n+2id !R)!(MrRS)z)
∗
→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸

k times

z) . . .)))

(V !(MrRS)z)
∗
→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸

k times

z) . . .)))

(λz. (MrRS)(. . . ((MrRS)︸ ︷︷ ︸
i times

z) . . .)))

∗
→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸

k times

z) . . .)))

(λz. (MrTU)(. . . ((MrTU)︸ ︷︷ ︸
i times

z) . . .)))

∗
→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸

k+ ir(i) times

z) . . .)))z

→N (λz. L(L(L(. . . (L︸ ︷︷ ︸
k+ ir(i) times

z) . . .)))

where V 1-represents i, !R is a (2n+ 2)-banged form of N , !S is a (2n+ 2)-banged form of L, T is a (2n+ 1)-banged form of
N and U is a (2n+ 1)-banged form of L. This concludes the proof. �

6.2. Strings

Other than natural numbers, we are interested in representing strings in an arbitrary (finite) alphabet. Given any string
s = b1 . . . bn ∈ Σ∗ (whereΣ is a finite alphabet), the term dseΣ is the following:

λ!xa1 . . . . .λ!xam .λ!y.λz.yxb1(yxb2(yxb3(. . . (yxbnz) . . .))).

whereΣ = {a1, . . . , am}. Consider the term

strtonatΣ = λx.λ!y.λz.x !!(λw.w) . . .!!(λw.w)︸ ︷︷ ︸
m times

!(λ!w.λr.yr)z.

As can be easily shown, strtonatΣdb1 . . . bneΣ rewrites to a term N 1-representing n:

strtonatΣdb1 . . . bneΣ !L
∗
→N λz.db1 . . . bneΣ !!(λw.w) . . .!!(λw.w)︸ ︷︷ ︸

m times

!(λ!w.λr.Lr)z

∗
→N λz.(λ!w.λr.Lr)!(λw.w)((λ!w.λr.Lr)!(λw.w)((λ!w.λr.Lr)!(λw.w)

(. . . ((λ!w.λr.Lr)!(λw.w)z) . . .)))
∗
→N (λz. L(L(L(. . . (L︸ ︷︷ ︸

n times

z) . . .)))
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6.3. Lists

Lists are the obvious generalization of strings where an infinite number of constructors is needed. Given a sequence
M1, . . . ,Mn of terms (with no free variable in common), we can build a term [M1, . . . ,Mn] encoding the sequence as follows,
by induction on n:

[] = λ!x.λ!y.y;
[M,M1, . . . ,Mn] = λ!x.λ!y.xM[M1, . . . ,Mn].

This way we can construct and destruct lists in a principled way: the terms cons and sel can be built as follows:

cons = λz.λw.λ!x.λ!y.xzw;
sel = λx.λy.λz.xyz.

They behave as follows on lists:

consM[M1, . . . ,Mn] →∗N [M,M1, . . . ,Mn];
sel[]!N!L→∗N L;

sel[M,M1, . . . ,Mn]!N!L→∗N NM[M1, . . . ,Mn].

By exploiting cons and sel, we can build more advanced constructors and destructors: for every natural number n there are
the terms appendn and extractn behaving as follows:

appendn[N1, . . . ,Nm]M1, . . . ,Mn →
∗

N [M1, . . . ,Mn,N1, . . . ,Nm];
∀m ≤ n.extractnM[N1, . . . ,Nm] →∗N M[]NmNm−1 . . .N1;
∀m ≥ n.extractnM[N1, . . .Nm] →∗N M[Nn+1 . . .Nm]NnNn−1 . . .N1.

Terms appendn can be built by induction on n:

append0 = λx.x;
appendn+1 = λx.λy1. . . . .λyn+1.cons yn+1(appendnxy1 . . . yn).

Similarly, terms extractn can be built inductively:

extract0 = λx.λy.xy;
extractn+1 = λx.λy.(sely!(λz.λw.λv.extractnvwz)!(λz.z[]))x.

Indeed:

∀m.extract0M[N1, . . . ,Nm] →∗N M[N1, . . . ,Nm];
∀n.extractn+1M[] →∗N M[];

∀m < n.extractn+1M[N,N1 . . .Nm] →∗N extractnM[N1, . . . ,Nm]N
→
∗

N M[]Nm . . .N1N;
∀m ≥ n.extractn+1M[N,N1 . . .Nm] →∗N extractnM[N1, . . . ,Nm]N

→
∗

N M[Nn+1 . . .Nm]Nn . . .N1N;

7. Representing decision problems

We now need to understand how to represent subsets of {0, 1}∗ in SQ. Some preliminary definitions are needed.
A termM outputs the binary string s ∈ {0, 1}∗ with probability p on input N iff there ism ≥ |s| such that

[1,∅,MN]
∗
→ [Q, {q1, . . . , qm}, [q1, . . . , qm]]

and the probability of observing swhen projectingQ into the subspaceH({q|s|+1, . . . , qm}) is precisely p.
Given n ∈ N, two binary strings s, r ∈ {0, 1}k and a probability p ∈ [0, 1], a termM is said to (n, s, r, p)-decide a language

L ⊆ {0, 1}∗ iff the following two conditions hold:

• M outputs the binary string swith probability at least p on input !ndte{0,1} whenever t ∈ L;
• M outputs the binary string r with probability at least p on input !ndte{0,1} whenever t /∈ L.

With the same hypothesis,M is said to be error-free (with respect to (n, s, r)) iff for every binary string t , the following two
conditions hold:

• IfM outputs swith positive probability on input !ndte{0,1}, thenM outputs r with null probability on the same input;
• Dually, if M outputs r with positive probability on input !ndte{0,1}, then M outputs s with null probability on the same
input.
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Definition 8. Three classes of languages in the alphabet {0, 1} are defined below:

1. ESQ is the class of languages which can be (n, s, r, 1)-decided by a termM of SQ;
2. BSQ is the class of languages which can be (n, s, r, p)-decided by a termM of SQ, where p > 1

2 ;
3. ZSQ is the the class of languages which can be (n, s, r, p)-decided by an error-free (wrt (n, s, r)) term M of SQ, where
p > 1

2 .

The purpose of the following two sections is precisely proving that ESQ,BSQ and ZSQ coincidewith the quantumcomplexity
classes EQP, BQP ad ZQP, respectively.

8. Polytime soundness

In this Section we assume that all the involved terms are well formed.
Following the approach proposed by Girard in [16] and subsequently developed in [1,17,3] we show that SQ is intrinsi-

cally a polytime calculus. This allows to show that decision problems which can be represented in SQ lie in certain polytime
(quantum) complexity classes.
We start with some definitions.We distinguish two particular subsets ofL , namelyK = {r.cm, l.cm} andN = L −K .

Reduction rules inK are the so-called commuting rules. The size of a term is defined in a standard way as:

|x| = |r| = |C | = 1
|!N| = |N| + 1

|new(P)| = |P| + 1
|PQ | = |P| + |Q | + 1

|〈M1, . . . ,Mk〉| = |M1| + · · · + |Mk| + 1
|λx.N| = |λ!x.N| = |λ〈x1, . . . , xk〉.N| = |N| + 1

A term cannot contain more occurrences (of a variable) than its size:

Lemma 2. For every term M and for every variable x, NFO(x,M) ≤ |M|.

Proof. By induction onM . �

Commuting reduction steps do not alter the size of the underlying term. But on the other hand,→K is strongly normalizing:

Lemma 3. If M n
→K N, then (i) |M| = |N|; (ii) n ≤ |M|2.

Proof. (i) By induction on the derivation of M →K N . Observe that |L((λπ.R)S)| = |(λπ.LR)S| and |((λπ.R)S)L| =
|(λπ.RL)S|; these are base cases in which L((λπ.R)S →l.cm (λπ.LR)S or ((λπ.R)S)L →r.cm (λπ.RL)S. We have context
closures as inductive steps. For example, letM be LP and let be

P →K Q
l.a

LP →K LQ

the last rule in the derivation. By induction hypothesiswehave |P| = |Q |, and |M| = |LP| = |L|+|P|+1 = |L|+|Q |+1 =
|LQ |. The other cases are very similar to the previous one.

(ii) Define the abstraction size |M|λ of M as the sum over all subterms of M in the form λπ.L, of |L|. Clearly |M|λ ≤ |M|2.
Moreover, n ≤ |M|λ because

|L((λπ.R)S)|λ < |(λπ.LR)S|λ
|((λπ.R)S)L|λ < |(λπ.RL)S|λ

In other words, |M|λ always increases along commuting reduction.

This concludes the proof. �

In order to prove polytime soundness of the calculus it is useful to assign to each termM three quantities B(M), D(M) and
W(M). B(M) is simply the maximum nesting depth of ! operators inside M . D(M) is the maximum number of occurrences
of a bound variable inM . Finally,W(M) is theweight ofM , namely a quantity that we will use to show polytime soundness.
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More formally:

Definition 9 (Box-Depth, Duplicability-Factor, Weights). 1. The box-depth B(M) of M (the maximum between the number
of !-terms nesting inM) is defined as

B(x) = B(r) = B(C) = 0
B(!N) = B(N)+ 1

B(new(N)) = B(N)
B(PQ ) = max{B(P), B(Q )}

B(〈M1, . . . ,Mk〉) = max{B(M1), . . . ,B(Mk)}
B(λx.N) = B(λ!x.N) = B(λ〈x1, . . . , xk〉.N) = B(N);

2. the duplicability-factor D(M) ofM (themaximumbetween the number of occurrence of variables bound by a λ) is defined
as

D(x) = D(r) = D(C) = 1
D(!N) = D(N)

D(new(N)) = D(N)
D(PQ ) = max{D(P),D(Q )}

D(〈M1, . . . ,Mk〉) = max{D(M1), . . . ,D(Mk)}
D(λx.N) = D(λ!x.N) = max{D(N),NFO(x,N)}
D(λ〈x1, . . . , xk〉.N) = max{D(N),NFO(x1,N), . . . ,NFO(xk,N)};

3. the n-weight Wn(M) ofM (the weight of a term with respect to n) is defined as

Wn(x) = Wn(r) = Wn(C) = 1
Wn(!N) = n ·Wn(N)+ 1

Wn(new(N)) = Wn(N)+ 1
Wn(PQ ) = Wn(P)+Wn(Q )+ 1

Wn(〈M1, . . . ,Mk〉) = Wn(M1)+ · · · +Wn(Mk)+ 1
Wn(λx.N) = Wn(λ!x.N) = Wn(λ〈x1, . . . , xk〉.N) = Wn(N)+ 1;

4. the weight of a termM is defined asW(M) = WD(M)(M).

The strategy we will use to prove polytime soundness consists in proving three intermediate results:

• First of all, by means of several intermediate results, we will show thatW(M) is an upper bound of |M|.
• Second,W(M) is shown to strictly decrease at any noncommutative reduction step and it is shown not to increase at any
commutative reduction step.
• Lastly, W(M) is shown to be bounded from above by a polynomial p(|M|), where the exponent of p depends on B(M)
(but not on |M|). This implies, by Lemma 3, that the number of reduction steps fromM to its normal form is polynomially
related toW(M).

The three results above together imply polytime soundness.
Before formally stating and proving them, however, we need to show a few auxiliary lemmas about B(·), D(·),W(·) and

NFO(·, ·) and how these quantities evolve during reduction. The duplicability-factor of a term cannot be bigger than the size
of the term itself:

Lemma 4. For every term M, D(M) ≤ |M|.

Proof. By induction onM:

• M is a variable or a constant or a quantum variable; then D(M) = 1 = |M|.
• M is of the form λx.N . Then:

D(λx.N) = max{D(N),NFO(x,N)}
IH
≤ max{|N|,NFO(x,N)}
≤ max{|N|, |N|}
= |N| ≤ |N| + 1 = |M|.

• M is of the form λ!x.N or λπ.N: very similar to the previous case.
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• M is PQ . Then:

D(PQ ) = max{D(P),D(Q )}
IH
≤ max{|P|, |Q |}

≤ max{|P| + |Q | + 1, |P| + |Q | + 1}
= |P| + |Q | + 1 = |PQ |.

• M is new(N):

D(new(N)) = D(N)
IH
≤ |N| < |N| + 1 = |M|.

• M is !N , then

D(!N) = D(N)
IH
≤ |N| < |N| + 1 = |M|.

• M is 〈N1, . . . ,Nk〉 and for all Ni, i = 1 . . . k, we have D(Ni) ≤ |Ni| by induction hypothesis; then

D(M) = max{D(N1), . . . ,D(Nk)}
IH
≤ max{|N1|, . . . , |Nk|}

< |N1| + · · · + |Nk| + 1 = |M|.

This concludes the proof. �

The number of free occurrences of a variable cannot increase too much during reduction:

Lemma 5. If P →L Q thenmax{NFO(x, P),D(P)} ≥ NFO(x,Q ).

Proof. The proof proceeds by proving the following facts:

1. if FΓ , x ` P and P →L Q then NFO(x, P) ≥ NFO(x,Q );
2. if FΓ ,#x ` P and P →L Q then NFO(x, P) ≥ NFO(x,Q );
3. if FΓ , !x ` P and P →L Q thenmax{NFO(x, P),D(P)} ≥ NFO(x,Q ).

The lemma is therefore a trivial consequence of the above facts. The proofs of 1., 2. and 3. are simple inductions on the
derivation of P →L Q . We will show here only some interesting cases.

1. We distinguish two cases:
• If the last rule is a base rule, we have several sub-cases. If the reduction rule is (λ!y.L)!M →c.β L{M/y}, please observe
that NFO(x, !M) = 0 and conclude. If the reduction rule is (λy.L)M →l.β L{M/y}, we have only two possibilities:
either NFO(x,M) = 0 and NFO(x, L) = 1 or NFO(x,M) = 1 and NFO(x, L) = 0; in both cases the conclusion is
immediate. The other sub-cases are easier.
• If the last reduction rule is a context closure rules, the result follows easily by applying the induction hypothesis. For
example, if the closure rule is

M → N

ML→ NL
we have two sub-cases: either NFO(x, P1) = 0 and NFO(x, P2) = 1 or NFO(x, P1) = 1 and NFO(x, P2) = 0. In the first
sub-case the thesis follow immediately. In the second sub-case the result follows by applying the induction hypothesis
NFO(x,M) ≥ NFO(x, L).

2. We distinguish two cases:
• If the last rule is a base rule, we have several sub-cases If the reduction rule is (λ!y.L)!M →c.β L{M/y}, please observe
that NFO(x, !M) = 0 and conclude. If the reduction rule is (λy.L)M →l.β L{M/y}, simply observe that y must occur
exactly once in L and therefore NFO(x, (λy.L)M) = NFO(x,M) + NFO(x, L) = NFO(x, L{M/y}). All the other base
cases can be easily proved.
• If the last reduction rule is a context closure rule, the result follows easily by applying the induction hypothesis. For
example if the reduction rule is

M → N

ML→ NL
we have two sub-cases: (i) NFO(x,M) = 0; in this case the thesis follow immediately; (ii) NFO(x,M) 6= 0; the result
follows by applying the induction hypothesis NFO(x,M) ≥ NFO(x, L).

3. The proof remains simple but it slightly more delicate, because we must consider the phenomenon of duplication.
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• If the last rule is a base rule: we have several cases. If the reduction rule is (λ!y.L)!M →c.β L{M/y}, please observe
that differently from the previous facts, we have two possibilities: if NFO(x, !M) = 0 we conclude; otherwise, if
NFO(x, !M) 6= 0 we must have that NFO(x, !M) = 1 and NFO(x, L) = 0. Consequently

max{NFO(x, P),D(P)} = D(P) = max{D(λ!y.L)),D(!M)}
≥ D(λ!y.L) ≥ max{D(L),NFO(y, L)}
≥ NFO(y, L)
= NFO(x, L)+ NFO(y, L) · NFO(x,M)
= NFO(x, L{M/y}).

If the reduction rule is (λy.L)M →l.β L{M/y}, simply observe that ymust occur exactly once in L and therefore
NFO(x, (λy.L)M) = NFO(x,M)+ NFO(x, L) = NFO(x, L{M/y}).

All the other base case are easily proved.
• if the last reduction rule is a context closure rules, the result follows easily by applying the induction hypothesis. For
example if the reduction rule is

M → N

ML→ NL
we have two cases: (i) NFO(x,M) = 0; in this case the thesis follows immediately; (ii) NFO(x,M) = 1 and NFO(x, L)
= 0 the result follows by applying the induction hypothesismax{NFO(x,M),D(M)} ≥ NFO(x,N):

max{NFO(x,ML),D(ML)} = max{NFO(x,M)+ NFO(x, L),D(M),D(L)}
= max{NFO(x,M),D(M),D(L)}
≥ max{NFO(x,M),D(M)}
≥ NFO(x,N) = NFO(x,NL).

This concludes the proof. �

The duplicability factor of a term obtained by substitution is bounded by (the maximum of) the duplicability factors of the
involved terms:

Lemma 6. For all terms P and Q , D(P{Q/x}) ≤ max{D(P),D(Q )}.

Proof. By induction on the term P . �

It is now possible to show that D(·) does not increase during reduction:

Lemma 7. (i) If M →K N then D(M) = D(N);
(ii) If M →N N then D(M) ≥ D(N).

Proof. (i) By induction on the derivation of→K . For the base cases, ifM →l.cm N ,M is of the form L((λπ.M1)M2) and N
is (λπ.LM1)M2. Observe that, thanks to BCV (Section 3.1) relative to l.cm, NFO(xi, LM1) = NFO(xi,M1) for every i. We
have:

D(M) = max{D(L),D((λπ.M1)M2)}
= max{D(L),D(λπ.M1),D(N)}
= max{D(L),D(M1),NFO(x1,M1), . . . ,NFO(xn,M1),D(M2)}
= max{D(L),D(M1),NFO(xi, LM1), . . . ,NFO(xn, LM1),D(M2)}
= max{D(LM1),NFO(xi, LM1), . . . ,NFO(xn, LM1),D(M2)}
= max{D(λπ.LM1),D(M2)}
= D((λπ.LM1)M2).

We have context closures as inductive steps. For example, letM beM1M2 and let

M1 →K M3
l.a

M1M2 →K M3M2
be the last rule instance in the derivation. Then:

D(M) = max{D(M1),D(M2)}
IH
= max{D(M3),D(M2)}

= D(M3M2)

The other cases are very similar to the previous one.
(ii) By induction on the derivation of→N . We prove some cases depending on the last rule in the derivation.
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• The reduction rule is
P1 → P3

P1P2 → P3P2
Then:

D(M) = max{D(P1),D(P2)}
IH
≥ max{D(P3),D(P2)} = max{D(P3P2)}

• The reduction rule is
P2 → P3

P1P2 → P1P3
The argument is symmetric to the previous one.
• The reduction rule is (λ!x.P)!Q →c.β P{Q/x}. Then:

D((λ!x.P)!Q ) = max{D(P),NFO(x, P),D(Q )}
≥ max{D(P),D(Q )} ≥ D(P{Q/x})

where the last step is justified by Lemma 6.
• The reduction rule is (λx.P)Q →l.β P{Q/x}. Similar to the previous case.
• The reduction rule is (λ〈x1, . . . , xk〉.P)〈r1, . . . , rk〉 →q.β P{r1/x1, . . . , rk/xk}. Again similar to the previous case.
• The reduction rule is U〈r1, . . . , rk〉 →Uq 〈r1, . . . , rk〉; the result follows by definitions.
• The reduction rule is

Mi →α N

〈M1, . . . ,Mi, . . . ,Mk〉 →α 〈M1, . . . ,N, . . . ,Mk〉
.

By induction hypothesis we have

D(〈M1, . . . ,Mi, . . . ,Mk〉) = max{D(M1), . . . ,D(Mi), . . . ,D(Mk)}
IH
≥ max{D(M1), . . . ,D(N), . . . ,D(Mk)}
= D(〈M1, . . . ,N, . . . ,Mk〉)

• The reduction rule is
P →α Q

in.new
new(P)→α new(Q )

Then:
D(new(P)) = D(P)

IH
≥ D(Q ) = D(new(Q )).

• The reduction rule is
P →α Q

in.λ1
λ!x.P →α λ!x.Q

Then, by Lemma 5

D(λ!x.P) = max{D(P),NFO(x, P)} ≥ NFO(x,Q )

moreover by the induction hypothesis

D(λ!x.P) = max{D(P),NFO(x, P)} ≥ D(P) ≥ D(Q )

and therefore

D(λ!x.P) = max{D(P),NFO(x, P)} ≥ max{D(Q ),NFO(x,Q )} = D(λ!x,Q )

This concludes the proof. �

It is important to remark that Lemma 7 does not hold for non-well-formed terms. For example let us consider M =
λ!x.((λ!z.zz)!(xxx)). We have M → N where N = λ!x.((xxx)(xxx)), but D(M) = 3 and D(N) = 6. By the way, M is
well-formed in Q [9].

Lemma 8. For every term M, |M| ≤ W(M).

Proof. By induction on the termM . In some cases, wewill use the following fact: for all termM , for all n,m ∈ N, 1 ≤ m ≤ n,
thenWm(M) ≤ Wn(M).
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• M is a variable, a constant or a quantum variable. Then, |M| = 1 = W0(M) = WD(M)(M) = W(M).
• M is !N . We can proceed as follows:

|M| = |N| + 1 ≤ W(N)+ 1
= WD(N)(N)+ 1 = WD(N)(!N)
= WD(!N)(!N) = WD(M)(M) = W(M).

• M is new(N); then

|new(N)| = |N| + 1
IH
≤ WD(N)(N)+ 1

= WD(N)(new(N)) = WD(new(N))(new(N)) = W(new(N)).

• M is PQ ; then

|M| = |P| + |Q | + 1 ≤ W(P)+W(Q )+ 1
= WD(P)(P)+WD(Q )(Q )+ 1
≤ Wmax{D(P),D(Q )}(P)+Wmax{D(P),D(Q )}(Q )+ 1
= WD(PQ )(P)+WD(PQ )(Q )+ 1
= WD(PQ )(PQ ) = W(PQ ) = W(M).

• M is 〈N1, . . . ,Nk〉; then

|〈N1, . . . ,Nk〉| = |N1| + · · · + |Nk| + 1
IH
≤ WD(N1)(N1)+ · · · +WD(Nk)(Nk)+ 1
≤ WD(M)(N1)+ · · · +WD(M)(Nk)+ 1
= WD(M)(M) = W(M).

• M is λx.N; then

|M| = |N| + 1
IH
≤ WD(N)(N)+ 1 ≤ WD(M)(N)+ 1 = W(M)

where the last inequality holds observing that D(M) = max{D(N),NFO(x,N)}, so D(N) ≤ D(M).
• M is λπ.N orM is λ!x.N: as in the previous case.

This concludes the proof. �

We now need to revisit the Substitution Lemma. In particular, the weight of terms obtained as substitutions can be properly
bounded by some simple expressions involving the weight of the involved terms:

Lemma 9 (Substitution Lemma, Revisited).

• Linear case. If FΨ1,#∆1, x ` M and FΨ2,#∆2 ` N, with var(Ψ1) ∩ var(Ψ2) = ∅, then for all m, n ∈ N, n ≥ m ≥ 1,
Wm(M{N/x}) ≤ Wn(M)+Wn(N);
• Contraction case. If FΓ ,#x ` M and F∆ ` N, var(Γ ) ∩ var(∆) = ∅, then for all m, n ∈ N, n ≥ m ≥ 1,

Wm(M{N/x}) ≤ Wn(M)+ NFO(x,M) ·Wn(N);
• Bang case. If FΓ , !x ` M and F∆ ` N, var(Γ ) ∩ var(∆) = ∅, then for all m, n ∈ N, n ≥ m ≥ 1, Wm(M{N/x}) ≤

Wn(M)+ n ·Wn(N);
• Quantum case. If FΓ , x1, . . . , xk ` M and F !∆, r1, . . . , rk ` 〈r1, . . . , rk〉, var(Γ ) ∩ var(!∆) = ∅, then for all m, n ∈ N,
n ≥ m ≥ 1,Wm(M{r1/x1, . . . , rk/xk}) ≤ Wn(M);

Proof. The four statements can be proved by induction on the structure of the derivation for M . We give here only some
cases as examples.

• Linear case. For example, ifM is x, with
!∆, x ` x

. We haveWm(x{N/x}) = Wm(N) ≤ Wn(x)+Wn(N).

• Contraction case. For example, supposeM is PQ . The last rule in the derivation for FΓ ,#x ` M must have the following
shape:

Ψ1,#∆1 ` P Ψ2,#∆2 ` Q
app

Ψ1,Ψ2,#∆1 ∪ #∆2 ` PQ
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Suppose that #x is both in #∆1 and in #∆2. By induction hypothesis we haveWm(P{N/x}) ≤ Wn(P)+NFO(x, P) ·Wn(N),
andWm(Q {N/x}) ≤ Wn(Q )+ NFO(x,Q ) ·Wn(N). Now:

Wm(P(Q ){N/x}) = Wm(P{N/x}Q {N/x})
= Wm(P{N/x})+Wm(Q {N/x})+ 1
IH
≤ Wn(P)+ NFO(x, P) ·Wn(N)+Wn(Q )+ NFO(x,Q ) ·Wn(N)+ 1
= Wn(P)+Wn(Q )+ 1+ (NFO(x, P)+ NFO(x,Q )) ·Wn(N)
= Wn(P(Q ))+ NFO(x, P(Q )) ·Wn(N).

• Bang case. For Example:M is !P . P may have two possible derivations, by means of prom rule: either
∆ ` P

prom
!∆, !∆1, !x `!P

or
∆, x ` P

prom
!∆, !∆1, !x `!P

.

The only interesting case is the second. Using the linear case, we obtain

Wm((!P){N/x}) = Wm(!(P{N/x}))
= m ·Wm(P{N/x})+ 1
≤ m · (Wn(P)+Wn(N))+ 1 ≤ n ·Wn(P)+ 1+ n ·Wn(N)
= Wn(!P)+ n ·Wn(N).

• Quantum case. For example:M is PQ and for simplicity, suppose that x1, . . . , xk occur in P . Then

Wm(M{r1/x1, . . . , rk/xk}) = Wm((PQ ){r1/x1, . . . , rk/xk})
= Wm(P{r1/x1, . . . , rk/xk}Q )
= Wm(P{r1/x1, . . . , rk/xk})+Wm(Q )+ 1
IH
≤ Wn(P)+Wm(Q )+ 1 ≤ Wn(P)+Wn(Q )+ 1
= Wn(PQ ).

This concludes the proof. �

The following lemma tell us that weightW(·), as for D(·), is monotone:
Lemma 10. (i) If M →K N, thenW(M) ≥ W(N);
(ii) if M →N N, thenW(M) > W(N).
Proof. By means of the previous substitution lemmas it is possible to prove that for all terms M,N and for all n,m ∈ N,
n ≥ m ≥ 1 and n ≥ D(M), (i) ifM →K N thenWn(M) ≥ Wm(N), and (ii) ifM →N N thenWn(M) > Wm(N). The proof is
by induction on the derivation of→L . We cite only the most interesting cases.
(i) Notice that, by Lemma7, ifM →K N , thenD(M) = D(N). The result follows bydefinition. Inductive steps are performed
by means of context closures.

(ii) Let r be the last rule of the derivation.
• M is (λ!x.P)!Q and the reduction rule is (λ!x.P)!Q →c.β P{Q/x}. We have to distinguish two sub-cases:
– if the derivation forM is

Γ ,#x ` P

Γ ` λ!x.P

∆1 ` Q
prom

!∆1, !∆2 `!Q
app

Γ , !∆1, !∆2 ` (λ!x.P)!Q
then we can exploit the contraction case of Lemma 9 as follows:

Wn((λ!x.P)!Q ) = Wn(λ!x.P)+Wn(!Q )+ 1
= Wn(λ!x.P)+ n ·Wn(Q )+ 2
= Wn(P)+ n ·Wn(Q )+ 3
> Wn(P)+ n ·Wn(Q )
≥ Wn(P)+ NFO(x, P) ·Wn(Q )
≥ Wm(P{Q/x}).
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– if the derivation forM is
Γ , !x ` P

Γ ` λ!x.P

∆1 ` Q
prom

!∆1, !∆2 `!Q
app

Γ , !∆1, !∆2 ` (λ!x.P)!Q
then we can exploit the bang case of Lemma 9 as follows:

Wn((λ!x.P)!Q ) = Wn(λ!x.P)+Wn(!Q )+ 1
= Wn(λ!x.P)+ n ·Wn(Q )+ 2
= Wn(P)+ n ·Wn(Q )+ 3
> Wn(P)+ n ·Wn(Q )
≥ Wm(P{Q/x}).

This concludes the proof. �

The weightW(·) and the box-depth B(·) are related by the following properties:

Lemma 11. For every term M, for all positive n ∈ N,Wn(M) ≤ |M| · nB(M)

Proof. By induction onM:

• M is a variable, a constant or a quantum variable. We have

Wn(M) = 1 ≤ 1 · n0 = |M| · nB(M).

• M is new(N):

Wn(new(N)) = Wn(N)+ 1
IH
≤ |N| · nB(N) + 1

≤ |N| · nB(N) + nB(N) = (|N| + 1) · nB(N)

= |M| · nB(N) = |M| · nB(M).

• M is !N:

Wn(!N) = n ·Wn(N)+ 1
IH
≤ n · |N| · nB(N) + 1

= |N| · nB(N)+1 + 1 ≤ |N| · nB(N)+1 + nB(N)+1

= (|N| + 1) · nB(N)+1 = |M| · nB(M).

• M is PQ :

Wn(PQ ) = Wn(P)+Wn(Q )+ 1
IH
≤ |P| · nB(P) + |Q | · nB(Q ) + 1

≤ |P| · nB(P(Q )) + |Q | · nB(P(Q )) + 1

≤ |P| · nB(P(Q )) + |Q | · nB(P(Q )) + nB(P(Q ))

= (|P| + |Q | + 1) · nB(P(Q )) = |M| · nB(M).

• M is 〈N1, . . . ,Nk〉:

Wn(〈N1, . . . ,Nk〉) = Wn(N1)+ · · · +Wn(Nk)+ 1
IH
≤ |N1| · nB(N1) + · · · + |Nk| · nB(Nk) + 1

≤ |N1| · nB(M) + · · · + |Nk| · nB(M) + 1

≤ |N1| · nB(M) + · · · + |Nk| · nB(M) + nB(M) = |M| · nB(M).

• M is λx.N or λ!x.N or λ〈x1, . . . , xk〉.N:

Wn(M) = Wn(N)+ 1
IH
≤ |N| · nB(N) + 1

≤ |N| · nB(N) + nB(N) = (|N| + 1) · nB(N) = |M| · nB(M).

This concludes the proof. �

Lemma 12. For every term M,W(M) ≤ |M|B(M)+1.
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Proof. By means of Lemmas 4 and 11:W(M) = WD(M)(M) ≤ |M| · D(M)B(M) ≤ |M| · |M|B(M) = |M|B(M)+1. �

We have all the technical tools to prove another crucial lemma:

Lemma 13. If M ∗
→ N, then |N| ≤ |M|B(M)+1.

Proof. By means of Lemmas 8, 10 and 12: |N| ≤ W(N) ≤ W(M) ≤ |M|B(M)+1. �

With all the intermediate lemmas we have just presented, proving that SQ is polystep is relatively easy:

Theorem 6 (Bounds). There is a family of unary polynomials {pn}n∈N such that for any term M, for any m ∈ N, if M
m
→ N (M

reduces to N in m steps) then m ≤ pB(M)(|M|) and |N| ≤ pB(M)(|M|).

Proof. We show now that the suitable polynomials are pn(x) = x3(n+1) + 2x2(n+1). We need some definitions. Let K be a
finite sequence M0, . . . ,Mν such that ∀i ∈ [1, ν]. Mi−1 →c Mi. f (K) = M0, l(K) = Mν and #K denote respectively the
first element, the last element and the length of the reduction sequence K. Let us define the weight of a sequence K as
W(K) = W(f (K)). We write a computation in the form M = M0, . . . ,Mm = N as a sequence of blocks of commutative
steps K0, . . . ,Kα where M0 = f (K0) and l(Ki−1) →N f (Ki) for every 1 ≤ i ≤ α. Note that α ≤ |M|B(M)+1; indeed,
W(K0) > · · · > W(Kα) and

W(K0) = W(f (K0)) = W(M0) ≤ |M|B(M)+1.

For every i ∈ [0, ν]

#Ki ≤ |f (Ki)|2 ≤ (W(f (Ki)))2 ≤ (W(M0))2 ≤ |M|2(B(M)+1).

Finally:

m ≤ #K0 + · · · + #Kα + α

≤ |M|2(B(M)+1) + · · · + |M|2(B(M)+1)︸ ︷︷ ︸
α+1

+|M|B(M)+1

≤ (|M|2(B(M)+1) + · · · + |M|2(B(M)+1))︸ ︷︷ ︸
|M|B(M)+1+2

= |M|2(B(M)+1) · (|M|B(M)+1 + 2) = |M|3(B(M)+1) + 2|M|2(B(M)+1)

= pB(M)(|M|).

Moreover,

|N| = |f (Kα)| ≤ W(f (Kα)) ≤ W(M0) ≤ |M|B(M)+1

≤ pB(M)(|M|).

This concludes the proof. �

Corollary 1. Every configuration is strongly normalizing.

Here is the main result of this section:

Theorem 7 (Polytime Soundness). The following inclusions hold: ESQ ⊆ EQP, BSQ ⊆ BQP and ZSQ ⊆ ZQP.

Proof. Let us consider the first inclusion. Suppose a language L is in ESQ. This implies that L can be (n, s, r, 1)-decided
by a term M . By the Standardization Theorem, for every t ∈ {0, 1}∗, there is a CNQ computation {C ti }1≤i≤nt starting at
[1,∅,M!ndte{0,1}]. By Theorem 6, nt is bounded by a polynomial on the length |t| of t . Moreover, the size of any C ti (that is
to say, the sum of the term in C ti and the number of quantum variables in the second component of C

t
i ) is itself bounded

by a polynomial on |t|. Since {C ti }1≤i≤nt is CNQ, any classical reduction step comes before any new-reduction step, which
itself comes before any quantum reduction step. As a consequence, there is a polynomial time deterministic Turingmachine
which, for every t , computes one configuration in {C ti }i≤nt which only contains non-classical redexes (if any). But notice that
a configuration only containing non-classical redexes is nothing but a concise abstract representation of a quantum circuit,
fed with boolean inputs. Moreover, all the quantum circuits produced in this way are finitely generated, i.e., they can only
contain the quantum gates (i.e. unitary operators) which appears inM , since !ndte{0,1} does not contain any unitary operator
and reduction does not introduce new unitary operators in the underlying term. Summing up, the first componentQ of C tnt
is simply an element of an Hilbert Space H({q1, . . . , qm}) (where [q1, . . . , qm] is the third component of C tnt ) obtained by
evaluating a finitely generated quantum circuit whose size is polynomially bounded on |t| andwhose code can be effectively
computed from t in polynomial time. By the results in [20], L ∈ EQP. The other two inclusions can be handled in the same
way. �
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Fig. 3. The quantum circuit computing one step of the simulation.

9. Polytime completeness

In this section, we will prove the converse of Theorem 7. To do that, it is necessary to show that all problems which
are computable in polynomial time by some quantum devices can be decided by a SQ term. Quantum devices upon which
EQP, BQP and ZQP are defined, are either quantum Turing machines or quantum circuit families. The technique used here
consists of encoding quantum Turing machines, although not in a direct way. More specifically, we will show, that the
quantum circuit family corresponding (in Yao’s sense [32]) to a polynomial time quantum Turing machine can be encoded
into SQ. This way, we avoid dealing directly with both quantum Turing machines and classical Turing machines (the latter
being an essential ingredient of the definition of a quantum circuit family).

9.1. Yao’s circuits

We need to recall Yao’s encoding of Quantum Turing machines into quantum circuit families [32].
From now on, we suppose to work with finite alphabets including a special symbol, called blank and denoted with �.

Moreover, each alphabet comes equipped with an injection σ : Σ → {0, 1}dlg2(|Σ |)e. Σω is the set of (bi)infinite strings on
the alphabetΣ , i.e., elements ofΣω are functions from Z toΣ .Σ# is a subset ofΣω containing strings which are different
from � in finitely many positions.
Consider a Quantum Turing MachineM = (Q ,Σ, δ) working in time bounded by a polynomial t : N→ N. Configura-

tions ofM are elements of the Hilbert spaceH(Q ×Σ# × Z). The computation ofM on input of length n can be simulated
by a quantum circuit Lt(n) built as follows:

• for each m, Lm has η + k(λ + 2) inputs (and outputs), where η = dlog2 |Q |e, k = 2m + 1 and λ = dlog2 |Σ |e. The first
η qubits correspond to a binary encoding q of a state in Q . The other inputs correspond to a sequence σ1s1, . . . , σksk of
binary strings, where each σi (with |σi| = λ) corresponds to the value of a cell ofM, while each si (with |si| = 2) encodes
a value from {0, 1, 2, 3} controlling the simulation.
• Lm is built up by composingm copies of a circuit Km, which is depicted in Fig. 3 and has η+ k(λ+2) inputs (and outputs)
itself.
• Km is built up by composing Gm with Jm. Gm does nothing but switching the inputs corresponding to each si from 1 to 2
and vice-versa.
• Jm can be itself decomposed into k − 3 instances of a circuit H with η + 3(λ + 2) inputs, acting on different qubits as
shown in Fig. 3. Notice thatH can be assumed to be computable (in the sense of Definition 1), becauseM can be assumed
to have amplitudes in PC [19].

Theorem 8 (Yao [32]). The circuit family {Lm}m∈N simulates the Quantum Turing MachineM.

9.2. Encoding polytime quantum Turing machines

We now need to show that SQ is able to simulate Yao’s construction. Clearly, the simulation must be uniform, i.e. there
must be a single termM generating all the possible Lm wherem varies over the natural numbers.
The following two propositions show how Gm and Jm can be generated uniformly by a SQ term.

Proposition 4. For every n, there is a term MnG which uniformly generates Gm, i.e. such that whenever L n-encodes the natural
number m, MnGL→K RmG where R

m
G encodes Gm.



U. Dal Lago et al. / Theoretical Computer Science 411 (2010) 377–409 399

Proof. Consider the following terms:

MnG = λx.λy.extractη(λz.λw1. . . . .λwη.appendηw1 . . . wη(N
n
Gxz))y

NnG = λx.x!
n(λy.λz.extractλ+2((LGy)z))(λy.y)

LG = λx.λy.λz1. . . . .λzλ+2.(λ〈w, q〉.appendλ+2(xy)z1 . . . zλwq)(cnot〈zλ+1, zλ+2〉)

For the purpose of proving the correctness of the encoding, let us define PmG for everym ∈ N by induction onm as follows:

P0G = λx.x

Pm+1G = (λy.λz.(extractλ+2((LGy)z)))PmG
First of all, observe that if L n-encodes the natural numberm, then NnGL→K PmG . Indeed, if L n-encodesm, then

NnGL→K L!n(λy.λz.extractλ+2((LGy)z))(λy.y)
→K P(P(P(. . . (P︸ ︷︷ ︸

m times

(λx.x)) . . .))) = PmG

where P = (λy.λz.(extractλ+2((LGy)z))). Now, we can prove that for everym ∈ N:

[Q,QV, PmG [q1, . . . , qm(λ+2), . . . , qh]]
∗
→ [R,QV, [q1, . . . , qm(λ+2), . . . , qh]]

where

R = cnot〈〈qλ+1,qλ+2〉〉(cnot〈〈q2λ+3,q2λ+4〉〉(. . . (cnot〈〈qm(λ+2)−1,qm(λ+2)〉〉(Q)) . . .))
By induction onm:

• Ifm = 0, then

[Q,QV, P0G[q1, . . . , qh]]
∗
→ [Q,QV, [q1, . . . , qh]]

• Now, suppose the thesis holds form. Then:

[Q,QV, Pm+1G [q1, . . . , q(m+1)(λ+2), . . . , qh]]
∗
→ [Q,QV, extractλ+2(LnGP

m
G )[q1, . . . , qh]]

∗
→ [Q,QV, (LGPmG )[qλ+3, . . . , qh]q1 . . . qλ+2]
∗
→ [Q,QV, appendλ+2(P

m
G [qλ+3, . . . , qh])q1 . . . qλ+2]

∗
→ [R,QV, appendλ+2[qλ+3, . . . , qh]q1 . . . qλ+2]
∗
→ [S,QV, [q1, . . . , qh]]

where

R = cnot〈〈q2λ+3,qλ+4〉〉(cnot〈〈q3λ+5,q3λ+6〉〉(. . . (cnot〈〈qm(λ+2)−1,qm(λ+2)〉〉(Q)) . . .))

S = cnot〈〈qλ+1,qλ+2〉〉(cnot〈〈q2λ+3,q2λ+4〉〉(. . . (cnot〈〈qm(λ+2)−1,qm(λ+2)〉〉(Q)) . . .))

Now, if L n-encodes the natural numberm, then

MnGL→K λy.extractη(λz.λw1. . . . .λwη.appendηw1 . . . wη(N
n
GLz))y

→K λy.extractη(λz.λw1. . . . .λwη.appendηw1 . . . wη(P
m
G z))y

which has all the properties we require for RmG . This concludes the proof. �

Proposition 5. For every n, there is a term MnJ which uniformly generates Jm, i.e. such that M
n
J L→K RmJ where R

m
J encodes Jm

whenever L n-encodes the natural number m.

Proof. Consider the following terms:

MnJ = λx.x!
n(NJ)(λy.y)

NJ = λx.λy.extractη+λ+2(LJx)y
LJ = λx.λy.λz1. . . . .λzη.λw1. . . . .λwλ+2.

extractη+2(λ+2)(PJw1 . . . wλ+2)(x(appendηyz1 . . . zη))

PJ = λx1. . . . λxλ+2.λw.λy1. . . . .λyη.λz1. . . . λz2(λ+2).(λ〈q1. . . . .λqη+3(λ+2)〉.
appendη+3(λ+2)wq1 . . . qη+3(λ+2))(H〈y1, . . . , yη, x1, . . . , xλ+2, z1, . . . z2(λ+2)〉).
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For the purpose of proving the correctness of the encoding, let us define Rn,mJ for every n,m ∈ N by induction onm as follows:

R0J = λx.x

Rm+1J = λz.(extractη+λ+2(LJRmJ ))z.

First of all, observe that if L n-encodes the natural numberm, thenMnJ L→K RmG . Indeed, if L n-encodesm, then

MnJ L→K L!n(NJ)(λy.y)

→K NJ(NJ(NJ(. . . (NJ︸ ︷︷ ︸
m times

(λx.x)) . . .))) = RmJ .

Now, we can prove that for everym ∈ N:

[Q,QV, RmJ [q1, . . . , qη+(2m+1)(λ+2)]]
∗
→ [R,QV, [q1, . . . , qη+(2m+1)(λ+2)]]

where

R = Jm(Q)

by induction onm:

• Ifm = 0, then

[Q,QV, R0J [q1, . . . , qh]]
∗
→ [Q,QV, [q1, . . . , qh]].

• Now, suppose the thesis holds form. Then:

[Q,QV, Rm+1J [q1, . . . , q(2m+3)(λ+2)]]
∗
→ [Q,QV, extractη+λ+2(LJRmJ )[q1, . . . , q(2m+3)(λ+2)]]
∗
→ [Q,QV, extractη+2(λ+2)(PJqη+1 . . . qη+λ+2)

(RmJ (appendη[qη+(λ+2)+1, . . . , q(2m+3)(λ+2)]q1 . . . qη))]
∗
→ [R,QV, extractη+2(λ+2)(PnJ qη+1 . . . qη+λ+2)

([q1, . . . , qη, qη+(λ+2)+1, . . . , q(2m+3)(λ+2)]]
∗
→ [R,QV, PJqη+1 . . . qη+λ+2[qη+3(λ+2)+1, . . . , q(2m+3)(λ+2)]q1 . . . qηqη+λ+3 . . . qη+3(λ+2)]
∗
→ [R,QV, (λ〈q1. . . . .λqη+3(λ+2)〉.

(appendη+3(λ+2)[qη+3(λ+1)+1, . . . , q(2m+3)(λ+2)]q1 . . . qη+3(λ+2))(H〈q1, . . . , qη+3(λ+2)〉)]
∗
→ [S,QV, (appendη+3(λ+2)[qη+3(λ+1)+1, . . . , q(2m+3)(λ+2)]q1 . . . qη+3(λ+2)]
∗
→ [S,QV, [q1, . . . , q(2m+3)(λ+2)]]

where

R = (I〈qη+1,...,qη+λ+2〉 ⊗ (Jm)〈q1,...,qη,qη+λ+3,...,q(2m+3)(λ+2)〉)(Q)

S = (I〈qη+3(λ+2)+1,...,q(2m+3)(λ+2)〉 ⊗ H〈q1,...,qη+3(λ+2)〉)(R)

which implies

S = ((Jm+1)〈q1,...,q(2m+3)(λ+2)〉)(Q).

This concludes the proof. �

We are almost ready to state and prove a simulation theorem. Preliminary to that is a formal definition of what constitutes
a faithful simulation of a quantum Turing machine by a SQ term.
Given a Hilbert’s space H , an element Q ofH and a condition E defining a subspace of Q, the probability of observing

E when globally measuring Q is denoted asPQ(E). For example, if H = H(Q × Σ# × Z) is the configuration space of a
quantum Turing machine, E could be state = q, which means that the current state is q ∈ Q . As another example, if H is
H(QV), E could be

q1, . . . , qn = s,

which means that the value of the variables q1, . . . , qn is s ∈ {0, 1}n.
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Given a quantum Turing machineM = (Q ,Σ, δ), we say that a term M simulates the machineM iff there is a natural
number n and an injection ρ : Q → {0, 1}dlog2 |Q |e such that for every string s ∈ Σ∗ it holds that ifC is the final configuration
ofM on input s, then

[1,∅,M!ndseΣ ]
∗
→ [Q, {q1, . . . , qm}, [q1, . . . , qm]]

where for every q ∈ Q

PC(state = q) = PQ(q1, . . . , qdlog2 |Q |e = ρ(q)).

Finally, we can state and prove the main result of this Section:

Theorem 9. For every polynomial time quantum Turing MachineM = (Q ,Σ, δ) there is a term MM such that MM simulates
the machineM.

Proof. The theorem follows from Propositions 4, 5 and 3. More precisely, the term MM has the form λ!x.(McircM x)(M
init
M x)

where

• McircM builds the Yao’s circuit, given a string representing the input;
• M initM builds a list of quantum variables to be fed to the Yao’s circuit, given a string representing the input.

Now, supposeM works in time p : N → N, where p is a polynomial of degree k. For every term M and for every natural
number n ∈ N, we define {M}n by induction on n:

{M}0 = M
{M}n+1 = λ!x.!({M}nx)

It is easy to prove that for everyM , for every N , for every n ∈ N and for every n-banged form L of N , {M}nL
∗
→N P where P

is an n-banged form ofMN . Now,McircM has the following form

λ!x.(NcircM x)(LcircM x)

where

NcircM = λx.M2p+1({strtonatΣ }2k+1(M
2k+2
id x))

LcircM = λx.({P
circ
M }2k+1x)

PcircM = λ!z.λy.(M
2k+1
J (M2p+1({strtonatΣ }2k+1z)))(M2k+1G (M2p+1({strtonatΣ }2k+1z)))y

M2k+1G comes from Proposition 4,M2k+1J comes from Proposition 5 andM2p+1 comes from Proposition 3. Now, consider any
string s = b1 . . . bn ∈ Σ∗. First of all:

NcircM !
4k+3
dseΣ

∗
→N M2p+1({strtonatΣ }2k+1(M2k+2id !

4k+3
dseΣ ))

∗
→N M2p+1({strtonatΣ }2k+1!2k+1dseΣ )
∗
→N M2p+1N

whereN is a 2k+1-banged form of strtonatΣdseΣ , itself a termwhich 1-represents the natural number n. As a consequence:

M2p+1N
∗
→N L

where L 2k+ 1-represents the natural number 2p(n)+ 1. Now:

LcircM !
4k+2
dseΣ

∗
→N {PcircM }2k+1!

4k+3
dseΣ

∗
→N P

where P is a 2k+ 1-banged form of PcircM !
2k+2
dseΣ . So, we can conclude thatMcircM !

4k+4
dseΣ rewrites to a term representing

the circuit Ln.M initM can be built with similar techniques. �

Corollary 2 (Polytime Completeness). The following inclusions hold: EQP ⊆ ESQ, BQP ⊆ BSQ and ZQP ⊆ ZSQ.

FromTheorem7andCorollary 2,EQP = ESQ,BQP = BSQ andZQP = ZSQ. In otherwords, there is a perfect correspondence
between (polynomial time) quantum complexity classes and classes of languages decidable by SQ terms.
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10. Conclusions and further work

Wehave introducedSQ, an intrinsically polytime lambda calculus for quantumcomputation.More precisely,SQ captures
the three standard quantum complexity classes EQP, BQP and ZQP. In doing so, we have shown that the ICC paradigm can
be successfully extended to the framework of quantum computing.
We plan to extend the proposal in two different directions:

• In this paper we only consider quantum decision problems and related complexity classes (in full agreement with the
literature on quantum complexity theory). Nevertheless it should be interesting to also analyze the case of quantum
complexity classes for functions. A lot of work remains to be done in this direction, not only within ICC, but within
quantum computation theory and complexity.
• We would also like to study a typed version of SQ. In order to retain the correspondence with quantum complexity
classes, it would be probably necessary to consider polymorphic type systems.

Appendix A. Hilbert spaces

In the paper, we assumed some basic knowledge on Hilbert spaces. This section is devoted to recall the main notions. For
a full account on ideas and results about Hilbert spaces, the reader is invited to consult a good mathematical textbook such
as [21].

Definition 10 (Complex Inner Product Space). A complex inner product space is a vector space H on the field C equipped
with a function 〈·, ·〉 : H ×H → C that satisfies the following properties:

1. 〈φ,ψ〉 = 〈ψ, φ〉∗;
2. 〈ψ,ψ〉 is a non-negative real number;
3. if 〈ψ,ψ〉 = 0 then ψ = 0;
4. 〈c1φ1 + c2φ2, ψ〉 = c∗1 〈φ1, ψ〉 + c

∗

2 〈φ2, ψ〉;
5. 〈φ, c1ψ1 + c2ψ2〉 = c1〈φ,ψ1〉 + c2〈φ,ψ2〉.

The function 〈·, ·〉 is the inner product ofH and induces a norm || · ||H defined by ||φ||H =
√
〈φ, φ〉.

Definition 11 (Completeness). Given the metric d(ψ, φ) = ||ψ − φ||H , an inner product spaceH is complete if any Cauchy
sequence3 (φn)n<ω is convergent.

Definition 12 (Hilbert Space). An Hilbert space H is a complex inner product space that is complete with respect to the
distance induced by the inner product.

Proposition 6. Any finite dimensional inner product space is a Hilbert space.

Definition 13 (Unitary Operators). Let H be a finite dimensional Hilbert space, and let U : H → H be a linear map. The
adjoint of U is the unique linear transform UĎ : H → H such that for all φ,ψ 〈Uφ,ψ〉 = 〈φ,UĎψ〉. If UĎU is the identity,
we say that U is a unitary operator.

Definition 14 (Hilbert Basis). Let B a maximal orthonormal set in a Hilbert space H (whose existence is consequence of
Zorn’s lemma).B is said to be an Hilbert basis ofH .

Please note that the concept of a Hilbert basis is different from the concept of vector space basis (a maximal linearly
independent set of vectors), the so-called Hamel basis. In fact it is possible to exhibit a spaceH with Hilbert basisM s.t.H is
not finitely generated byM and thereforeM is not a maximal linearly independent set of vectors (see e.g. [21], page 189).
An orthonormal Hamel basis is usually called orthonormal basis.
In the finite dimensional case, the two concepts of a Hamel basis and a Hilbert basis coincide. This fails for the infinite

dimensional cases [21].

Definition 15 (Span). Let H be an inner-product space and let S ⊂ H , the span of S is the inner product subspace of H
defined by

span(S) =

{
n∑
i=1

cisi | ci ∈ C, si ∈ S

}
.

Even ifH is an Hilbert space, span(S) is not necessarily an Hilbert space (see below).
In the paper we deal with Hilbert spaces of two sorts that, via trivial isomorphisms, correspond to the finite dimensional

space Cn and the ℵ0-dimensional space `2.

3
∀ε > 0.∃N > 0.∀n,m > N.d(φn, φm) < ε.
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A.1. The Hilbert spaceH(S)

Let S a set such that |S| ≤ ℵ0 and letH(S) be the set{
φ | φ : S→ C,

∑
s∈S

|φ(s)|2 <∞

}
equipped with:

(i) an inner sum+ : H(S)×H(S)→ H(S) defined by (φ + ψ)(s) = φ(s)+ ψ(s);
(ii) a multiplication by a scalar · : C×H(S)→ H(S) defined by (c · φ)(s) = c · (φ(s));
(iii) an inner product4 〈·, ·〉 : H(S)×H(S)→ C defined by 〈φ,ψ〉 =

∑
s∈S φ(s)

∗ψ(s);

It is quite easy to show thatH(S) is an Hilbert space.
We call quantum register any normalized vector inH(S).
The setB(S) = {|s〉 : s ∈ S}, where |s〉 : S→ C is defined by:

|s〉(t) =
{
1 if s = t
0 if s 6= t

is a Hilbert basis ofH(S), usually called the computational basis in the literature.
It is now interesting to distinguish two cases:

(1) S is finite: in this caseB(S) is also an orthonormal (Hamel) basis ofH(S) and consequently span(B(S)) = H(S).H(S)
is isomorphic to C|S|. With a little abuse of language, we can also say thatH(S) is ‘‘generated’’ or ‘‘spanned’’ by S.

(2) S is denumerable: in this case it is easy to show that B(S) is a Hilbert basis ofH(S), but it is not a Hamel basis. In fact
let us consider the subspace span(B(S)). We see immediately that span(B(S)) ( H(S)5 is an inner-product infinite
dimensional space with B(S) as the Hamel basis, but span(B(S)) is not a Hilbert space because it is not complete (see
[21]). The careful reader immediately recognizes thatH(S) is the well known fundamental Hilbert space `2(S). There
are strong relationships between span(B(S)) and H(S), in fact it is possible to show (this is a standard result for `2)
that span(B(S)) is a dense subspace of H(S), and that H(S) is the (unique!) completion of span(B(S)). This fact is
important because in themain literature on quantum Turingmachines, unitary transforms are usually defined on spaces
like span(B(S)), but this could be problematic because span(B(S)) is not a Hilbert space. Anyway, this is not a real
problem: it is possible to show that each unitary operator U in span(B(S)) has a standard extension inH(S) [7].

Appendix B. Confluence

First of all, we need to show that wheneverM →α N , the underlying quantum register evolves in a uniform way:
Lemma 14 (Uniformity). For every M,N such that M →α N, exactly one of the following conditions holds:

1. α 6= new and there is a unitary transformation UM,N : H(Q(M))→ H(Q(M)) such that [Q,QV,M] →α [R,RV,N] iff
[Q,QV,M] ∈ C,RV = QV andR = (UM,N ⊗ IQV−Q(M))Q.

2. α = new and there are a constant c and a quantum variable r such that [Q,QV,M] →new [R,RV,N] iff [Q,QV,M] ∈ C,
RV = QV ∪ {r} andR = Q⊗ |r 7→ c〉.

Proof. We go by induction on M . M cannot be a variable nor a constant nor a unitary operator nor a term !L. If M is an
abstraction λψ.L, then N = λψ.R, L→α R and the thesis follows from the inductive hypothesis. Similarly whenM is a tuple
〈M1, . . . ,Mk〉. IfM = LQ , then we distinguish a number of cases:

• N = RQ and L→α R. The thesis follows from the inductive hypothesis.
• N = LP and Q →α P . The thesis follows from the inductive hypothesis.
• L = Un, Q = 〈r1, . . . , rn〉 and N = 〈r1, . . . , rn〉. Then case 1 holds. In particular, Q(M) = {r1, . . . , rn} and UM,N =
U〈〈r1,...,rn〉〉.
• L = λx.S and N = S{Q/x}. Then case 1 holds. In particular UM,N = IQ(M).
• L = λ〈x1, . . . , xn〉.S, Q = 〈r1, . . . , rn〉 and N = S{r1/x1, . . . , rn/xn}. Then case 1 holds and UM,N = IQ(M).
• L = λ!x.S, Q =!T and N = S{T/x}. Then case 1 holds and UM,N = IQ(M).
• Q = (λπ.S)T and N = (λπ.LS)T . Then case 1 holds and UM,N = IQ(M).
• L = (λπ.S)T and N = (λπ.SQ )T . Then case 1 holds and UM,N = IQ(M).

IfM = new(c) then N is a quantum variable r and case 2 holds. This concludes the proof. �

4 In order the inner product definition make sense we must prove that the sum
∑
s∈S φ(s)

∗ψ(s) converges.
5 span(B(S)) contains all the functions ofH(S) that are almost everywhere 0.
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Notice that UM,N is always the identity function when performing classical reduction.
The following technical lemma will be useful when proving confluence:

Lemma 15. Suppose [Q,QV,M] →α [R,RV,N].

1. If [Q,QV,M{L/x}] ∈ C, then

[Q,QV,M{L/x}] →α [R,RV,N{L/x}].

2. If [Q,QV,M{r1/x1, . . . , rn/xn}] ∈ C, then

[Q,QV,M{r1/x1, . . . , rn/xn}] →α [R,RV,N{r1/x1, . . . , rn/xn}].

3. If x,Γ ` L and [Q,QV, L{M/x}] ∈ C, then

[Q,QV, L{M/x}] →α [R,RV, L{N/x}].

Proof. Claims 1 and 2 can be proved by induction on the proof of [Q,QV,M] →α [R,RV,N]. Claim 3 can be proved by
induction on N . �

A property similar to one-step confluence holds in SQ. This is a consequence of having adopted the so-called surface
reduction: it is not possible to reduce inside a subterm in the form !M and, as a consequence, it is not possible to erase a
diverging term. This has been already pointed out in the literature [29].
Strictly speaking, one-step confluence does not hold in SQ. For example, if [Q,QV, (λπ.M)((λx.N)L)] ∈ C, then both

[Q,QV, (λπ.M)((λx.N)L)] →N [Q,QV, (λπ.M)(N{L/x})]

and

[Q,QV, (λπ.M)((λx.N)L)] →K [Q,QV, (λx.(λπ.M)N)L]
→N [Q,QV, (λπ.M)(N{L/x})].

However, this phenomenon is only due to the presence of commutative rules:

Proposition 7 (One-Step Confluence). Let C,D, E be configurations with C →α D, C →β E. Then:

1. If α ∈ K and β ∈ K , then either D = E or there is F with D→K F and E →K F .
2. If α ∈ N and β ∈ N , then either D = E or there is F with D→N F and E →N F .
3. If α ∈ K and β ∈ N , then either D→N E or there is F with D→N F and E →K F .

Proof. Let C ≡ [Q,QV,M]. We go by induction onM .M cannot be a variable nor a constant nor a unitary operator. IfM is
an abstraction λπ.N , then D ≡ [R,RV, λπ.P], E ≡ [S, SV, λπ.Q ] and

[Q,QV,N] →α [R,RV, P]
[Q,QV,N] →β [S, SV,Q ]

The IH easily leads to the thesis. Similarly whenM = λ!x.N . IfM = NL, we can distinguish a number of cases depending on
the last rule used to prove C →α D, C →β E:

• D ≡ [R,RV, PL] and E ≡ [S, SV,NR] where [Q,QV,N] →α [R,RV, P] and [Q,QV, L] →β [S, SV, R]. We need to
distinguish four sub-cases:
– If α, β = new, then, by Lemma 14, there exist two quantum variables s, q /∈ QV and two constants d, e such that

RV = QV ∪ {s}, SV = QV ∪ {q},R = Q⊗ |s 7→ d〉 and S = Q⊗ |q 7→ e〉. Applying 14 again, we obtain

D→new [Q⊗ |s 7→ d〉 ⊗ |v 7→ e〉,QV ∪ {s, v}, PR{v/q}] ≡ F
E →new [Q⊗ |q 7→ e〉 ⊗ |u 7→ d〉,QV ∪ {q, u}, P{u/s}R] ≡ G

As can be easily checked, F ≡ G.
– If α = new and β 6= new, then, by Lemma 14 there exists a quantum variable r and a constant c such that

RV = QV ∪ {r},R = Q⊗ |r 7→ c〉, SV = QV and S = (UL,R ⊗ IQV−Q(L))Q. As a consequence, applying Lemma 14
again, we obtain

D→β [(UL,R ⊗ IQV∪{r}−Q(L))(Q⊗ |r 7→ c〉),QV ∪ {r}, PR] ≡ F
E →new [((UL,R ⊗ IQV−Q(L))Q)⊗ |r 7→ c〉,QV ∪ {r}, PR] ≡ G

As can be easily checked, F ≡ G.
– If α 6= new and β = new, then we can proceed as in the previous case.
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– Ifα, β 6= new, then by Lemma 14, there exist SV = RV = QV ,R = (UN,P⊗IQV−Q(N))Q and S = (UL,R⊗IQV−Q(L))Q.
Applying 14 again, we obtain

D→β [(UL,R ⊗ IQV−Q(L))((UN,P ⊗ IQV−Q(N))Q),QV, PR] ≡ F
E →α [(UN,P ⊗ IQV−Q(L))((UL,R ⊗ IQV−Q(L))Q),QV, PR] ≡ G

As can be easily checked, F ≡ G.

• D ≡ [R,RV, PL] and E ≡ [S, SV,QL], where [Q,QV,N] → [R,RV, P] and [Q,QV,N] → [S, SV,Q ]. Here we can
apply the inductive hypothesis.
• D ≡ [R,RV,NR] and E ≡ [S, SV,NS], where [Q,QV , L] → [R,RV, R] and [Q,QV, L] → [S, SV, S]. Here we can
apply the inductive hypothesis as well.
• N = (λx.T ), D ≡ [Q,QV, T {L/x}], E ≡ [R,RV,NR], where [Q,QV, L] →β [R,RV, R]. Clearly [Q,QV, T {L/x}] ∈

C and, by Lemma 15, [Q,QV, T {L/x}] → [R,RV, T {R/x}]. Moreover, [R,RV,NR] ≡ [R,RV, (λx.T )R] →
[R,RV, T {R/x}]
• N = (λx.T ), D ≡ [Q,QV, T {L/x}], E ≡ [R,RV, (λx.V )L], where [Q,QV, T ] →β [R,RV, V ]. Clearly [Q,QV,
T {L/x}] ∈ C and, by Lemma 15, [Q,QV, T {L/x}] →β [R,RV, V {L/x}]. Moreover, [R,RV, (λx.V )L] →β [R,RV,
V {L/x}]
• N = (λ!x.T ), L =!Z , D ≡ [Q,QV, T {Z/x}], E ≡ [R,RV, (λ!x.V )L], where [Q,QV, T ] →β [R,RV, V ]. Clearly
[Q,QV, T {Z/x}] ∈ C and, by Lemma 15, [Q,QV, T {Z/x}] →β [R,RV, V {Z/x}]. Moreover, [R,RV, (λx.V )!Z] →β

[R,RV, V {Z/x}]
• N = (λ〈x1, . . . , xn〉.T ), L = 〈r1, . . . , rn〉, D ≡ [Q,QV, T {r1/x1, . . . , rn/xn}], E ≡ [R,RV, (λ〈x1, . . . , xn〉.V )L], where
[Q,QV, T ] →β [R,RV, V ]. Clearly [Q,QV, T {r1/x1, . . . , rn/xn}] ∈ C and, by Lemma 15, [Q,QV, T {r1/x1, . . . , rn/xn}]
→β [R,RV, V {r1/x1, . . . , rn/xn}]. Moreover, [R,RV, (λ〈x1, . . . , xn〉.V )L] →β [R,RV, V {r1/x1, . . . , rn/xn}].
• N = (λx.T )Z , D ≡ [Q,QV, (λx.TL)Z], E ≡ [Q,QV, (T {Z/x})L], α = r.cm, β = l.β . Clearly, [Q,QV, (λx.TL)Z] →l.β

[Q,QV, (T {Z/x})L].
• N = (λπ.T )Z , D ≡ [Q,QV, (λπ.TL)Z], E ≡ [R,RV, ((λπ.V )Z)L], α = r.cm, where [Q,QV, T ] →β [R,RV, V ].
Clearly, [Q,QV, (λx.TL)Z] →r.cm [R,RV, (λx.VL)Z] and [R,RV, ((λπ.V )Z)L] →β [R,RV, (λπ.VL)Z].
• N = (λπ.T )Z , D ≡ [Q,QV, (λx.TL)Z], E ≡ [R,RV, ((λπ.T )X)L], α = r.cm, where [Q,QV, Z] →β [R,RV, X].
Clearly, [Q,QV, (λx.TL)Z] →r.cm [R,RV, (λx.TL)X] and [R,RV, ((λπ.T )X)L] →β [R,RV, (λπ.TL)X].
• N = (λπ.T )Z , D ≡ [Q,QV, (λx.TL)Z], E ≡ [R,RV, ((λπ.T )Z)R], α = r.cm, where [Q,QV, L] →β [R,RV, R].
Clearly, [Q,QV, (λx.TL)Z] →r.cm [R,RV, (λx.TR)Z] and [R,RV, ((λπ.T )Z)R] →β [R,RV, (λπ.TR)Z].
• N = (λπ.T ), L = (λx.Z)Y , D ≡ [Q,QV, (λx.NZ)Y ], E ≡ [Q,QV,N(Z{Y/x})], α = l.cm, β = l.β . Clearly, [Q,QV,
(λx.NZ)Y ] →l.β [Q,QV,N(Z{Y/x})].

M cannot be in the form new(c), because in that case D ≡ E. �

The following definition is useful when talking about reduction lengths, and takes into account both commuting and
non-commuting reductions:

Definition 16. Let C1, . . . , Cn be a sequence of configurations such that C1 → · · · → Cn. The sequence is called an m-
sequence of length n from C1 to Cn iff m is a natural number and there is A ⊆ {2, . . . , n} with |A| = m and Ci−1 →N Ci iff
i ∈ A. If there is am-sequence of length n from C to D, we will write C

m,n
−→ D or simply C

m
−→ D.

This way we can generalize Proposition 7 to another one talking about reduction sequences of arbitrary length:

Proposition 8. Let C,D1,D2 be configurations with C
m1
−→ D1 and C

m2
−→ D2. Then, there is a configuration E with D1

n1
−→ E

and D2
n2
−→ E with n1 ≤ m2, n2 ≤ m1 and n1 +m1 = n2 +m2.

Proof. We prove the following, stronger statement: suppose there are C,D1,D2, a m1-sequence of length l1 from C to D1
and an m2-sequence of length l2 from C to D2. Then, there is a configuration E, a n1-sequence of length k1 from D1 to E and
n2-sequence of length k2 from D2 to E with n1 ≤ m2, n2 ≤ m1, k1 ≤ l2, k2 ≤ l1 and n1 +m1 = n2 +m2. We go by induction
on l1 + l2. If l1 + l2 = 0, then C ≡ D1 ≡ D2, E ≡ D1 ≡ D2 and all the involved natural numbers are 0. If l1 = 0, then D1 ≡ C
and E ≡ D2. Similarly when l2 = 0. So, we can assume l1, l2 > 0. There are G1,G2, two integers h1, h2 ≤ 1 with C →α G2
and C →β G2, an (m1 − h1)-sequence of length l1 − 1 from G1 to D1 and an (m2 − h2)-sequence of length l2 − 1 from G2 to
D2. We can distinguish three cases, depending on the outcome of Proposition 7:
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• α ∈ K , β ∈ K with G1 = G2, or α ∈ N , β ∈ N with G1 = G2. By applying one time the the induction hypothesis we
have the following diagram:

C
h1,1

���������
h1,1

��8888888

G1
m1−h1,l1−1

���������
= G2

m2−h1,l2−1

��9999999

D1

n1,s1
%%KKKKKKKKKKK D2

n2,s2
yysssssssssss

E

with the equations:

n1 ≤ m2 − h1
n2 ≤ m1 − h1
s1 ≤ l2 − 1
s2 ≤ l1 − 1

n1 + (m1 − h1) = n2 + (m2 − h1)

from which n1 ≤ m2, n2 ≤ m1, and n1 +m1 = n2 +m2.
• α ∈ K , β ∈ K with G1 6= G2, or α ∈ N , β ∈ N with G1 6= G2 and there is H with G1 →β H and G2 →α H . By applying
the induction hypothesis several times, we end up with the following diagram

C
h1,1

���������
h2,1

��8888888

G1
m1−h1,l1−1

���������

h2,1 ��8888888 G2

h1,1���������
m2−h2,l2−1

��9999999

D1

q1,t1
��9999999 H
u1,v1

���������
u2,v2

��7777777 D2

q2,t2
���������

J

w1,z1
��8888888 K

w2,z2
���������

E

together with the equations:

q1 ≤ h2 q2 ≤ h1 w1 ≤ u2
t1 ≤ 1 t2 ≤ 1 z1 ≤ v2
u1 ≤m1 − h1 u2 ≤m2 − h2 w2 ≤ u1
v1 ≤ l1 − 1 v2 ≤ l2 − 1 z2 ≤ v1

and

m1 − h1 + q1 = u1 + h2 h1 + u2 = m2 − h2 + q2 w1 + u1 = w2 + u2

from which

q1 + w1 ≤ h2 + u2 ≤ h2 +m2 − h2 = m2
t1 + z1 ≤ 1+ v2 ≤ 1+ l2 − 1 = l2
q2 + w2 ≤ h1 + u1 ≤ h1 +m1 − h1 = m1
t2 + z2 ≤ 1+ v1 ≤ 1+ l1 − 1 = l1

q1 + w1 +m1 = h1 + h2 + u1 + w1 = h1 + h2 + u2 + w2 = m2 + w2 + q2

So we can just put n1 = q1 + w1, n2 = q2 + w2, k1 = t1 + z1, k2 = t2 + z2.
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• α ∈ K , β ∈ N and there is H with G1 ≡ H and G2 →β H . By applying the induction hypothesis several times, we end
up with the following diagram:

C
h1,1

���������
0,1

��8888888

G1
m1−h1,l1−1

���������
G2h1,1

oo

m2,l2−1

��9999999

D1

n1,k1
%%KKKKKKKKKKK D2

n2,k2
yysssssssssss

E

together with the equations:

n1 ≤ m2
k1 ≤ l2 − 1
n2 ≤ m1
k2 ≤ l1

and

m1 + n1 = m2 + n2

from which the desired equations can be easily obtained.
• The last case is similar to the previous one.

This concludes the proof. �

Theorem 3 is an immediate consequence of Proposition 8. But we are now able to prove Theorem 4.

Proof (Theorem 4). Strong normalization implies weak normalization. Suppose, by way of contradiction, that C is weakly
normalizing but not strongly normalizing. This implies there is a configuration D in normal form and anm-sequence from C
to D. Since C is not strongly normalizing, there is an infinite sequence C ≡ C1, C2, C3, . . .with C1 → C2 → C3 → · · · From
this infinite sequence, we can extract an m + 1-sequence, due to Lemma 3. Applying Proposition 8, we get a configuration
F and a 1-sequence from D to F . However, such a 1-sequence cannot exist, because D is normal. �

Appendix C. Standardization

NCL is closed under new reduction:

Lemma 16. If C ∈ NCL and C →new D then D ∈ NCL.

Proof. Let C be [Q,QV,M] andD be [R,RV,N]. The expressionC[·]will denote a term context.6 Let new(c) be the reduced
redex inM . Clearly, there is a context C[·] such thatM = C[new(c)] and N = C[r]. The proof proceeds by induction on the
structure of C[·]:

• If C[·] = [·], then N = r does not contain any redex.
• Clearly, C[·] 6=!D[·], because reduction cannot take place under the scope of the operator !.
• If C[·] = new(D[·]) then by IH D[r] cannot contain any classical redex and, hence C[r] cannot contain any classical redex.
• If C[·] = D[·]L, then by IH D[r] cannot contain any classical redex. Moreover, L itself cannot contain any classical redex.
So, if N = D[r]L contain any classical redex, the redex should be N itself. But it is immediate to check that in any of
these cases, M = D[new(c)]L is a redex too (which goes against the hypothesis). For example, if D[·] = λx.E[·], then
M = (λx.E[new(c)])L contains a classical redex (M itself).
• If C[·] = LD[·], we can proceed exactly as in the previous case.
• If

C[·] = 〈N1, . . . ,Nk−1,D[·],Nk+1, . . . ,Nn〉

then, by inductive hypothesis, D[r] cannot contain any classical redex. Moreover, N1, . . . ,Nk−1,Nk+1, . . . ,Nn cannot
contain any classical redex themselves. But this implies N cannot contain any classical redex.

6 A term context is a term with one hole.
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• The same argument can be applied to the cases C[·] = λπ.D[·] and C[·] = λ!x.D[·].

This concludes the proof. �

EQT is closed under quantum reduction:

Lemma 17. If C ∈ EQT and C →Q D then D ∈ EQT.

Proof. Let C be [Q,QV,M] and D be [R,RV,N]. Let L be the reduced redex inM . Clearly, there is a context C[·] such that
M = C[L] and N = C[P]. Observe that L can be either in the form

(λ〈x1, . . . , xn〉.Q )〈r1, . . . , rn〉

or in the form

U〈r1, . . . , rn〉.

In the first case, we say that L is a variable passing redex, while in the second case, we say that L is a unitary transformation
redex. The proof proceeds by induction on the structure of C[·]:

• If C[·] = [·], then:
– If L is a unitary transformation redex, then N = 〈r1, . . . , rn〉 does not contain any redex.
– If L is a variable passing redex, then N = Q {r1/x1, . . . , rn/xn}. But the following lemma can be easily proved by
induction on R: for any term R, if R only contains quantum redexes, then R{r1/x1, . . . , rn/xn} only contains quantum
redexes, too.

• Clearly, C[·] 6=!D[·], because reduction cannot take place under the scope of the operator !.
• If C[·] = new(D[·]) then by IHD[P] only contains quantum redexes. Now, observe thatD[P] cannot be a boolean constant.
Indeed, if L is a unitary transformation redex, then P contains, at least, the term 〈r1, . . . , rn〉. If L is a variable passing redex,
on the other hand, P contains the quantum variables r1, . . . , rn because the variables x1, . . . , xn appears exactly once in
Q . Hence C[P] only contains quantum redexes.
• If C[·] = D[·]R, then by IH D[P] only contains quantum redexes. Moreover, R itself only contains quantum redexes. So if
N = D[P]R contain any non-quantum redex, the redexmust beN itself. Let us check that in any of these cases,M = D[L]R
is a non-quantum redex too:
– If N is a l.β redex, then D[·] = λx.E[·], andM = (λx.E[L])R contains a classical redex (M itself).
– If N is a c.β redex, then D[·] = λ!x.E[·], R =!S and andM = (λ!x.E[L])!S contains a classical redex.
– If N is a l.cm redex, then R = (λπ.S)T andM = D[L]R = D[L](λπ.S)T is a l.cm redex, too.
– If N is a r.cm redex, then D[P] = (λπ.S)T . We have to distinguish four sub-cases:
∗ If D[·] = [·], then Lmust be a variable passing redex and, as a consequence,M = LR is a r.cm redex.
∗ If D[·] = [·]T , then Lmust be a variable passing redex and, as a consequence, LT is a r.cm redex.
∗ If D[·] = (λπ.E[·])T , thenM is ((λπ.E[L])T )R, which is a r.cm redex.
∗ If D[·] = (λπ.S)E[·], thenM is ((λπ.S)E[L])R, which is a r.cm redex.

• If C[·] = LD[·], we can proceed as in the previous case.
• If

C[·] = 〈N1, . . . ,Nk−1,D[·],Nk+1, . . . ,Nn〉

then, by inductive hypothesis, D[P] cannot contain any classical redex. Moreover, N1, . . . ,Nk−1,Nk+1, . . . ,Nn cannot
contain any classical redex themselves. But this implies N cannot contain any classical redex.
• The same argument can be applied to the cases C[·] = λπ.D[·] and C[·] = λ!x.D[·].

This concludes the proof. �

We conclude with the proof of Theorem of Quantum Standardization.

Proof (Theorem 5). We build a CNQ computation in three steps:

1. Let us start to reduce D1 ≡ C1 by using C reductions as much as possible. By Theorem 4wemust obtain a finite reduction
sequence D1 →C · · · →C Dk such that 1 ≤ k and no C reductions are applicable to Dk.

2. Reduce Dk by using new reductions as much as possible. By Theorem 4 we must obtain a finite reduction sequence
Dk →new · · · →new Dj s.t. k ≤ j and no new reductions are applicable to Dj. Note that by Lemma 16 such reduction
steps cannot generate classical redexes and in particular no classical redex can appear in Dj.

3. Reduce Dj by using Q reductions as much as possible. By Theorem 4 we must obtain a finite reduction sequence
Dj →Q · · · →Q Dn such that j ≤ n and no Q reductions are applicable to Dn. Note that by Lemma 17 such reduction
steps cannot generate neither C redexes nor new redexes and in particular neither C nor new reductions are applicable
to Dn. Therefore Dn is in normal form.

The reduction sequence {Di}1≤i≤n is such that D0 →C · · · →C Dk →new · · · →new Dj →Q · · · →Q Dn is a CNQ
computation. By Theorem 3 we observe that Cm ≡ Dn, which implies the thesis. �
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