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We study a measurement-free, untyped λ-calculus with quantum data and classical control.

This work arises from previous proposals by Selinger and Valiron, and Van Tonder. We

focus on operational and expressiveness issues, rather than (denotational) semantics. We

prove subject reduction and confluence, and a standardisation theorem. Moreover, we prove

the computational equivalence of the proposed calculus with a suitable class of quantum

circuit families.

1. Introduction

Quantum computing was conceived at the beginning of the eighties, starting from an idea

by Feynman (Feynman 1982). It defines an alternative computational paradigm based

on quantum mechanics (Basdevant and Dalibard 2005) rather than digital electronics.

The first proposal for a quantum abstract computer is due to Deutsch, who introduced

the notion of quantum Turing machines (Deutsch 1985). Other quantum computational

models have been subsequently defined by Yao (quantum circuits (Yao 1993)) and Knill

(quantum random access machines (Knill 1996)). There are also a number of other

quantum computational models, such as measurement-based models (Danos et al. 2007)

and adiabatic models (Aharonov et al. 2007).

The introduction of quantum abstract machines allowed the development of a com-

plexity theory of quantum computation. One of the most important results in quantum

complexity theory was obtained by Shor, who showed that integers can be factorised in

polynomial time (Shor 1994). We would like to stress also the importance of Grover’s

algorithm (Grover 1999), which definitely improves on the best classical complexity.

Nowadays, what are the main challenges in quantum computing? A lot of research

is being devoted to understanding whether quantum computation can provide efficient

algorithms for classically intractable problems. In recent years, the impressive results

obtained in this area (for example, Shor’s fast factoring algorithm) have stimulated the
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development of quantum programming languages. The situation is not as easy as in the

classical case. In addition to the concrete technical problems (up to now it has been difficult

to build even very simple quantum circuits), there is the necessity of developing adequate

calculi of quantum computable functions. In particular, it is not clear how the idea of having

functions as ‘first-class citizens’ can be captured in a quantum setting. Indeed, quantum

circuits and quantum Turing machines (the most widely known quantum computational

model) are essentially ‘first-order’.

This paper is an attempt to make a contribution to the definition of a measurement-free

quantum computational model for higher-order functions.

The first attempt to define a quantum higher-order language was (as far as we are

aware) in two unpublished papers by Maymin (Maymin 1996; 1997). Later, Selinger

rigorously defined a first-order quantum functional language (Selinger 2004). Another

interesting proposal within the framework of first-order quantum functional languages

is the language QML (Altenkirch and Grattage 2005). Arrighi and Dowek have also

recently proposed an interesting extension of λ-calculus with potential applications in the

field of quantum computing (Arrighi and Dowek 2008).

Focusing on higher-order functional programming languages, at least two distinct found-

ational proposals have already appeared in the literature: by Selinger and Valiron (Selinger

and Valiron 2006) (see also the interesting extension proposed in Perdrix (2007)) and

by Van Tonder (van Tonder 2004). These two approaches seem to go in orthogonal

directions: in the language proposed by Selinger and Valiron, data (registers of qubits) are

superimposed while control (lambda terms) is classical; while the approach of Van Tonder

seems, at first glance, to be based on the idea of putting arbitrary λ-terms in superposition .

But, is this the correct picture? In order to give an answer, we need to examine the two

approaches more closely.

Selinger and Valiron’s approach. The main goal of Selinger and Valiron’s work is to

provide the basis for a typed quantum functional language (with types in propositional

multiplicative and exponential linear logic). Their idea is to define a language where only

data are superposed, and where programs live in a standard classical world. In particular,

there is no need for ‘exotic’ objects such as λ-terms in superposition. The approach is

well summarised by the slogan ‘classical control + quantum data’. The proposed calculus,

here called λsv , is based on a call-by-value λ-calculus enriched with constants for unitary

transformations and an explicit measurement operator allowing the program to observe

the value of one of the quantum data.

Unfortunately, the expressive power of λsv has not been studied yet. The crucial

issue is whether we can compare the expressive power of λsv with that of any well-

known computational model (for example, quantum Turing machines or quantum circuits

families).

Van Tonder’s approach. The calculus introduced by Van Tonder (van Tonder 2004), called

λq , has the same motivation and a number of immediate similarities with λsv , noticeably,

the exploitation of linear types in controlling both copying and erasing of terms. However,

there are a couple of glaring differences between λq and λsv . In fact, it seems that by design,
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λq allows arbitrary superpositions of λ-terms. In our opinion the essence of Van Tonder’s

approach is contained in van Tonder (2004, Lemma 5.1), where it is stated that ‘two terms

M and N in superposition differ only for qubits values ’. Moreover, if M reduces to M ′ and

N reduces to N ′, the reduced redex in M is (up to quantum bits) the same redex reduced

in N. This means that λq has classical control too: it is not possible to superimpose

terms differing in a marked way, that is, terms with a different computational evolution.

Moreover, measurement in λq is not internalised, that is, there is no measurement operator

as in λsv .

The weak point of Van Tonder’s paper is that some results and proofs are given too

informally. In particular, the paper argues that the proposed calculus is computationally

equivalent to quantum Turing machines without giving a detailed proof and, more

importantly, without specifying which class of quantum Turing machines is considered

(this is not pedantry), though, clearly, such a criticism does not invalidate the foundational

importance of the approach.

Our proposal

In order to avoid possible misunderstandings, we will begin by stressing what our proposal

is not:

— We do not propose a new computational paradigm. Indeed, we adopt the ‘quantum

data and classical control’ paradigm as proposed by Selinger and Valiron (and,

implicitly, by Van Tonder); we extensively develop this paradigm showing its potential

from a computation-theoretic point of view. Moreover, we start our study with a

measurement-free calculus, following Van Tonder.

— We do not propose a programming language. Our emphasis is on computability, not on

the development of a more or less concrete programming languages (exactly as for

pure λ-calculus, which is not a programming language, but a calculus of computable

functions). The development of quantum functional languages is certainly interesting,

but is not our concern here.

Having clarified these facts, we are ready to give an answer to the main question: what

is our proposal? Our goal is to make a deep investigation into the ‘quantum data and

classical control’ paradigm in the absence of measurement. In this sense, this paper can be

seen both as a continuation and an extention of the two proposals we have just described.

— It is a continuation because we propose a quantum λ-calculus with classical control

and quantum data. We use a syntax for terms and configurations inspired by that of

Selinger and Valiron and, moreover, we implicitly use linear logic in a way similar to

Van Tonder’s λq .

— It is an extension because we have focused on an operational and expressiveness study

of the calculus.

The operational study. Even if the proposed calculus is untyped, term formation is

constrained by means of well forming rules (the structure of terms is strongly based

on the formulation of Linear Logic as proposed by P. Wadler in Wadler (1994)). In order
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to be correct with respect to term reduction, we have proved a suitable subject-reduction

theorem. The calculus we introduce here is not endowed with a reduction strategy (it is

neither call-by-value nor call-by-name). We prove confluence, which holds in a strong sense.

Notably, a configuration (the quantum generalisation of a term) is strongly normalising

if and only if it is weakly normalising. Another remarkable feature of the calculus is

given by the (quantum) standardisation theorem. Roughly speaking, for each terminating

computation there is another ‘canonical’, equivalent, computation where computation

steps are performed in the following order:

1 classical reduction – in this phase the quantum register is empty and all the computa-

tions steps are classical;

2 reductions that build the quantum register;

3 quantum reductions, applying unitary transformations to the quantum register.

We think that standardisation sheds some further light on the dynamics of quantum

computation.

The expressiveness study. An important issue is the real expressive power of the proposed

calculus. In particular, what is the relationship between this calculus and other quantum

computing systems, such as quantum Turing machines (à la Vazirani and Bernstein) and

quantum circuit families (remember that the two formalisms have been showed to be

equivalent (Nishimura and Ozawa 2008))? In tackling the expressive power problem, we

prove the equivalence between our calculus and quantum circuit families. As far as we are

aware, this is the first time that such a study has been done in a detailed and rigorous

way for a quantum λ-calculus. The equivalence proofs are based on the standardisation

theorem and on suitable encodings.

On the absence of measurement. A few words on the absence of an explicit measurement

operator are in order at this point – see Section 8 for a more detailed discussion. A property

of the calculus under consideration is the absence of measurement, in the spirit of other

quantum computational models such as quantum circuits and quantum Turing machines.

This is obviously a limitation of our system, as there is no doubt that any respectable

quantum programming language should have a built-in measurement construct (indeed,

Selinger and Valiron equipped their call-by-value quantum language with a measurement

operator). The possibility of performing measurements is a key feature of any (quantum)

programming language since it simplifies the writing of programs.

On the other hand, the absence of measurement is a feature of standard quantum

computational models, such as quantum Turing machines and quantum circuits. In

all such systems there is no indication of how to directly code algorithms where

classical computational steps depend on measurements (see, for example, the Shor

factoring algorithm), not to mention infinite quantum computations, that is, infinite

sequences of quantum steps interleaved with measurements. But explicit measurement

is not really needed in a calculus for total quantum computable functions: it is well

known that any total quantum function can be computed without performing any explicit

measurement. In practice it is possible to make a unique implicit measurement at the end
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of computation – see, for example, Bernstein and Vazirani (1997, page 1420), Nielsen

and Chuang (2000, pages 185–187) and the introductory sections of Selinger (2004) and

Selinger and Valiron (2006). We have adopted this point of view by assuming a unique

implicit measurement at the end of the computation . And we will prove that, even in the

absence of measurements, a computationally complete calculus can be obtained.

This is just the first step in a long-term research effort oriented towards a better

understanding of the expressive power of higher-order quantum computational models.

Why ‘λ-calculus’? We have chosen λ-calculus as a basis for our proposal for a number of

reasons:

1 Quantum computability and complexity theory are quite underdeveloped compared

with their classical counterparts; in particular, there is almost no result relating classes

of (first-order) functions definable in pure and typed λ-calculi to classes of functions

from computability and complexity theory (in contrast with classical computability

theory (Kleene 1936)).

2 We believe that the higher-order nature of λ-calculi could be useful in understanding

the interactions between the classical world (the world of terms) and the quantum

world (quantum registers). These interactions are even stronger in the presence of

measurements.

The structure of the paper

The paper is structured as follows:

— In Section 2 we give the mathematical background on Hilbert Spaces (in order to

define quantum registers).

— In Section 3, we introduce a λ-calculus, called Q, which has classical control and

quantum data. The calculus is untyped, but is equipped with well-formation judgments

for terms.

— In Section 4, we study Q operationally by means of a suitable formulation of subject

reduction and confluence.

— In Section 5, we give some examples of terms, configurations and computations.

— In Section 6, we give a further result on the dynamics of Q by means of a

standardisation theorem (as explained above).

— In Section 7, we study in detail the equivalence of Q to quantum circuit families.

— In Section 8, we expand on the above discussion of measurement operators.

— In Section 9, we give conclusions and some suggestions for further work.

— Finally, we recall the basic notions of Hilbert spaces in an Appendix.

2. Mathematical structures

This section is devoted to mathematical preliminaries. Clearly, we cannot hope to

be completely self-contained here – see Nielsen and Chuang (2000) for an excellent

introduction to quantum computation and information.
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2.1. Quantum computing basics

In this subsection we informally recall the basic notions for qubits and quantum registers

(see Nielsen and Chuang (2000) for a detailed introduction). In the next subsection these

notions will be (re)defined in a rigorous way. The basic unit of quantum computation is

the so-called quantum bit, or qubit for short. A direct way to represent a quantum bit is as

a unitary vector in the 2-dimensional Hilbert space �2. We will use |0〉 and |1〉 to denote

the elements of an orthonormal basis of �2.

The states |0〉 and |1〉 of a qubit correspond to the boolean constants 0 and 1, which

are the only possible values of a classical bit. A qubit, however, can assume other values,

different from |0〉 and |1〉. In fact, every linear combination |ψ〉 = α|0〉 + β|1〉 where

α, β ∈ �, and |α|2 + |β|2 = 1, can be a possible qubit state. These states are said to be

superposed, and the two values α and β are called amplitudes.

While we can determine the state of a classical bit, for a qubit we cannot establish its

quantum state with the same precision, namely the values of α and β: quantum mechanics

says that a measurement of a qubit with state α|0〉 + β|1〉 has the effect of changing the

state to |0〉 with probability |α|2 and to |1〉 with probability |β|2.
When defining quantum computational models, we need a generalisation of the notion

of a qubit, called a quantum register (Nishimura and Ozawa 2008; Selinger 2004; Selinger

and Valiron 2006; van Tonder 2004). A quantum register of arity n is a normalised vector

in ⊗n
i=1�

2. We fix an orthonormal basis of ⊗n
i=1�

2, namely,

{|i〉 | i is a binary string of length n}.

For example, 1/
√

2|01〉 + 1/
√

2|00〉 ∈ �2 ⊗ �2 is a quantum register of two qubits.

A key property of quantum registers is that it is not always possible to decompose an

n-qubit register into n isolated qubits (mathematically, this means that we are not able to

describe the global state as a tensor product of single qubits). These non-decomposable

registers are said to be entangled and enjoy properties that we cannot find in any object

of classical physics. If (the state of) n qubits are entangled, they behave as connected,

independently of the real physical distance. The strength of quantum computation is

essentially based on the existence of entangled states.

2.2. Hilbert spaces and quantum registers

Even if Hilbert spaces of the shape ⊗n
i=1�

2(� �2n ) are commonly used when defining

quantum registers, other Hilbert spaces will be defined here (we lay out some basic notions

on Hilbert spaces in the Appendix). As we will see, they allow us to handle very naturally

the interaction between variable names in λ-terms and superimposed data.

A quantum variable set (qvs) is any finite set of quantum variables (ranged over by

variables such as p, r and q).

Usually, qubits of quantum registers are referred to by means of their ordinal position,

but in the approach we propose here it is more useful to give names to qubits. Given a

qvs V, a quantum register will be a function φ : {0, 1}V → � (namely, an assignment

of an amplitude to each classical valuation f ∈ {0, 1}V) such that
∑

f∈{0,1}V |φ(f)|2 = 1

(normalisation condition).
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The set of quantum registers (for a given qvs V) are normalised vectors of a finite

dimensional Hilbert space H(V) defined in the following way.

Definition 1 (Hilbert spaces on V). Let V be a qvs (possibly empty) of cardinality #V.

We use H(V) = {φ | φ : {0, 1}V → �} to denote the Hilbert Space of dimension 2#V

equipped with:

(i) An inner sum + : H(V) × H(V) → H(V) defined by

(ϕ+ ψ)(f) = ϕ(f) + ψ(f).

(ii) A multiplication by a scalar · : � × H(V) → H(V) defined by

(c · ϕ)(f) = c · (ϕ(f)).

(iii) An inner product 〈·, ·〉 : H(V) × H(V) → � defined by

〈ϕ,ψ〉 =
∑

f∈{0,1}V

ϕ(f)∗ψ(f).

The space is equipped with the orthonormal basis B(V) = {|f〉 : f ∈ {0, 1}V}†. We call

such a basis a standard basis. For example, the standard basis of the space H({p, q}) is

{|p �→ 0, q �→ 0〉, |p �→ 0, q �→ 1〉, |p �→ 1, q �→ 0〉, |p �→ 1, q �→ 1〉}.
Let V′ ∩ V′′ = �. We use H(V′) ⊗ H(V′′) to denote the tensor product (defined

in the usual way) of H(V′) and H(V′′). If B(V′) = {|fi〉 : 0 � i < 2n} and B(V′′) =

{|gj〉 : 0 � j < 2m} are the orthonormal bases of H(V′) and H(V′′), respectively, then

H(V′) ⊗ H(V′′) is equipped with the orthonormal basis

{|fi〉 ⊗ |gj〉 : 0 � i < 2n, 0 � j < 2m}.

We will abbreviate |f〉⊗|g〉 by |f, g〉. If V is a qvs, then IV is the identity on H(V), which

is clearly unitary. It is easy to show that if V′ ∩ V′′ = �, there is a standard isomorphism

H(V′) ⊗ H(V′′)
is� H(V′ ∪ V′′).

In the rest of this paper we will assume that we are working up to such an isomorphism‡.

In order to handle the case of �2n , we need to define the notion of a quantum register.

Definition 2 (Quantum register). Let V be a qvs, a quantum register is a normalised

vector in H(V).

In particular, if Q′ ∈ H(V′) and Q′′ ∈ H(V′′) are two quantum registers, with a little

abuse of language (authorised by the isomorphism defined above), we will say that Q′ ⊗Q′′

is a quantum register in H(V′ ∪ V′′). In the rest of this paper we will use 1 to denote the

empty quantum register (which belongs to H(�)).

Quantum computing is essentially based on the application of unitary operators to

quantum registers. A linear operator U : H(V) → H(V) is said to be unitary if for all

† |f〉 : {0, 1}V → � is defined by |f〉(g) =

{
1 if f = g

0 if f �= g
‡ In particular, if Q ∈ H(V), r �∈ V and |r �→ c〉 ∈ H({r}), we will use Q ⊗ |r �→ c〉 to denote the element

is(Q ⊗ |r �→ c〉) ∈ H(V ∪ {r}).
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φ,ψ ∈ H(V), 〈U(φ),U(ψ)〉 = 〈φ,ψ〉. The tensor product of unitary operators is defined

by (U ⊗ V)(φ⊗ ψ) = U(φ) ⊗ U(ψ).

But which unitary operators are available in Q? Here we assume that unitary operators

can be chosen from U, an arbitrary but denumerable fixed set of unitary operators,

called elementary operators. Clearly, the expressive power of Q depends on this choice.

If we want, for example, to capture quantum Turing machines in the style of Bernstein

and Vazirani (Bernstein and Vazirani 1997), we could fix U to be the set of so-called

computable operators. On the other hand, the expressivity results in this paper relates

Q and quantum circuit families; clearly, those that can be captured by Q terms with

elementary operators in U are precisely those (finitely) generated by U.

Let U : �2n → �2n be an elementary operator and let 〈q1, . . . , qn〉 be any sequence of

distinguished variables. U and 〈q1, . . . , qn〉 induce an operator

U〈q1 ,...,qn〉 : H({q1, . . . , qn}) → H({q1, . . . , qn})

defined as follows: if |f〉 = |qj1 �→ bj1 , . . . , qjn �→ bjn〉 is an element of the orthonormal

basis of H({q1, . . . , qn}), then

U〈q1 ,...,qn〉|f〉 def
= U|bj1 , . . . , bjn〉.

Let V′ = {qi1 , . . . , qik} ⊆ V. We naturally extend (by suitable standard isomorphisms)

the unitary operator U〈qj1 ,...,qjk 〉 : H(V′) → H(V′) to the unitary operator U〈〈qj1 ,...,qjk 〉〉 :

H(V) → H(V) that acts as the identity on variables not in V′ and as U〈qj0 ,...,qjk 〉 on

variables in V′.

Example 1. Let us consider the standard operator

cnot : �2 ⊗ �2 → �2 ⊗ �2.

Intuitively, the cnot operator complements the target bit (the second one) if the control

bit is 1, and otherwise performs no action:

cnot|00〉 = |00〉
cnot|01〉 = |01〉

cnot|10〉 = |11〉
cnot|11〉 = |10〉.

Fixing the sequence 〈p, q〉 of variables, cnot induces the operator

cnot〈〈p,q〉〉 : H({p, q}) → H({p, q})

such that

cnot〈〈p,q〉〉|q �→ 0, p �→ 0〉 = |q �→ 0, p �→ 0〉
cnot〈〈p,q〉〉|q �→ 0, p �→ 1〉 = |q �→ 1, p �→ 1〉
cnot〈〈p,q〉〉|q �→ 1, p �→ 0〉 = |q �→ 1, p �→ 0〉
cnot〈〈p,q〉〉|q �→ 1, p �→ 1〉 = |q �→ 0, p �→ 1〉.

Note that |q �→ c1, p �→ c2〉 = |p �→ c2, q �→ c1〉 since the two expressions denote the same

function. Consequently, cnot〈〈p,q〉〉|q �→ c1, p �→ c2〉 = cnot〈〈p,q〉〉|p �→ c2, q �→ c1〉. On the
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other hand, the operators cnot〈〈p,q〉〉 and cnot〈〈q,p〉〉 are different: both act as controlled not,

but cnot〈〈p,q〉〉 uses p as the control qubit while cnot〈〈q,p〉〉 uses q. In general, when writing

U〈〈p1 ,...,pn〉〉, the order in which the variables appear in the subscript matters.

3. The syntax of Q

3.1. A gentle introduction

As mentioned in the introduction, this paper is based on the ‘quantum data and classical

control’ paradigm, as developed by Selinger and Valiron (Selinger and Valiron 2006).

The proposed quantum λ-calculus is based on the notion of a configuration (a

reformulation of the concept of a program state (Selinger and Valiron 2006)).

A configuration is a triple [Q,QV,M] that gives a full instantaneous description of

the state of a quantum program, where M is a term from a suitable grammar, Q is a

quantum register, QV is a set of quantum variables (a superset of those appearing in M).

Configurations can evolve in two different ways:

1 Configurations can evolve classically: the term M changes, but Q and QV will not be

modified. In other words, reduction will take the shape

[Q,QV,M] → [Q,QV, N]

where the only relevant component of the step is the λ-term M. This class of reductions

includes all the standard λ-reductions (for example, β-reduction).

2 Configurations, however, can also evolve non-classically: the term M and the quantum

register interact. There are two ways to modify the underlying quantum register:

(a) The creation of a new quantum bit by reducing a term new(c) (where c is a classical

bit). Such a reduction creates a new quantum variable name in the underlying term

and a new qubit in the underlying quantum register. The new quantum variable

name is a kind of pointer to the newly created qubit. A new reduction has the

shape

[Q,QV,M] →new [Q′,QV′, N]

where N is obtained by replacing the redex new(c) with a (fresh) variable name r

in M, Q′ is the new quantum register with a new qubit referenced by r and QV′ is

simply QV ∪ {r}.
(b) The application of a unitary transformation to the quantum register. This computa-

tion step consists of reducing a term U〈r1, . . . , rn〉, where U is the name of a unitary

operator and r1, . . . , rn are quantum variables. A unitary reduction has the shape

[Q,QV,M] →Uq [Q′,QV, N]

where Q′ is U〈〈r1 ,...,rn〉〉Q and N is obtained by replacing the redex U〈r1, . . . , rn〉 with

〈r1, . . . , rn〉 in M.
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3.2. On linearity

One of the main features of our calculus (and of many other quantum computational

models) is linearity, where we use linearity to mean that a term is neither duplicable nor

erasable. In the proposed system, linearity corresponds to the constraint that in every term

λx.M, there is exactly one free occurrence of the variable x in M. In this way we are able

to guarantee that the ‘non-cloning and non-erasing’ property is satisfied. Indeed, whenever

(λx.M)N and x occurs (free) exactly once in M, the quantum variables in (λx.M)N are

exactly the ones in M{N/x}, and if any quantum variable occurs once in the redex, it will

occur once in the reduct, too.

But even if we cannot duplicate terms with references to quantum data, we need to

duplicate and erase classical terms, that is, terms that do not contain any quantum

variable. To this end, the syntax of terms includes a modal operator ! (called the ‘bang’

operator). The bang operator was introduced in term calculi for linear logic (see, for

example, Wadler’s syntax (Wadler 1994)) and allows us to distinguish between those

syntactical objects (λ-terms) that can be duplicated or erased and those that cannot.

Roughly speaking, a term is duplicable and erasable if and only if it is of the form

!M and, moreover, M does not contain quantum variables. This constraint is ensured

‘statically’ by the well-forming rules below.

This is not the only possible way to enforce the non-cloning and non-erasing properties.

Other solutions have been proposed in the literature, see, for example, Arrighi and

Dowek (2008), where it is possible to duplicate base vectors, and Altenkirch and

Grattage (2005,) where duplication is modelled by means of sharing.

3.3. The language of terms

We associate a symbol U with each elementary operator U ∈ U. The set of term

expressions, or terms for short, is defined by the following grammar:

x ::= x0, x1, . . . classical variables

r ::= r0, r1, . . . quantum variables

π ::= x | 〈x1, . . . , xn〉 linear patterns

ψ ::= π | !x patterns

B ::= 0 | 1 boolean constants

U ::= U0, U1, . . . unitary operators

C ::= B | U constants

M ::= x | r | !M | C | new(M) | M1M2 |
〈M1, . . . ,Mn〉 | λψ.M terms (where n � 2)

We assume we are working modulo variable renaming, that is, terms are equivalence

classes modulo α-conversion. Substitution up to α-equivalence is defined in the usual way.

We use Q(M1, . . . ,Mk) to denote the set of quantum variables occurring in M1, . . . ,Mk .

Note that:

— Variables are either classical or quantum: the first are the usual variables of lambda

calculus (and can be bound by abstractions), while each quantum variable refers to a

qubit in the underlying quantum register (to be defined shortly).
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— There are also two sorts of constants, namely boolean constants (0 and 1) and unitary

operators: the first are useful for generating qubits and play no role in classical

computations, while unitary operators are applied to (tuples of) quantum variables

when performing quantum computation.

— The term constructor new(·) creates a new qubit when applied to a boolean constant.

— The syntax allows so-called pattern abstraction. A pattern is either a classical variable,

a tuple of classical variables, or a ‘banged’ variable (namely, an expression of the kind

!x, where x is a name of a classical variable). In order to allow an abstraction of the

kind λ!x.M, the environment (see below) must be enriched with !-patterns, denoting

duplicable or erasable variable.

The rest of the calculus is a standard linear lambda calculus, similar to the one introduced

in Wadler (1994). Patterns (and, consequently, lambda abstractions) can only refer to

classical variables.

There is no measurement operator in the language – see Section 8 for further discussion

of this.

3.4. Judgements and well-formed terms

Judgements are defined from various notions of environments that take into account the

way the variables are used. Following a common notation used in type theory and proof

theory, a set of variables {x1, . . . , xn} is often written simply as x1, . . . , xn. Analogously, the

union of two sets of variables X and Y is denoted simply as X,Y .

— A classical environment is a (possibly empty) set of classical variables. Classical envir-

onments are denoted by Δ (possibly with indexes). Examples of classical environments

are x1, x2 or x, y, z or the empty set �. Given a classic environment Δ = x1, . . . , xn, we

use !Δ to denote the set of patterns !x1, . . . , !xn.

— A quantum environment is a (possibly empty) set (denoted by Θ, which may be indexed)

of quantum variables. Examples of quantum environments are r1, r2, r3 and the empty

set �.

— A linear environment is a (possibly empty) set (denoted by Λ, which may be indexed)

in the form Δ,Θ where Δ is a classical environment and Θ is a quantum environment.

The set x1, x2, r1 is an example of a linear environment.

— An environment (denoted by Γ, which may be indexed) is a (possibly empty) set in the

form Λ, !Δ where each classical variable x occurs at most once (either as !x or as x)

in Γ. For example, x1, r1, !x2 is an environment, but x1, !x1 is not an environment.

— A judgement is an expression Γ � M, where Γ is an environment and M is a term.

We say that a judgement Γ � M is well formed (notation: 	Γ � M) if it is derivable by

means of the well-forming rules in Figure 1. The rules app and tens are subject to the

constraint that for each i �= j, we have Λi ∩ Λj = � (note that Λi and Λj are sets of linear

and quantum variables, being linear environments). We use d 	 Γ � M to mean that d is

a derivation of the well-formed judgement Γ � M. If Γ � M is well formed, we say also

that the term M is well formed with respect to the environment Γ. We say that a term M

is well formed if the judgement Q(M) � M is well formed.
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const
!Δ � C

q–var
!Δ, r � r

classic-var
!Δ, x � x

der
!Δ, !x � x

!Δ � M
prom

!Δ �!M

Λ1, !Δ � M Λ2, !Δ � N
app

Λ1,Λ2, !Δ � MN

Λ1, !Δ � M1 · · · Λk, !Δ � Mk

tens
Λ1, . . . ,Λk, !Δ � 〈M1, . . . ,Mk〉

Γ � M
new

Γ � new(M)

Γ, x1, . . . , xn � M
lam1

Γ � λ〈x1, . . . , xn〉.M

Γ, x � M
lam2

Γ � λx.M

Γ, !x � M
lam3

Γ � λ!x.M

Fig. 1. Well-forming rules

Proposition 1. If a term M is well formed, all the classical variables within it are bound.

4. Computations

As we noted earlier, the computations are defined by means of configurations. A

preconfiguration is a triple [Q,QV,M] where:

— M is a term;

— QV is a finite quantum variable set such that Q(M) ⊆ QV;

— Q ∈ H(QV).

Let θ : QV → QV′ be a bijective function from a (non-empty) finite set of quantum

variables QV to another set of quantum variables QV′. Then we can extend θ to any

term whose quantum variables are included in QV: we have θ(M) will be identical to

M, except on quantum variables, which are changed according to θ itself. Observe that

Q(θ(M)) ⊆ QV′. Similarly, θ can be extended to a function from H(QV) to H(QV′) in

the obvious way.

Definition 3 (Configurations). Two preconfigurations [Q,QV,M] and [Q′,QV′,M ′] are

equivalent if and only if there is a bijection θ : QV → QV′ such that Q′ = θ(Q) and

M ′ = θ(M). If a preconfiguration C is equivalent to D, we will write C ≡ D. The relation ≡
is an equivalence relation. A configuration is an equivalence class of preconfigurations

modulo the relation ≡. Let C be the set of configurations.

Remark 1. The way configurations have been defined, namely quotienting preconfigura-

tions over ≡, is very reminiscent of the usual α-conversion in lambda terms.

Let L = {Uq, new, l.β, q.β, c.β, l.cm, r.cm}. The set L will be ranged over by α, β, γ. For

each α ∈ L , we can define a reduction relation →α⊆ C × C by means of the rules in

Figure 2. Note the presence of two commutative reduction rules (namely l.cm and r.cm).

Since Q is untyped, the role of commutative reductions is not to guarantee that normal

forms have certain properties, but rather to prevent quantum reductions from blocking

classical ones (see Section 6).

For any subset S of L , we can construct a relation →S by taking the union over

α ∈ S of →α. In particular, we will use → to denote →L . The usual notation for the

transitive and reflexive closures will be used. In particular, we will use
∗→ to denote the

transitive and reflexive closure of →.
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β–reductions

[Q,QV, (λx.M)N] →l.β [Q,QV,M{N/x}] l.β

[Q,QV, (λ〈x1, . . . , xn〉.M)〈r1, . . . , rn〉] →q.β [Q,QV,M{r1/x1, . . . , rn/xn}] q.β

[Q,QV, (λ!x.M)!N] →c.β [Q,QV,M{N/x}] c.β

Unitary transform of quantum register

[Q,QV, U〈ri1 , . . . , rin〉] →Uq [U〈〈ri1 ,...,rin 〉〉Q,QV, 〈ri1 , . . . , rin〉] Uq

Creation of a new qubit and quantum variable

[Q,QV, new(c)] →new [Q ⊗ |r �→ c〉,QV ∪ {r}, r] new

(r is fresh)

Commutative reductions

[Q,QV, L((λπ.M)N)] →l.cm [Q,QV, (λπ.LM)N] l.cm

[Q,QV, ((λπ.M)N)L] →r.cm [Q,QV, (λπ.ML)N] r.cm

Context closure

[Q,QV,Mi] →α [Q′,QV′,M ′
i ]

ti
[Q,QV, , 〈M1, . . . ,Mi, . . . ,Mk〉] →α [Q′,QV′, 〈M1, . . . ,M

′
i , . . . ,Mk〉]

[Q,QV, N] →α [Q′,QV′, N ′]
r.a

[Q,QV,MN] →α [Q′,QV′,MN ′]

[Q,QV,M] →α [Q′,QV′,M ′]
l.a

[Q,QV,MN] →α [Q′,QV′,M ′N]

[Q,QV,M] →α [Q′,QV′,M ′]
in.new

[Q,QV, new(M)] →α [Q′,QV′, new(M ′)]

[Q,QV,M] →α [Q′,QV′,M ′]
in.λ1

[Q,QV, (λ!x.M)] →α [Q′,QV′, (λ!x.M ′)]

[Q,QV,M] →α [Q′,QV′,M ′]
in.λ2

[Q,QV, (λπ.M)] →α [Q′,QV′, (λπ.M ′)]

Fig. 2. Reduction rules.

Note that → is not a strategy (the only limitation is that we forbid reductions under

the scope of a ‘!’), nevertheless, confluence holds. This is in contrast with λsv , where a

strategy is indeed necessary (even if we do not take into account the non-deterministic

effects of the measurement operator).

4.1. Subject reduction

In this section we give a subject-reduction theorem and some related results.
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First we should stress that, even though Q is type-free, a set of admissible terms is

isolated through well-forming rules, so we need to prove that the class of well-formed

terms is closed under reduction.

Quantum variables can be created dynamically in Q. Consider, for example, the

reduction

[1,�, new(0)] →new [|p �→ 0〉, {p}, p].

The term new(0) does not contain any variable, while p is indeed a (quantum) variable.

In general, note that the new reduction rule

[Q,QV, new(c)] →new [Q ⊗ |r �→ c〉,QV ∪ {r}, r]

generates not only a new qubit, but also the new quantum variable r.

The Subject Reduction theorem must be given in the following form in order to

take into account the introduction of quantum variables during reduction: if d 	 Γ �
M and [Q,QV,M] → [Q′,QV′,M ′], then 	 Γ,QV′ − QV � M ′ where QV′ − QV is the

(possibly empty) set of quantum variables generated along the reduction. In our example,

we have 	 � new(0) and p � p is indeed well formed. In other words, we must guarantee

that terms appearing during reduction are well formed, taking into account the set of

quantum variables created in the reduction itself.

Theorem 1 (Subject Reduction). If d 	 Γ � M and [Q,QV,M] → [Q′,QV′,M ′], then

	 Γ,QV′ − QV � M ′.

Proof (sketch). In order to prove the theorem we need a number of intermediate results.

First we must prove that weakening is admissible, namely, if 	Γ � M and x does not

occur in Γ, then 	Γ, !x � M.

Then, as usual, the proof of subject reduction requires suitable substitution lemmas. In

particular we need to prove that:

Linear case: If 	Λ1, !Δ, x � M and 	Λ2, !Δ � N, with Λ1 ∩ Λ2 = �, then 	Λ1,Λ2, !Δ �
M{N/x}.

Non-linear case: If 	Λ1, !Δ, !x � M and 	 !Δ �!N, then 	Λ1, !Δ � M{N/x}.
Quantum case: For every non-empty sequence x1, . . . , xn, if 	Λ, !Δ, x1, . . . , xn � M and

r1, . . . , rn /∈ Λ, then 	Λ, !Δ, r1, . . . , rn � M{r1/x1, . . . , rn/xn}.
The proof of subject reduction is standard and proceeds by means of a long but easy

induction on the derivation of [Q,QV,M] → [Q′,QV′,M ′].

For the sake of clarity, we will just show one case: let us suppose that M is (λx.P )N

and the reduction rule is [Q,QV, (λx.P )N] →l.β [Q,QV, P {N/x}]. The derivation of M

must be

d1···
Λ1, !Δ, x � P

lam2
Λ1, !Δ � λx.P

d2···
Λ2, !Δ � N

app
Λ1,Λ2, !Δ � (λx.P )N
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Since the reduction does not modify QV, we just have to apply the substitution Lemma

(linear case) to d1 and d2, obtaining 	Λ1,Λ2, !Δ � P {N/x}.

The following is an immediate consequence (which is trivially provable by induction).

Corollary 1. If 	Γ � M and [Q,QV,M]
∗→ [Q′,QV′,M ′], then 	 Γ,QV′ − QV � M.

The notion of a well-formed judgement can be extended to configurations.

Definition 4. A configuration [Q,QV,M] is said to be well formed if and only if there is

a context Γ such that Γ � M is well formed.

As a consequence of subject reduction, the set of well-formed configurations is closed

under reduction.

Corollary 2. If M is well formed and [Q,QV,M]
∗→ [Q′,QV′,M ′], then M ′ is well formed.

In the following, when we write configuration we will mean well-formed configuration. We

will now define normal forms, configurations and computations.

Definition 5. A configuration C ≡ [Q,QV,M] is said to be in normal form if and only

if there is no D such that C → D. We will use NF to denote the set of configurations in

normal form.

We define a computation as a suitable sequence of configurations.

Definition 6. If C0 is a configuration, a computation of length ϕ � ω starting with C0 is

a sequence of configurations {Ci}i<ϕ such that for all 0 < i < ϕ, we have Ci−1 → Ci and

either ϕ = ω or Cϕ−1 ∈ NF.

If a computation starts with a configuration [Q0,QV0,M0] such that QV0 is empty (and,

therefore, Q(M0) is empty itself), then at each step i, the set QVi coincides with the set

Q(Mi).

Proposition 2. Let {[Qi,QVi,Mi]}i<ϕ be a computation such that Q(M0) = �. Then for

every i < ϕ, we have QVi = Q(Mi).

Proof. Observe that if [Q,Q(M),M] → [Q′,QV′,M ′], then, by inspection of the reduc-

tion rules, we immediately have that QV′ = Q(M ′) whenever QV = Q(M), which gives

the required result.

In the rest of the paper, we will use [Q,M] to denote the configuration [Q,Q(M),M].

4.2. On the linearity of the calculus: dynamics

As we have seen already, the well-forming rules ensure that any term in the form !M

cannot contain any quantum variables. In order to preserve this property under reduction,

reductions cannot be performed under the scope of a bang.
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Let us consider the following well-formed configuration: [1,�, (λ!x.cnot〈x, x〉)!(new(1))].

We can see immediately that !(new(1)) is a duplicable term because it does not contain

references to quantum data and, in fact, the following is a correct computation:

[1,�, (λ!x.cnot〈x, x〉)!(new(1))] →c.β [1,�, cnot〈new(1), new(1)〉]
2→new [|p �→ 1〉 ⊗ |q �→ 1〉, {p, q}, cnot〈p, q〉)]
→Uq [|p �→ 1〉 ⊗ |q �→ 0〉, {p, q}, 〈p, q〉].

However, what happens if we are allowed to reduce under the scope of the bang (namely

reducing new(1) before executing the c.β-reduction)? We would then obtain the following

computation:

[1,�, (λ!x.cnot〈x, x〉)!(new(1))] →new [|p �→ 1〉, {p}, (λ!x.cnot〈x, x〉)!(p)]
→q.β [|p �→ 1〉, {p}, cnot〈p, p〉)].

Note that we have duplicated the quantum variable p, creating a double reference to the

same qubit. As a consequence, we could apply a binary unitary transform (cnot) to a

single qubit (the one referenced by p), which is not compatible with the basic principles

of quantum computing.

4.3. Confluence

Commutative reduction steps behave very differently from other reduction steps when

considering confluence. As a consequence, it is useful to define two subsets of L as

follows.

Definition 7. We distinguish two particular subsets of L , namely K = {r.cm, l.cm} and

N = L − K .

In the following, we will write M →α N to mean that there are Q, QV, Q′ and QV′ such

that [Q,QV,M] →α [Q′,QV′, N]. Similarly, we will use the notation M →S N where S

is a subset of L .

First we need to show that whenever M →α N, the underlying quantum register evolves

uniformly.

Lemma 1 (Uniformity). For every M,M ′ such that M →α M
′, exactly one of the following

conditions holds:

1. α �= new and there is a unitary transformation UM,M ′ : H(Q(M)) → H(Q(M)) such

that [Q,QV,M] →α [Q′,QV′,M ′] if and only if [Q,QV,M] ∈ C, QV′ = QV and

Q′ = (UM,M ′ ⊗ IQV−Q(M))Q.

2. α = new and there are a constant c and a quantum variable r such that we have

[Q,QV,M] →new [Q′,QV′,M ′] if and only if [Q,QV,M] ∈ C, QV′ = QV ∪ {r} and

Q′ = Q ⊗ |r �→ c〉.

Proof. We use induction on M. M cannot be a variable, a constant, a unitary operator

or a term !N. If M is an abstraction λψ.N, then M ′ ≡ λψ.N ′, N →α N
′ and the
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thesis follows from the induction hypothesis. If M ≡ NL, we distinguish a number of

cases:

— M ′ ≡ N ′L and N →α N
′.

The thesis follows from the induction hypothesis.

— M ′ ≡ NL′ and L →α L
′.

The thesis follows from the induction hypothesis.

— N ≡ U, L ≡ 〈ri1 , . . . , rin〉 and M ′ ≡ 〈ri1 , . . . , rin〉.
In this case Condition 1 holds. In particular, Q(M) = {ri1 , . . . , rin} and UM,M ′ =

U〈〈ri1 ,...,rin 〉〉.

— N ≡ λx.P and M ′ = P {L/x}.
In this case Condition 1 holds. In particular UM,M ′ = IQ(M).

— N ≡ λ〈x1, . . . , xn〉.P , L = 〈r1, . . . , rn〉 and M ′ ≡ P {r1/x1, . . . , rn/xn}.
In this case Condition 1 holds and UM,M ′ = IQ(M).

— N ≡ λ!x.P , L =!Q and M ′ ≡ P {Q/x}.
In this case Condition 1 holds and UM,M ′ = IQ(M).

— L ≡ (λπ.P )Q and M ′ ≡ (λπ.NP )Q.

In this case Condition 1 holds and UM,M ′ = IQ(M).

— N ≡ (λπ.P )Q and M ′ ≡ (λπ.PL)Q.

In this case Condition 1 holds and UM,M ′ = IQ(M).

If M ≡ new(c), then M ′ is a quantum variable r and Condition 2 holds, which concludes

the proof.

Note that UM,M ′ is always the identity function when performing classical reduction.

The following technical lemma will be useful when proving confluence.

Lemma 2. Suppose [Q,QV,M] →α [Q′,QV′,M ′].

1. If [Q,QV,M{N/x}] ∈ C, then

[Q,QV,M{N/x}] →α [Q′,QV′,M ′{N/x}].

2. If [Q,QV,M{r1/x1, . . . , rn/xn}] ∈ C, then

[Q,QV,M{r1/x1, . . . , rn/xn}] →α [Q′,QV′,M ′{r1/x1, . . . , rn/xn}].

3. If 	x,Γ � N and [Q,QV, N{M/x}] ∈ C, then

[Q,QV, N{M/x}] →α [Q′,QV′, N{M ′/x}].

Proof. Claims 1 and 2 can be proved by induction on the proof of [Q,QV,M] →α

[Q′,QV′,M ′]. Claim 3 can be proved by induction on N.

A property similar to one-step confluence holds in Q. This is a consequence of having

adopted so-called surface reduction: it is not possible to reduce inside a subterm in the

form !M and, as a consequence, it is not possible to erase a diverging term. This has

already been pointed out in the literature (Simpson 2005).

Strictly speaking, one-step confluence does not hold in Q. For example, if

[Q,QV, (λπ.M)((λx.N)L)] ∈ C,
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then both

[Q,QV, (λπ.M)((λx.N)L)] →N [Q,QV, (λπ.M)(N{L/x})]
and

[Q,QV, (λπ.M)((λx.N)L)] →K [Q,QV, (λx.(λπ.M)N)L]

→N [Q,QV, (λπ.M)(N{L/x})].

However, this phenomenon can only occur because of the presence of commutative rules.

Proposition 3 (One-step confluence). Let C,D, E be configurations with C →α D, C →β E

and D �= E. Then:

1. If α ∈ K and β ∈ K , then there is F with D →K F and E →K F .

2. If α ∈ N and β ∈ N , then there is F with D →N F and E →N F .

3. If α ∈ K and β ∈ N , then either D →N E or there is F with D →N F and E →K F .

Proof. Let C ≡ [Q, QV ,M]. We use induction on M. We know that M cannot be

a variable, a constant or a unitary operator. If M is an abstraction λπ.N, then D ≡
[Q′,QV′, λπ.N ′], D′ ≡ [Q′′,QV′′, λπ.N ′′] and

[Q,QV, N] →α [Q′,QV′, N ′]

[Q,QV, N] →β [Q′′,QV′′, N ′′].

The induction hypothesis leads easily to the thesis. Similarly, when M ≡ λ!x.N. If

M ≡ NL, we can distinguish a number of cases depending on the last rule used to prove

C →α D, C →β E:

— D ≡ [Q′,QV′, N ′L] and E ≡ [Q′′,QV′′, NL′]

where [Q,QV, N] →α [Q′,QV′, N ′] and [Q,QV, L] →β [Q′′,QV′′, L′].

We need to distinguish four sub-cases:

– If α, β = new, then, by Lemma 1, there exist two quantum variables r′, r′′ /∈ QV and

two constants c′, c′′ such that QV′ = QV∪{r′}, QV′′ = QV∪{r′′}, Q′ = Q⊗|r′ �→ c′〉
and Q′′ = Q ⊗ |r′′ �→ c′′〉. Applying Lemma 1 again, we obtain

D →new [Q ⊗ |r′ �→ c′〉 ⊗ |r′′′ �→ c′′〉,QV ∪ {r′, r′′′}, N ′L′{r′′′/r′′}] ≡ F

E →new [Q ⊗ |r′′ �→ c′′〉 ⊗ |r′′′′ �→ c′〉,QV ∪ {r′′, r′′′′}, N ′{r′′′′/r′}L′] ≡ G.

It is easy to check that F ≡ G.

– If α = new and β �= new, then, by Lemma 1, there exists a quantum variable r

and a constant c such that QV′ = QV ∪ {r}, Q′ = Q ⊗ |r �→ c〉, QV′′ = QV and

Q′′ = (UL,L′ ⊗ IQV−Q(L))Q. As a consequence, applying Lemma 1 again, we obtain

D →β [(UL,L′ ⊗ IQV∪{r}−Q(L))(Q ⊗ |r �→ c〉),QV ∪ {r}, N ′L′] ≡ F

E →new [((UL,L′ ⊗ IQV−Q(L))Q) ⊗ |r �→ c〉,QV ∪ {r}, N ′L′] ≡ G.

It is easy to check that F ≡ G.

– If α �= new and β = new, we can proceed as in the previous case.
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– If α, β �= new, then, by Lemma 1, there exist QV′′ = QV′ = QV, Q′ = (UN,N ′ ⊗
IQV−Q(N))Q and Q′′ = (UL,L′ ⊗ IQV−Q(L))Q. Applying Lemma 1 again, we obtain

D →β [(UL,L′ ⊗ IQV−Q(L))((UN,N ′ ⊗ IQV−Q(N))Q),QV, N ′L′] ≡ F

E →α [(UN,N ′ ⊗ IQV−Q(L))((UL,L′ ⊗ IQV−Q(L))Q),QV, N ′L′] ≡ G.

It is easy to check that F ≡ G.

— D ≡ [Q′,QV′, N ′L] and E ≡ [Q′′,QV′′, N ′′L],

where [Q, QV ,N] → [Q′, QV ′, N ′] and [Q,QV, N] → [Q′′,QV′′, N ′′].

For this case we can apply the induction hypothesis.

— D ≡ [Q′,QV′, NL′] and E ≡ [Q′′,QV′′, NL′′],

where [Q, QV , L] → [Q′, QV ′, L′] and [Q,QV, L] → [Q′′,QV′′, L′′].

For this case we can also apply the induction hypothesis.

— N ≡ (λx.P ), D ≡ [Q,QV, P {L/x}], E ≡ [Q′,QV′, NL′],

where [Q,QV, L] →β [Q′,QV′, L′].

Clearly, [Q,QV, P {L/x}] ∈ C and, by Lemma 2,

[Q,QV, P {L/x}] → [Q′,QV′, P {L′/x}].

Moreover, [Q′,QV′, NL′] ≡ [Q′,QV′, (λx.P )L′] → [Q′,QV′, P {L′/x}].
— N ≡ (λx.P ), D ≡ [Q,QV, P {L/x}] and E ≡ [Q′,QV′, (λx.P ′)L],

where [Q,QV, P ] →β [Q′,QV′, P ′].

Clearly, [Q,QV, P {L/x}] ∈ C and, by Lemma 2,

[Q,QV, P {L/x}] →β [Q′,QV′, P ′{L/x}].

Moreover, [Q′,QV′, (λx.P ′)L] →β [Q′,QV′, P ′{L/x}].
— N ≡ (λ!x.P ), L ≡!Q, D ≡ [Q,QV, P {Q/x}] and E ≡ [Q′,QV′, (λ!x.P ′)L],

where [Q,QV, P ] →β [Q′,QV′, P ′].

Clearly, [Q,QV, P {Q/x}] ∈ C and, by Lemma 2,

[Q,QV, P {Q/x}] →β [Q′,QV′, P ′{Q/x}].

Moreover, [Q′,QV′, (λx.P ′)!Q] →β [Q′,QV′, P ′{Q/x}].
— N ≡ (λ〈x1, . . . , xn〉.P ), L ≡ 〈r1, . . . , rn〉, D ≡ [Q,QV, P {r1/x1, . . . , rn/xn}], and E ≡

[Q′,QV′, (λ〈x1, . . . , xn〉.P ′)L],

where [Q,QV, P ] →β [Q′,QV′, P ′].

Clearly, [Q,QV, P {r1/x1, . . . , rn/xn}] ∈ C and, by Lemma 2,

[Q,QV, P {r1/x1, . . . , rn/xn}] →β [Q′,QV′, P ′{r1/x1, . . . , rn/xn}].

Moreover, [Q′,QV′, (λ〈x1, . . . , xn〉.P ′)L] →β [Q′,QV′, P ′{r1/x1, . . . , rn/xn}].
— N ≡ (λx.P )Q, D ≡ [Q,QV, (λx.PL)Q] and E ≡ [Q,QV, (P {Q/x})L] with α = r.cm,

β = l.β.

Clearly, [Q,QV, (λx.PL)Q] →l.β [Q,QV, (P {Q/x})L].

— N ≡ (λπ.P )Q, D ≡ [Q,QV, (λπ.PL)Q] and E ≡ [Q′,QV′, ((λπ.P ′)Q)L] with α = r.cm,

where [Q,QV, P ] →β [Q′,QV′, P ′].

Clearly,

[Q,QV, (λx.PL)Q] →r.cm [Q′,QV′, (λx.P ′L)Q]
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and

[Q′,QV′, ((λπ.P ′)Q)L] →β [Q′,QV′, (λπ.P ′L)Q].

— N ≡ (λπ.P )Q, D ≡ [Q,QV, (λx.PL)Q] and E ≡ [Q′,QV′, ((λπ.P )Q′)L] with α = r.cm,

where [Q,QV, Q] →β [Q′,QV′, Q′].

Clearly,

[Q,QV, (λx.PL)Q] →r.cm [Q′,QV′, (λx.PL)Q′]

and

[Q′,QV′, ((λπ.P )Q′)L] →β [Q′,QV′, (λπ.PL)Q′].

— N ≡ (λπ.P )Q, D ≡ [Q,QV, (λx.PL)Q] and E ≡ [Q′,QV′, ((λπ.P )Q)L′] with α = r.cm,

where [Q,QV, L] →β [Q′,QV′, L′].

Clearly,

[Q,QV, (λx.PL)Q] →r.cm [Q′,QV′, (λx.PL′)Q]

and

[Q′,QV′, ((λπ.P )Q)L′] →β [Q′,QV′, (λπ.PL′)Q].

— N ≡ (λπ.P ), L ≡ (λx.Q)R, D ≡ [Q,QV, (λx.NQ)R] and E ≡ [Q,QV, N(Q{R/x})] with

α = l.cm, β = l.β.

Clearly,

[Q,QV, (λx.NQ)R] → l.β[Q,QV, N(Q{R/x})].
M cannot be in the form new(c) as that would give D ≡ E.

Even in the absence of types, we cannot build an infinite sequence of commuting

reductions.

Lemma 3. The relation →K is strongly normalising. In other words, there cannot be any

infinite sequence C1 →K C2 →K C3 →K . . . .

Proof. Define the size |M| of a term M as the number of symbols in it, and define the

abstraction size |M|λ of M as the sum over all subterms of M having the form λπ.N, of

|N|. Clearly |M|λ � |M|2. Moreover, if [Q,QV,M] →K [Q,QV, N], then |N| = |M| but

|N|λ > |M|λ. This concludes the proof.

Finally, we can prove the main results of this section.

Theorem 2 (Unicity of normal forms). Any configuration C has at most one normal form.

Proof. If C is a configuration and D and E are distinct normal forms for C , we can

iteratively apply Proposition 3 to get a configuration F such that both D
∗→ F and E

∗→ F ,

which gives a contradiction.

Since a very strong notion of confluence holds here, strong normalisation and weak

normalisation are equivalent properties of configurations.

Theorem 3. C is strongly normalising if and only if C is weakly normalising.
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5. Examples

In this section we will give some simple examples showing how to compute with Q when

the length of the input is fixed. In Section 7.2 we will show in detail how to code (infinite)

circuit families.

EPR states

We define a lambda term representing a quantum circuit that generates an EPR state.

EPR states are entangled quantum states used by Einstein, Podolsky and Rosen in a

famous thought experiment on Quantum Mechanics (1935).

EPR states can be obtained easily by means of cnot and Hadamard’s unitary operator

H. The general schema of the term is

M ≡ λ〈x, y〉.(cnot〈Hx, y〉)).

The term M takes two qubits as input and then gives an EPR (entangled) state as output.
We will now give an example of computation, with [1,M 〈new(0), new(1)〉] as initial

configuration, where 〈new(0), new(1)〉 is the input:

[1,M 〈new(0), new(1)〉] 2→new [|p �→ 0〉 ⊗ |q �→ 1〉, (λ〈x, y〉.(cnot〈Hx, y〉))〈p, q〉]
→q.β [|p �→ 0〉 ⊗ |q �→ 1〉, (cnot〈H p, q〉)]

→Uq [
|p �→ 0〉 + |p �→ 1〉√

2
⊗ |q �→ 1〉, (cnot〈p, q〉)]

→Uq [
|p �→ 0, q �→ 0〉 + |p �→ 1, q �→ 1〉√

2
, 〈p, q〉].

After some reduction steps, two quantum variables p and q appear in the term and the

quantum register is modified accordingly. Finally, unitary operators corresponding to cnot

and H are applied to the quantum register. The quantum register

|p �→ 0, q �→ 0〉 + |p �→ 1, q �→ 1〉√
2

is the so-called β00 EPR state.

Deutsch’s algorithm

Deutsch’s algorithm was the first quantum algorithm to be defined. It has interesting

applications: for example, it allows us to compute a global property of a function

by combining results from two components of a superposition. We refer here to the

presentation of Deutsch’s algorithm given in Nielsen and Chuang (2000, pages 32–33) – a

detailed explanation of the algorithm is beyond the scope of the current paper.

Let Wf be the unitary transform such that Wf |c1c2〉 = |c1, c2 ⊕ f(c1)〉 (for any given

boolean function f), and let H be the Hadamard transform.

The general quantum circuit that implements Deutsch’s algorithm is represented by the

following lambda term:

D ≡ λ〈x, y〉.((λ〈w, z〉.〈Hw, z〉)(Wf〈Hx,H y〉)).

Deutsch’s algorithm makes use of quantum parallelism and interference in order to

determine whether f is a constant function by means of a single evaluation of f(x).
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In order to perform such a task, we first evaluate the normal form of

[1,D〈new(0), new(1)〉]

as follows:

[1,D〈new(0), new(1)〉]
2→new [|p �→ 0〉 ⊗ |q �→ 1〉, (λ〈x, y〉(λ〈w, z〉.〈Hw, z〉)(Wf〈Hx,H y〉))〈p, q〉]

→q.β [|p �→ 0〉 ⊗ |q �→ 1〉, (λ〈w, z〉.〈Hw, z〉)(Wf〈H p,H q〉)]

→Uq [
|p �→ 0〉 + |p �→ 1〉√

2
⊗ |q �→ 1〉, (λ〈w, z〉.〈Hw, z〉)(Wf〈p,H q〉)]

→Uq [
|p �→ 0〉 + |p �→ 1〉√

2
⊗ |q �→ 0〉 − |q �→ 1〉√

2
, (λ〈w, z〉.〈Hw, z〉)(Wf〈p, q〉)]

= [
|p �→ 0, q �→ 0〉

2
− |p �→ 0, q �→ 1〉

2
+

|p �→ 1, q �→ 0〉
2

+

|p �→ 1, q �→ 1〉
2

, (λ〈w, z〉.〈Hw, z〉)(Wf〈p, q〉)]

→Uq [
|p �→ 0, q �→ 0 ⊕ f(0)〉

2
− |p �→ 0, q �→ 1 ⊕ f(0)〉

2
+

|p �→ 1, q �→ 0 ⊕ f(1)〉
2

+

|p �→ 1, q �→ 1 ⊕ f(1)〉
2

, (λ〈w, z〉.〈Hw, z〉)〈p, q〉)]

→q.β [
|p �→ 0, q �→ 0 ⊕ f(0)〉

2
− |p �→ 0, q �→ 1 ⊕ f(0)〉

2
+

|p �→ 1, q �→ 0 ⊕ f(1)〉
2

+

|p �→ 1, q �→ 1 ⊕ f(1)〉
2

, 〈H p, q〉]

→Uq [
|p �→ 0〉 + |p �→ 1〉√

2
⊗ |q �→ 0 ⊕ f(0)〉

2
− |p �→ 0〉 + |p �→ 1〉√

2
⊗ |q �→ 1 ⊕ f(0)〉

2
+

|p �→ 0〉 − |p �→ 1〉√
2

⊗ |q �→ 0 ⊕ f(1)〉
2

+
|p �→ 0〉 − |p �→ 1〉√

2
⊗ |q �→ 1 ⊕ f(1)〉

2
, 〈p, q〉].

We have two cases:

— f is a constant function; that is, f(0) ⊕ f(1) = 0.

In this case the normal form may be rewritten (by means of simple algebraic

manipulations) as

[(−1)f(0)|p �→ 0〉 ⊗ |q �→ 0〉 − |q �→ 1〉√
2

, 〈p, q〉].

— f is not a constant function; that is, f(0) ⊕ f(1) = 1.

In this case the normal form may be rewritten as

[(−1)f(0)|p �→ 1〉 ⊗ |q �→ 0〉 − |q �→ 1〉√
2

, 〈p, q〉].

If we measure (by means of a final external apparatus) the first qubit p of the term 〈p, q〉
in the normal form configuration, we obtain 0 if f is constant and 1 otherwise.

Exchange

Consider the following lambda term, written in Q’s syntax:

L ≡ λ〈x, y〉.(λ〈a, b〉.cnot〈b, a〉)((λ〈w, z〉.cnot〈z, w〉)(cnot〈x, y〉)).

L is a quantum circuit that performs the exchange of a pair of qubits.
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[1,L 〈new(1),new(0)〉]
2→ [|p�→1〉⊗|q �→0〉,(λ〈x,y〉.(λ〈a,b〉.cnot〈b,a〉)((λ〈w,z〉.cnot〈z,w〉)(cnot〈x,y〉))〈p,q〉] (1)

→q.β [|p�→1〉⊗|q �→0〉,(λ〈a,b〉.cnot〈b,a〉)((λ〈w,z〉.cnot〈z,w〉)cnot〈p,q〉])

→Uq [|p�→1〉⊗|q �→1〉,(λ〈a,b〉.cnot〈b,a〉)((λ〈w,z〉.cnot〈z,w〉)〈p,q〉)]

→q.β [|p�→1〉⊗|q �→1〉,(λ〈a,b〉.cnot〈b,a〉)cnot〈q,p〉]

→Uq [|p�→0〉⊗|q �→1〉,(λ〈a,b〉.cnot〈b,a〉)〈q,p〉]

→q.β [|p�→0〉⊗|q �→1〉,(cnot〈p,q〉)]

→Uq [|p�→0〉⊗|q �→1〉,〈p,q〉]. (2)

Note that the values attributed to p and q in the underlying quantum register are

exchanged between configurations (1) and (2).

6. Standardising computations

One of the most interesting properties of Q is the capability of performing computational

steps in the following order:

1 Perform classical reductions.

2 Perform reductions that build the underlying quantum register.

3 Perform quantum reductions.

In this section we prove a standardisation theorem that strengthens the common idea that

a universal quantum computer should consist of a classical device ‘setting up’ a quantum

circuit, which is then fed with an input.

We distinguish three particular subsets of L , namely, Q = {Uq, q.β}, nC = Q ∪ {new},
and C = L − nC . Let C →α D and M be the relevant redex in C: if α ∈ Q, the redex M

is said to be quantum; if α ∈ C , the redex M is said to be classical.

Definition 8. A configuration C is said to be non-classical if α ∈ nC whenever C →α D.

Let NCL be the set of non-classical configurations. A configuration C is said to be

essentially quantum if α ∈ Q whenever C →α D. Let EQT be the set of essentially quantum

configurations.

Before stating the standardisation theorem, we need the following definition.

Definition 9. A CNQ computation starting with a configuration C is a computation {Ci}i<ϕ
such that C0 ≡ C , ϕ � ω and:

1. for every 1 < i+ 1 < ϕ, if Ci−1 →nC Ci, then Ci →nC Ci+1;

2. for every 1 < i+ 1 < ϕ, if Ci−1 →Q Ci, then Ci →Q Ci+1.

More informally, a CNQ computation is a computation such that any new reduction

is always performed after any classical reduction and any quantum reduction is always

performed after any new reduction.

NCL is closed under new reductions, while EQT is closed under quantum reductions.

Lemma 4. If C ∈ NCL and C →new D, then D ∈ NCL.
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Lemma 5. If C ∈ EQT and C →Q D, then D ∈ EQT.

In this way we are able to state and prove the Standardisation Theorem.

Theorem 4 (Standardisation). For every computation {Ci}i<ϕ such that ϕ ∈ �, there is a

CNQ computation {Di}i<ξ such that C0 ≡ D0 and Cϕ−1 ≡ Dξ−1.

Proof. We build a CNQ computation in three steps:

1 We start by reducing D0 ≡ C0 using C reductions as much as possible. By Theorem 3,

we must obtain a finite reduction sequence D0 →C . . . →C Dk such that 0 � k and no

C reductions are applicable to Dk
2 Reduce Dk using new reductions as much as possible. By Theorem 3 we must obtain a

finite reduction sequence Dk →new . . . →new Dj such that k � j and no new reductions

are applicable to Dj . Note that by Lemma 4 such reduction steps cannot generate

classical redexes and, in particular, no classical redex can appear in Dj .

3 Reduce Dj using Q reductions as much as possible. By Theorem 3, we must obtain a

finite reduction sequence Dj →Q . . . →Q Dm such that j � m and no Q reductions are

applicable to Dm. Note that by Lemma 5, such reduction steps can generate neither

C redexes nor new redexes, and, in particular, neither C nor new reductions are

applicable to Dm. Therefore, Dm is in normal form.

The reduction sequence {Di}i<m+1 is such that D0 →C . . . →C Dk →new . . . →new Dj →Q

. . . →Q Dm is a CNQ computation. By Theorem 2, we observe that Cϕ−1 ≡ Dm, which

implies the thesis.

The intuition behind a CNQ computation is that the first phase of the computation is

responsible for the construction of a λ-term (abstractly) representing a quantum circuit and

does not touch the underlying quantum register. The second phase then builds the quantum

register without introducing any superposition. Finally, the third phase corresponds to

proper quantum computation (unitary operators are applied to the quantum register,

possibly introducing superposition). This intuition will become a technical recipe for

proving one side of the equivalence between Q and the quantum circuit families formalism

(see Section 7.3).

We conclude by examining the case of non-terminating computations. From a quantum

point of view, non-terminating computations are not particularly interesting since there is

no final measurable quantum state, and, consequently, the transformations of the quantum

register are inaccessible (see also Section 8 for a discussion of the absence of measurements

in Q).

The extension of standardisation to the infinite case makes this observation explicit.

First note that we cannot have an infinite sequence of nC reductions.

Lemma 6. The relation →nC is strongly normalising (that is, there cannot be any infinite

sequence C1 →nC C2 →nC C3 →nC . . .).

Proof. Define the size |M| of a term M as the number of symbols within it. Observe

that if [Q,QV,M] →nC [Q,QV, N], we have |N| < |M|, which gives the result.

As a trivial consequence of the Lemma we have the following result.
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Proposition 4. Any infinite CNQ computation only includes classical reduction steps.

Finally, we can state the following theorem.

Theorem 5 (Standardisation for infinite computations). There is for every non-terminating

computation {Ci}i<ω , a CNQ computation {Di}i<ω such that C0 ≡ D0.

Proof. We build the CNQ computation by first reducing D0 ≡ C0 using C reductions

as much as possible. However, this procedure cannot end, otherwise we would contradict

Lemma 6 and Theorem 3.

7. Expressive power

In this section we study the expressive power of Q, showing that it is equivalent to finitely

generated quantum circuit families, and, consequently (through the result of Ozawa and

Nishimura (Nishimura and Ozawa 2008)), we have equivalence with quantum Turing

machines as defined by Bernstein and Vazirani (Bernstein and Vazirani 1997). The fact

that the class of circuit families we consider only contains finitely generated ones is not

accidental: if we want to represent an entire family by one single lambda term (which is,

by definition, a finite object), we must restrict consideration to families that are generated

by a discrete set of gates.

Before going into the details, we will give an informal description of how our encoding

works. Data will be encoded using some variations on Scott numerals (Wadsworth 1980).

These can be used for both classical and quantum data. In the latter case, a more

strict linear discipline (in general, quantum bits cannot be erased) is enforced through

a slightly different encoding. Our analysis will concentrate on terms in Q satisfying a

simple constraint: when applied to a list of classical bits, they produce a list of quantum

variables. These are the quantum relevant terms. The crucial feature from a computational

point of view is the way a quantum relevant term may modify the underlying quantum

register.

7.1. Q and the lambda calculus

The careful reader might be tempted to believe that since the usual pure, untyped lambda

calculus can be embedded in Q, the encoding of circuit families into Q should be very

easy. The situation, however, is slightly more complicated.

It is true that Girard’s encodings of intuitionistic logic into linear logic can be generalised

in some way to translations from pure, untyped, lambda calculus to untyped linear lambda

terms, like the ones of Q (see, for example, Wadler (1994)). Beta reduction in the lambda

calculus, however, does not correspond to surface reduction in Q. For example, consider

the lambda term M ≡ x((λy.yy)(λy.yy)): it is not normalisable, but its (call-by-name)

translation M ≡ x!((λ!y.y!y)!(λ!y.y!y)) is clearly a normal form in Q. There are some

connections between weak head reduction in the lambda calculus and surface reduction

in Q: if M rewrites to N by weak head reduction, then M rewrites to N in Q. However,
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the converse is not true: M = λx.((λy.yy)(λy.yy)) is a weak head normal form, but M is

not normalisable in Q. Similar considerations hold for weak call-by-value reduction when

the translation function (·) is the one induced by the embedding A → B ≡!(A � B). On

the other hand, lambda calculus is Turing complete for any decent encoding of natural

numbers into it. This holds for Scott numerals, for example. But does this correspondence

scale down to more restricted notions of reduction, such as weak head reduction?

Even if there is a positive answer to this question, that would not be the end of the

story. If Q is proved to have the classical expressive power of Turing machines, this simply

implies you could compute the code Dn of the n-th circuit Cn of any quantum circuit

family from input n. But Dn is just a natural number, the ‘Gödel number’ of Cn. Since you

want to evaluate Cn inside Q, you need to prove that the correspondence Dn �→ Cn is itself

representable in Q, and since the way quantum circuits are represented and evaluated in Q

has nothing to do with Scott numerals, this is not a consequence of the alleged (classical)

Turing completeness of Q.

For these reasons, we have decided to show the encoding of Quantum circuit families

into Q in full detail. This is the subject of Section 7.2.

7.2. Encoding quantum circuits families

In this section we will show that each (finitely generated) quantum circuit family can be

captured by a quantum relevant term.

7.2.1. On the classical strength of Q. Natural numbers are encoded as Q terms as follows:

�0� = !λ!x.λ!y.y

∀n �n+ 1� = !λ!x.λ!y.x�n�.

In this way we can compute the successor and predecessor of a natural number as follows:

succ = λz.!λ!x.λ!y.xz

pred = λ!z.z!(λx.x)!�0�.

Indeed,

succ �n� →C !λ!x.λ!y.x�n� ≡ �n+ 1�

pred �0� →C (λ!x.λ!y.y)!(λx.x)!�0� ∗→C �0�
pred �n+ 1� →C (λ!x.λ!y.x�n�)!(λx.x)!�0� →C (λx.x)�n�

→C �n�.

The following terms are very useful when writing definitions by cases:

casenat
0 ≡ λ!x.λ!y0.λ!z.x!(λ!w.z)!y0

casenat
n+1 ≡ λ!x.λ!y0. . . . .λ!yn+1.λ!z.x!(λ!w.casenat

n w!y1 . . .!yn+1!z)!y0.
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They behave as follows:

∀m � n casenat
n �m�!M0 . . .!Mn!N

∗→C Mm

∀m > n casenat
n �m�!M0 . . .!Mn!N

∗→C N.

We can capture linear lists, too: given any sequence M1, . . . ,Mn of terms (where n � 0),

we can build a term [M1, . . . ,Mn] encoding the sequence by induction on n:

[] = λ!x.λ!y.y

[M,M1 . . . ,Mn] = λ!x.λ!y.xM[M1, . . . ,Mn].

This way we can construct and destruct lists in a principled way: terms cons and sel can

be built as follows:

cons = λz.λw.λ!x.λ!y.xzw

sel = λx.λy.λz.xyz.

They behave on lists as follows:

cons M[M1, . . . ,Mn]
∗→C [M,M1, . . . ,Mn]

sel []!N!L
∗→C L

sel [M,M1, . . . ,Mn]!N!L
∗→C NM[M1, . . . ,Mn].

By exploiting cons and sel, we can build more advanced constructors and destructors.

Thus, for every natural number n there are terms appendn and extractn behaving as

follows:

appendn[N1, . . . , Nm]M1 . . .Mn
∗→C [M1, . . . ,Mn,N1, . . . , Nm]

∀m � n extractnM[N1, . . . , Nm]
∗→C M[]NmNm−1 . . . N1

∀m > n extractnM[N1, . . . Nm]
∗→C M[Nn+1 . . . Nm]NnNn−1 . . . N1.

Terms appendn can be built by induction on n:

append0 = λx.x

appendn+1 = λx.λy1. . . . .λyn+1.cons y1(appendnxy2 . . . yn+1).

Similarly, terms extractn can be built inductively:

extract0 = λx.λy.xy

extractn+1 = λx.λy.(sel y!(λz.λw.λv.extractnvwz)!(λz.z[]))x.
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The encodings of natural numbers and lists are similar, and are both in the style of

the so-called Scott numerals (Wadsworth 1980). However, there is an essential difference

between the two:

— Natural numbers are encoded non-linearly: any natural number is duplicable by

construction, since it has the shape !M for some M.
— Lists are encoded linearly: the occurrences of M and [M1, . . . ,Mn] that are part of

[M,M1, . . . ,Mn] do not lie in the scope of any bang operator.

We need recursion and iteration so that we can build up terms in a functional-

programming style. The term rec is defined as recaux!recaux, where

recaux ≡ λ!x.λ!y.y!((x!x)!y).

For each term M,

rec!M
∗→C M!(rec!M).

This will help us in encoding algorithms using recursion. Structural recursion over natural

numbers is available through recnat ≡ rec!recnat
aux, where

recnat
aux ≡ λ!x.λy.λ!w.λ!z.y!(λ!v.w!(x!v!w!z)!v)!z.

Indeed,

recnat �0�!M!N
∗→C recnat

aux !(recnat)�0�!M!N
∗→C (λ!x.λ!y.y)!(λ!v.M!(recnat !v!M!N)!v)!N
∗→C N

recnat �n+ 1�!M!N
∗→C (λ!x.λ!y.x�n�)!(λ!v.M!(recnat !v!M!N)!v)!N
∗→C (λ!v.M!(recnat !v!M!N)!v)!�n�
∗→C M!(recnat �n�!M!N)!�n�.

Iteration is available on lists too. Let iterlist ≡ rec!iterlist
aux, where

iterlist
aux ≡ λ!x.λy.λ!w.λ!z.y!(λv.λu.w(xu!w!z)v)!z.

Indeed,

iterlist []!M!N
∗→C iterlist

aux !(iterlist)[]!M!N
∗→C []!(λv.λu.M(iterlist u!M!N)v)!N
∗→C N

iterlist [L,L1, . . . , Ln]!M!N
∗→C [L,L1, . . . , Ln]!(λv.λu.M(iterlist u!M!N)v)!N
∗→C (λv.λu.M(iterlist u!M!N)v)L[L1, . . . , Ln]
∗→C M(iterlist[L1, . . . , Ln]!M!N)L.

Definition 10. A (partial) function f : �n → � is representable if and only if there is a

term Mf such that:

— Whenever Mf�m1� . . . �mn� has a normal form N (with respect to
∗→C ), we have

N ≡ �m� for some natural number m.
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— Mf�m1� . . . �mn�
∗→C �m� if and only if f(m1, . . . , mn) is defined and equal to m.

As we mentioned at the beginning of this section, the following result is part of the

folklore, but it deserves an explicit proof since the reduction relation considered here is

not the standard one.

Proposition 5. The class of representable functions coincides with the class of partial

recursive functions (on natural numbers).

Proof. Kleene’s partial recursive functions can be embedded into Q:

— Constant functions, the successor and projections can be encoded easily.

— The composition f : �m → � of h : �n → � and g1, . . . , gn : �m → � can be

represented as follows:

Mf ≡ λ!x1. . . . .λ!xm.Mh(Mg1
!x1 . . .!xm) . . . (Mgn!x1 . . .!xm).

— The function f : �n+1 → � obtained from h : �n+2 → � and g : �n → � by

primitive recursion can be represented as follows:

Mf ≡ λy.λ!x1. . . . .λ!xn.recnaty!(λz.λw.Mhwz!x1 . . .!xn)!(Mg!x1 . . .!xn).

— The function f : �n → � obtained from g : �n+1 → � and by minimisation can be

represented as follows:

Mf ≡ λx1. . . . .λxn.rec!(Ng)�0�x1 . . . xn

where

Ng ≡ λ!x.λ!y.λ!x1. . . . .λ!xn.(Mg!y!x1 . . .!xn)!(λ!z.x(succ!y)!x1 . . .!xn)!y.

On the other hand, any representable function is trivially partially recursive.

Quantum relevant terms. In this section, we will introduce the class of quantum relevant

terms. In the next sections, we will prove that the class of functions that are captured by

quantum relevant terms coincides with the class of functions that can be computed by

finitely generated quantum circuit families.

Definition 11. Let S be any subset of L . The expression C ⇓S D means that C
∗→S D

and D is in normal form with respect to the relation →S . We will write C ⇓ D to stand

for C ⇓L D.

Confluence and the equivalence between weakly normalising and strongly normalising

configurations allow the following definition.

Definition 12. A term M is said to be quantum relevant (written qrel for short) if it is

well formed and for each list ![!c1, . . . , !cn] there are a quantum register Q and a natural

number m such that [1,�,M![!c1, . . . , !cn]] ⇓ [Q, {r1, . . . , rm}, [r1, . . . , rm]].

In other words, a quantum relevant term is the analogue of a pure λ-term representing a

function on natural numbers. One can see immediately that the class of qrel terms is not

recursively enumerable.
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Circuits. We now need to introduce the notion of a (finitely generated) quantum circuit

family. This is the computational model that will prove equivalent to Q.

An n-qubit gate (or, simply, a qubit gate) is a unitary operator U : �2n → �2n , and a

V-qubit gate (where V is a qvs) is a unitary operator G : H(V) → H(V). We will work

here with elementary operators only. If G is a set of qubit gates, a V-circuit K based on

G is a sequence

U1, r
1
1 , . . . , r

1
n1
, . . . ,Um, r

m
1 , . . . , r

m
nm

where, for every 1 � i � m, we have:

— Ui is an ni-qubit gate in G.

— ri1, . . . , r
i
ni

are distinct quantum variables in V.

The V-gate determined by a V-circuit

K = U1, r
1
1 , . . . , r

1
n1
, . . . ,Um, r

m
1 , . . . , r

m
nm

is the unitary operator

UK = (Um)〈〈rm1 ,...,rmnm 〉〉 ◦ . . . ◦ (U1)〈〈r11 ,...,r1n1 〉〉.

The way we have defined unitary operators allows us to talk about effective encodings

of circuits as natural numbers and, as a consequence, about effective enumerations of

quantum circuits. Let {Ki}i∈� be an effective enumeration of quantum circuits. A family

of circuits generated by G is a triple (f, g, h) where:

— f : � → � is a computable function.

— g : � × � → � is a computable function such that 0 � g(n, m) � n + 1 whenever

1 � m � f(n).

— h : � → � is a computable function such that for every n ∈ �, we have Kh(n) is a

{r1, . . . , rf(n)}-circuit based on G.

Any family of circuits (f, g, h) induces a function Φf,g,h (the function induced by (f, g, h))

that, when given any finite sequence c1, . . . , cn in {0, 1}∗, will return an element of

H({r1, . . . , rf(n)}),

Φf,g,h(c1, . . . , cn) = UKh(n)
(|r1 �→ cg(n,1), . . . , rf(n) �→ cg(n,f(n))〉)

where c0, cn+1 are assumed to be 0 and 1, respectively. A family of circuits (f, g, h)

generated by a finite set G is said to be finitely generated.

7.2.2. The result. In this section we will show that Q is at least as computationally strong

as finitely generated quantum circuit families. Our task will not be too difficult since we

already know from Proposition 5 that any recursive function can be represented in Q. As

a consequence, we can assume that f, g and h are representable whenever (f, g, h) is a

family of circuits.

The n-th elementary permutation of m elements (where 1 � n < m) is the function that

maps n to n+ 1, n+ 1 to n and any other elements in the interval 1, . . . , m to itself.

Lemma 7. Any (finite) permutation can be effectively decomposed into a product of

elementary permutations.
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A term M computes the n-th elementary permutation on lists if and only if for every list

[N1, . . . , Nm] with m > n, we have

M[N1, . . . , Nm]
∗→C [N1, . . . , Nn−1, Nn+1, Nn, Nn+2, . . . , Nm].

Lemma 8. There is a term Mel such that for every natural number n, Mel �n� computes

the n+ 1-st elementary permutation on lists.

Proof. For every n < m, let ρnm be the n-th elementary permutation of m elements.

Observe that ρn+1
m (1) = 1 (whenever n + 1 < m) and that ρn+1

m (i + 1) = ρnm−1(i) + 1

(whenever i < m). Mel is the term

λx.recnat x!N!L

where

N ≡ λ!y.λ!z.λw.extract1(λq.λs.append1(yq)s)w

L ≡ λy.extract2(λz.λw.λq.append2zwq)y.

Indeed,

Mel �0� →C recnat �0�!N!L →C L

L[M1, . . . ,Mm] →C extract2(λz.λw.λq.append2zwq)[M1, . . . ,Mm]
∗→C (λz.λw.λq.append2zwq)[M3, . . . ,Mm]M2M1

∗→C append2[M3, . . . ,Mm]M2M1

∗→C [M2,M1,M3, . . . ,Mm] ≡ [Mρ1
m(1), . . . ,Mρ1

m(m)]

Mel �n+ 1� →C recnat �n+ 1�!N!L →C L
∗→C N!(recnat �n�!N!L)�n�

→C λw.extract1(λq.λs.append1((recnat �n�!N!L)q)s)w

→C λw.extract1(λq.λs.append1(Pq)s)w ≡ Q

Q[M1, . . . ,Mn] →C extract1(λq.λs.append1(Pq)s)[M1, . . . ,Mn]
∗→C (λq.λs.append1(Pq)s)[M2, . . . ,Mm]M1

∗→C append1(P [M2, . . . ,Mm])M1

∗→C append1([Mρnm−1(1)+1, . . . ,Mρnm−1(m−1)+1])M1

∗→C [M1,Mρnm−1(1)+1, . . . ,Mρnm−1(m−1)+1] ≡ [Mρn+1
m (1), . . . ,Mρn+1

m (m)],

which completes the proof.

Lemma 9. There is a term Mlength such that, for every list [!N1, . . . , !Nn], we have

Mlength [!N1, . . . , !Nn]
∗→C �n�.

Proof. Mlength is the term

λx.iterlistx!(λy.λ!z.succ y)!�0�.
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Indeed,

Mlength [] →C iterlist[]!(λy.λ!z.succ y)!�0�
∗→C �0�;

Mlength [!N, !N1, . . . , !Nn] →C iterlist[!N, !N1, . . . , !Nn]!(λy.λ!z.succ y)!�0�
∗→C (λy.λ!z.succ y)(iterlist[!N1, . . . , !Nn]

!(λy.λ!z.succ y)!�0�)!N
∗→C (λy.λ!z.succ y)�n�!N
∗→C �n+ 1�,

which completes the proof.

Lemma 10. There is a term Mchoose such that for every list [!N1, . . . , !Nm], we have

Mchoose�0�[!N1, . . . , !Nm]
∗→C !�0�

∀ 1 � n � m Mchoose�n�[!N1, . . . , !Nm]
∗→C !Nn

Mchoose�m+ 1�[!N1, . . . , !Nm]
∗→C !�1�.

Proof. Mchoose is the term

λx.λy.(iterlisty!L!P )x

where

L ≡ λz.λ!w.λ!q.q!(λs.λr.(s!L�2!L=1)r)!(L=0)z

L=0 ≡ λt.t�0�
L=1 ≡ λt.(λ!u.!w)(t�0�)
L�2 ≡ λu.λt.t(succ u)

P ≡ λ!z.z!(λ!w.!�1�)!�0�.

Indeed,

Mchoose�0�[] ∗→C (iterlist[]!L!P )�0�
∗→C P �0�
∗→C (λ!x.λ!y.y)!(λ!w.!�1�)!�0� ∗→C !�0�

Mchoose�1�[] ∗→C P �1�
∗→C (λ!x.λ!y.x�0�)!(λ!w.!�1�)!�0� ∗→C !�1�

Mchoose�n�[!N, !N1, . . . , !Nm]
∗→C (iterlist[!N, !N1, . . . , !Nm]!L!P )�n�
∗→C L(iterlist[!N1, . . . , !Nm]!L!P )!N�n�
∗→C �n�!(λ!s.λr.(s!L�2!(L=1{N/w}))r)!(L=0)

(iterlist[!N1, . . . , !Nm]!L!P )

≡ �n�!Q!(L=0)S
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where

Q ≡ λ!s.λr.(s!L�2!(L=1{N/w}))r
S ≡ iterlist[!N1, . . . , !Nm]!L!P .

Now,

�0�!Q!(L=0)S
∗→C L=0S

∗→C S�0� ∗→C !�0�

�1�!Q!(L=0)S
∗→C (λ!s.λr.(s!L�2!L=1{N/w})r)�0�S
∗→C (λ!x.λ!y.y)!L�2!(L=1{N/w})S
∗→C L=1{N/w}S
∗→C (λ!u.!N)(S!�0�)
∗→C (λ!u.!N)!�0� ∗→C !N

�n+ 2�!Q!(L=0)S
∗→C (λ!s.λr.(s!L�2!L=1{N/w})r)�n+ 1�S
∗→C (λ!x.λ!y.x�n�)!L�2!(L=1{N/w})S
∗→C L�2�n�S
∗→C S�n+ 1�,

which completes the proof.

We now have all the required ingredients for proving that any finitely generated family

of circuits can be represented in Q.

Theorem 6. For every finitely generated family of circuits (f, g, h) there is a quantum

relevant term Mf,g,h such that for each c1, . . . , cn, the following two conditions are

equivalent:

— [1,�,Mf,g,h![!c1, . . . , !cn]] ⇓ [Q, {r1, . . . , rm}, [r1, . . . , rm]].

— m = f(n) and Q = Φf,g,h(c1, . . . , cn).

Proof. Suppose that for every i ∈ �, the circuit Ki is

Ui
1, r

i,1
1 , . . . , r

i,p(i,1)
1 , . . . ,Ui

k(i), r
i,1
k(i), . . . , r

i,p(i,k(i))
k(i)

where p : � × � → � and k : � → � are computable functions. Since (f, g, h) is finitely

generated, there is a finite family of gates G = {U1, . . . ,Ub} such that for every i ∈ �
the gates Uh(i)

1 , . . . ,Uh(i)
k(i) are all from G. Let ar(1), . . . , ar(b) the arities of U1, . . . ,Ub. Since

the enumeration {Ki}i∈� is effective, we can assume the existence of a recursive function

u : � × � → � such that u(i, j) = x if and only if Uh(i)
j is Ux. Moreover, we know that

for every i ∈ � and for every 1 � j � k(h(i)), the variables

r
h(i),1
j , . . . , r

h(i),p(h(i),k(h(i)))
j

are distinct and in {r1, . . . , rf(h(i))}. So, there are permutations πij of {1, . . . , f(h(i))} such

that πij(x) = y if and only if rh(i),xj = ry for every 1 � x � p(h(i), k(h(i))). Let ρij be the

inverse of πij . Clearly, both πij and ρij can be effectively computed from i and j.
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As a consequence, the following functions are partial recursive (in the ‘classical’ sense):

— A function r : � × � → � that, given (i, j), returns the number of elementary

permutations of {1, . . . , f(h(i))} in which πij can be decomposed (using Lemma 7).

— A function q : � × � × � → � such that q(i, j, x) = y if and only if the x-th

elementary permutation of {1, . . . , f(h(i))} in which πij can be decomposed is the y-th

elementary permutation.

— A function s : � × � → � that, given (i, j), returns the number of elementary

permutations of {1, . . . , f(h(i))} in which ρij can be decomposed (using Lemma 7).

— A function t : �×�×� → � such that t(i, j, x) = y if and only if the x-th elementary

permutation of {1, . . . , f(h(i))} in which ρij can be decomposed is the y-th elementary

permutation.

We will now build up a term Minit that, given a list L of boolean constants and a

natural number �n�, computes the input list for Kh(n) from L.

Minit ≡ λ!x.λ!y.recnat(Mf !y)!N!([])

where

N ≡ λw.λz.cons((λ!q.new(q))(Mchoose(Mg!y(z))x)w.

Moreover, we need another term Mcirc that, given a natural number �n�, computes a

term computing the unitary transformations involved in Kh(n) acting on lists of quantum

variables with length f(n). The term is

Mcirc ≡ λ!w.recnat(Mk(Mh!w))!(λy.λ!z.λq.Mρ(Munit (Mπ(yq))))!(λy.y)

where

Mπ ≡ recnat(Mr!w!z)!(λy.λ!x.λt.(Mel (Mq!w!z!x))(yt))!(λy.y)

Munit ≡ λy.(casenat
b (Mu!x!w)!N0 . . .!Nb!(λz.z))y

Ni ≡ λy.extractar(i )(λz.λxar(i ). . . . .λx1.Mar(i )(Ui〈x1, . . . , xar(i )〉))y
Mar(i ) ≡ λ〈x1, . . . , xar(i )〉.appendar(i )zx1 . . . xar(i )

Mρ ≡ recnat(Ms!w!z)!(λy.λ!x.λt.(Mel (Mt!w!z!x))(yt))!(λy.y).

Now, the term Mf,g,h is just

λ!x.(Mcirc(Mlengthx))(Minit !x(Mlengthx)).

This concludes the proof.

7.3. From Q to circuits

We prove here the converse of Theorem 6. In this way we will complete the proof of the

equivalence with quantum circuit families. We will stay more informal here: the arguments

are rather intuitive.

Let M be a qrel term, let ![!c1, . . . , !cn], ![!d1, . . . , !dn] be two lists of bits (with the

same length) and suppose that [1,M![!c1, . . . , !cn]] ⇓nQ [Q, N]. Clearly, N cannot contain

any boolean constants since M is assumed to be qrel. By applying exactly the same
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computation steps that lead from [1,M![!c1, . . . , !cn]] to [Q, N], we can prove that

[1,M![!d1, . . . , !dn]] ⇓nQ [Q′, N], where Q and Q′ live in the same Hilbert Space H(Q(N))

and are both elements of the computational basis. Moreover, any computation step

leading from [1,M![!c1, . . . , !cn]] to [Q, N] is effective, that is, it is intuitively computable

(in the classical sense). Therefore, by the Church–Turing Thesis, we obtain the following

proposition.

Proposition 6. For each qrel M there exist a term N and two total computable functions

f : � → � and g : � × � → � such that for every n ∈ � and for every c1, . . . , cn, we

have [1,M![!c1, . . . , !cn] ⇓nQ [|r1 �→ cg(n,1), . . . , rf(n) �→ cg(n,f(n))〉, N], where we conventionally

set c0 ≡ 0 and cn+1 ≡ 1.

Consider [Q,M] ∈ EQT and assume that [Q,M] ⇓Q [Q′, [r1, . . . , rm]]. Then Q and Q′ live in

the same Hilbert space:

H(Q(M)) = H(Q([r1, . . . , rm])) = H({r1, . . . , rm}).

The sequence of reductions in this computation allows us to build in an effective way a

unitary transformation U such that Q′ = U〈r1 ,...,rm〉(Q). Summarising, we have the following

proposition.

Proposition 7. Let M be a term containing quantum redexes only. Then there is a circuit

K such that Q′ = UK(Q) whenever [Q,M] ⇓Q [Q′,M ′]. Moreover, K is generated by gates

appearing in M. Furthermore, K can be effectively computed from M.

As a direct consequence of propositions 6 and 7 we obtain the following theorem.

Theorem 7. For each qrel M there is a quantum circuit family (f, g, h) such that for each

list c1, . . . , cn the following two conditions are equivalent:

— [1,M![!c1, . . . , !cn]] ⇓ [Q, [r1, . . . , rm]]

— m = f(n) and Q = Φf,g,h(c1, . . . , cn).

Note that the standardisation theorem is a great help here. Without it, we would not be

able to assume that all non-quantum reduction steps can be done before any quantum

reduction step.

8. On the measurement operator

It is not possible in Q to make a classical observation of the content of the quantum

register. More specifically, the language of terms does not include any measurement

operator that, applied to a quantum variable, has the effect of observing the value of

the related qubit. This is in contrast with Selinger and Valiron’s λsv (where such a

measurement operator is indeed part of the language of terms), and with other calculi for

quantum computation like the so-called measurement calculus (Danos et al. 2007), where

the possibility of observing is even more central.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 12 Mar 2009 IP address: 157.27.252.209

U. Dal Lago, A. Masini and M. Zorzi 36

Extending Q with a measurement operator meas(·) (in the style of λsv) would not be

particularly problematic. However, some of the properties we have proved here would no

longer be true. In particular:

— The reduction relation would be probabilistic, since observing a qubit can have different

outcomes. As a consequence, confluence would no longer be true.

— The standardisation theorem would not hold in the form given here. In particular, the

application of unitary transformations to the underlying quantum register may not

necessarily be postponed until the end of a computation.

The main reason for restricting our attention to a calculus without any explicit

measurement operator is that the (extensional) expressive power of the calculus obtained

(that is, the extensional class of quantum computable functions) would presumably be the

same. More precisely, in Bernstein and Vazirani (1997, page 1420), the authors write that

‘A priori it is not clear whether multiple observations might increase the power of QTMs.

[. . . ] one may assume without loss of generality that a QTM is only observed once [. . . ] ’.

See also the so-called ‘principle of deferred measurement’ in Nielsen and Chuang (2000,

page 186), and the discussion in Section 1 of the present paper.

As a consequence, we have adopted the standard point of view followed by papers deal-

ing with quantum computability: we assume that we perform a unique implicit measurement

at the end of the computation.

However, note that the possibility of measuring qubits internally (for example, by a

construct like meas(·) could allow us to solve certain problems more efficiently by exploiting

the inherent non-determinism involved in measurements. Indeed, it is not known whether

measurement-based quantum computation can be efficiently (with a polynomial overhead)

simulated by measurement-free quantum computation. This interesting question goes well

beyond the scope of this paper.

It would be straightforward to add an explicit, final and full measurement of the

quantum register without any consequence for the previously stated results. We simply

add the following rule to the calculus:[
n∑
i=1

ai|fi〉,QV,M

]
∈ NF

measurement[
n∑
i=1

ai|fi〉,QV,M

]
→|ai|2 fi

where [
∑n

i=1 ai|fi〉,QV,M] →|ai|2 fi means that the measurement of the quantum register

gives the value fi with probability |ai|2.

9. Conclusions and further work

In this paper we have studied Q, a quantum lambda calculus based on the paradigm

of ‘quantum data and classical control’. Unlike most of the related literature, which

focuses on semantical issues, we have tackled the problem of expressiveness, proving the

computational equivalence of our calculus with a suitable class of quantum circuit families

(or equivalently, with the quantum Turing machines à la Bernstein and Vazirani).
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We have also given a standardisation theorem, which should help in clarifying the

interaction between the classical and quantum worlds (at least in a λ-calculus setting). We

have also considered operational properties of the calculus, such as subject reduction and

confluence.

A next step in our research will be the development of type systems. An interesting ques-

tion is whether it is possible to give type systems controlling the (quantum) computational

complexity of representable functions.

Another possible direction for our future research is the study of measurement so that

we can move from a calculus of computable functions towards a more concrete functional

programming language.

Appendix A. Hilbert spaces

Definition 13 (Hilbert space). A Hilbert space H is a vector space on the field � equipped

with:

1 An inner product 〈·, ·〉H : H × H → � such that:

(a) 〈φ,ψ〉H = 〈ψ,φ〉∗
H.

(b) 〈ψ,ψ〉H is a non-negative real number.

(c) If 〈ψ,ψ〉H = 0, then ψ = 0.

(d) 〈c1φ1 + c2φ2, ψ〉H = c∗
1〈φ1, ψ〉H + c∗

2〈φ2, ψ〉H.

(e) 〈φ, c1ψ1 + c2ψ2〉H = c1〈φ,ψ1〉H + c2〈φ,ψ2〉H.

2 A norm || · ||H : H → �+ defined by ||v||H = 〈v, v〉1/2
H .

Given the metric d(ψ,φ) = ||ψ − φ||H, the space H must be complete (all the Cauchy

sequences are convergent).

Proposition 8. Each finite dimensional complex vector space H equipped with an inner

product 〈·, ·〉H is a Hilbert space with respect to the metric d(ψ,φ) = ||ψ − φ||H.

When it is clear from the context, we will simply write 〈·, ·〉 and || · || instead of 〈·, ·〉H and

|| · ||H.

Let H be a Hilbert space and φ,ψ be generic vectors of H. Then, φ is normalised if

||φ|| = 1, and φ and ψ are orthogonal if 〈φ,ψ〉 = 0. A set b = {φ1, . . . , φn} ⊆ H is an

orthonormal basis if:

1 If φ ∈ H, then φ =
∑n

i=1 diφi (where each di is in �).

2 Each φ ∈ b is normalised.

3 If φ,ψ ∈ b and φ �= ψ, then 〈φ,ψ〉 = 0.

Definition 14 (Unitary operators). Let H′ and H′′ be two Hilbert spaces with the same

finite dimension, and let U : H′ → H′′ be a linear transform. The adjoint of U is the

unique linear transform U† : H′′ → H′ such that for all φ,ψ we have 〈Uφ,ψ〉 = 〈φ,U†ψ〉.
If U†U is the identity, we say that U is unitary. If H′ = H′′, the unitary transform U is

said to be a unitary operator.
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Definition 15 (Tensor of Hilbert spaces). Let H′,H′′ be two Hilbert spaces with inner

products 〈·, ·〉H′ , 〈·, ·〉H′′ . The tensor product of H′ and H′′ is the Hilbert space H′ ⊗ H′′

built as follows.

Let H′ •H′′ be the space freely generated by the set H′ ×H′′. Now consider the subspace

S of H′ • H′′ generated by the elements:

(d1φ1 + d2φ2, ψ) − d1(φ1, ψ) − d2(φ2, ψ)

(φ, d1ψ1 + d2ψ2, ψ) − d1(φ,ψ1) − d2(φ,ψ2)

with d1, d2 ∈ �, φ ∈ H′, ψ ∈ H′′. Let (H′ • H′′)/S be the quotient space†. The tensor

product of H′ and H′′ is H = H′ ⊗ H′′ def= (H′ • H′′)/S , where the inner product in H
is defined by

〈φ1 ⊗ ψ1, φ2 ⊗ ψ2〉H = 〈φ1, φ2〉H′ 〈ψ1, ψ2〉H′′

〈c1φ1 + c2φ2, ψ〉H = c∗
1〈φ1, ψ〉H + c∗

2〈φ2, ψ〉H

〈φ, c1ψ1 + c2ψ2〉H = c1〈φ,ψ1〉H + c2〈φ,ψ2〉H.

Proposition 9. The map ⊗ : H′ •H′′ → H′ ⊗H′′ defined by (φ,ψ) �→ S+(φ,ψ) is bilinear

(S is the subspace defined above).

Proposition 10. Let H′,H′′ be two Hilbert spaces with orthonormal bases b′, b′′. The set

{φ′ ⊗ φ′′|φ′ ∈ b′, φ′′ ∈ b′′} is an orthonormal basis of H′ ⊗ H′′.

Definition 16. Let H′ and H′′ be two Hilbert spaces and let U and V be unitary operators

in H′ and H′′, respectively. The unitary operator U ⊗ V in H′ ⊗ H′′ is defined by:

1 (U ⊗ V )(φ⊗ ψ) = (Uφ) ⊗ (Vψ).

2 (U ⊗ V )(
∑k

i=1 biφi) =
∑k

i=1 bi(U ⊗ V )φi.
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