Non-Determinism, Non-Termination and the
Strong Normalization of System T

Federico Aschieri! and Margherita Zorzi?

! Equipe Plume, LIP (UMR 5668), Ecole Normale Supérieure de Lyon, France
2 Universita degli Studi di Verona, Italy

Abstract. We consider a de’Liguoro-Piperno-style extension of the pure
lambda calculus with a non-deterministic choice operator as well as a
non-deterministic iterator construct, with the aim of studying its normal-
ization properties. We provide a simple characterization of non-strongly
normalizable terms by means of the so called “zoom-in” perpetual re-
duction strategy. We then show that this characterization implies the
strong normalization of the simply typed version of the calculus. As
straightforward corollary of these results we obtain a new proof of strong
normalization of Gddel’s System T by a simple translation of this latter
system into the former.

1 Introduction

The idea of defining the concept of redundancy or detour in an arithmetical proof
[17] and the result that shows the possibility of eliminating all the detours in
any proof, are real cornerstones of modern logic. Such results, known under the
name of normalization or strong normalization, are interesting for a great deal of
reasons. For example:

— Via the Curry-Howard correspondence, they can be translated as proofs
of the termination of programs written in typed system like Godel’s T [6],
Spector’s B [19] or Girard’s F [6]. Indeed, this is now the standard way of
presenting normalization results.

— They are tools for proving consistency of logical systems and thus give rise,

in the classical case, to Tarski models (see for example [12]).

— Many intuitionistic ([10]) and classical realizabilities ([12]), as well as func-
tional interpretations [19], are built on ideas coming from normalization
techniques.

Unfortunately, proving normalization properties of strong logical systems is
difficult and when one succeeds, the resulting proof is often of little combinatorial
information. This is of course due to the famous Godel incompleteness theorems,
which force normalization proofs to employ powerful mathematical methods.

In the case of the strong normalization of Godel’s System T, the most flexible
and elegant proof is due to Tait (see [6]), which uses the abstract concept of
reducibility. In our opinion, there are at least two reasons why the proof is
not very intuitive from the combinatorial point of view. First, the predicates of
reducibility are defined by formulas with arbitrarily many nested quantifiers. This
is a strength, because, to put it as Girard [6], “the deep reason why reducibility
works where combinatorial intuition fails, is its logical complexity” . However, this

complexity also hampers a concrete understanding of the normalization process
and, in fact, condemns combinatorial intuition to failure. Secondly, reducibility
is in reality an instance of much more general techniques that can be used
for proving a variety of results (for example, weak Church-Rosser property) in
an elegant way. We are of course referring to logical relations and realizability.
This is evident in Krivine’s work [11], where realizability is carried out as a
generalization of the Tait-Girard methods. Thus reducibility appears not to be
tailored specifically for normalization problems (this observation can also be
addressed to Sanchis’ technique [18], which allows to reason in a well-founded way
about terms of System T, and can be exploited to prove strong normalization).

Among other known normalization techniques one finds the one using infinite
terms of Tait [22], more interesting combinatorially, but not suitable to prove
strong normalization, the one of Gandy [8], the one of Joachimiski-Matthes [14],
similar in spirit to that of Sanchis, and the one using ordinal analysis of Howard [7].

In this paper, we return to the problem of the strong normalization of Gédel’s
T, with the aim of better understanding its combinatorial structure. That is, we
want to provide a concrete normalization proof instead of an abstract one. In
particular, we show how strong normalization can be derived by just examining
the terms produced by a simple reduction strategy. For this purpose, we start

from some combinatorial ideas, due essentially to Van Daalen [20] and Levy [13]
(but also present in Nederpelt [16]) and extended later by David and Nour to
various systems of simple types [1]. These ideas inspired Mellies [15] to define

a perpetual reduction strategy, so called zoom-in (discovered independently by
Plaisted, Sorensen and Gramlich, see [9] for more details), which will be the heart
of our method. In [1] (see also [2]), the zoom-in strategy has been employed to
characterize non-strongly normalizable lambda terms, and derive as corollary the
strong normalization of the simply typed lambda calculus and the intersection
types. These latter results were obtained also by Mellies and David. The novelty
in [1] consisted in the explicit statement of a characterization theorem. If with
t1 ...ty we denote any term of the form (((w)uy)...)u,, where u = ¢1 and u,, = to,
then it is proved that:

Theorem 1 (Characterization of non-strongly normalizable terms).
Let u be an non-strongly normalizable lambda term. Then there exists an infinite
reduction Ui, Ug, ..., Un, ... and an infinite sequence of terms ti,to, ... ty, ...
such that uy = u and for every i, u; contains a subterm of the form t;...t;41.

(for a more detailed formulation, see section §2). Notice how the strong normaliza-
tion easily follows from the Characterization Theorem: non-strongly normalizable
Church-typed lambda terms cannot exist, otherwise the type of each t; would
strictly contain the type of ¢;11. Remark also how each one of these terms t;
dynamically passes from the status of argument to the status of function applied
to some other arguments: this is the crucial property of the reduction.

One natural question was then whether the Characterization Theorem could
be extended to a pure lambda calculus with pairs and constants, containing at
least booleans, numerals, the if-then-else if and iterator It constructs. In such
a way, one would also obtain as corollary the strong normalization of its typed

version, i.e. System T. Unfortunately, the Characterization Theorem does not
extend so easily. The reason is that one passes from a pure, functional world —
the lambda calculus — to an impure world in which booleans and numerals are
treated as basic objects, but also retain a sort of functional behavior.

For example, one has a rule if False u v — v. But what would be the difference
with a hypothetical reduction False uv — v, in which False would behave as
the encoding of false in lambda calculus Az Ay. y? Syntactically, if is treated just
as a placeholder, being the boolean False the one which comes makes the real
job. Similarly, one has a rule ltuv 2 — (v)(v)u. But what would be the difference
with a hypothetical reduction 2uv — (v)(v)u, in which 2 would behave as the
Church-numeral two AfAz. (f)(f)x?

As a consequence of the use of objects as “hidden” functionals, one loses
the Characterization Theorem: when one of the ¢; above is, say, False or 2, we
cannot expect it to pass from argument to head position in any meaningful way.
The solution to this issue is radical: remove reduction rules involving booleans
and numerals and simulate them with actual functionals. The idea is to use
non-determinism. As in de’ Liguoro and Piperno [5], we add to lambda-calculus
a non-deterministic choice operator if*, with rules if* uv — v and if* uv — v,
in order to simulate all possible if reductions. We also add a non-deterministic
iterator operator It*, with rules of the form It*wv — (v)...(v)u (one for each
possible number of occurrences of v), in order to simulate all possible It reductions.
We obtain as a result a non-deterministic lambda calculus A* which enjoys
the Characterization Theorem; its typed version T* will thus have the strong
normalization property. We shall then prove strong normalization of System T
by translating it into T* — almost trivially. It will be enough to substitute the
normal versions of if and It with their non-deterministic counterparts if* and It*.

Plan of the Paper. In Section §2 we introduce the non-deterministic lambda
calculus A* and prove the Characterization Theorem of its non-strongly normal-
izable terms. In Section §3, as a corollary, we prove the strong normalization of
the non-deterministic typed system T*. Section §4 is finally devoted to the proof
of the strong normalization of Gédel’s System T, by translation into T*.

2 The Non-Deterministic Lambda Calculus A* with Pairs
and Constants

In this section we define and study the non-deterministic lambda calculus A*,
whose typed version will serve in section §4 to interpret Godel’s System T. In
particular, we are going to give a syntactical characterization of the non-strongly
normalizable terms of A*.

The non-deterministic lambda calculus A* is formally described in Figure 1.
Its deterministic part is a standard lambda calculus (for which we refer to [11])
augmented with pairs, projections, and some arbitrary set of constants cg,cy, ...
without any associated reduction rule. In this latter set, one will typically put
0, S, True, False, but no assumption will be made in this section. The non-
deterministic part of A* comprises as constants the non-deterministic choice opera-
tor if*, as in de’ Liguoro-Piperno [5], Dal Lago-Zorzi [3], and the non-deterministic

iterator It*. For It* uv one has denumerably many possible reductions:
tuv—=u, tuve (Vu, Tuv— (v)(0)u, tuvo— (v)@)@u ...

We point out that, as remarked in [5], It* can already be defined by if*. But that
is no longer possible in a typed setting, and so we had to leave It* in the syntax.

We now recall some very basic facts and definitions. We retain the Krivine
parenthesis convention for pure lambda calculus and extend it to A*. The term
(t)u will be written as tu and [u]m; as um;, if there is no ambiguity. Thus every
lambda term t can be uniquely written in the form Az; ... Ax,,. vty ... ¢,, where
m,n > 0, for every 1, t; is either a term or the symbol 7 or 71, and v is a variable
or a constant or pair {¢,u) or one of the following redexes: (Az.u)t, if* tu, It* tu,
[(t,u)]m;. If v is a redex, v is called the head redex of . A term is said to be an
application if it is of the form tu, an abstraction if it is of the form Azu. If ¢’ is a
subterm of ¢ we will write ¢t > ¢, reading ¢ contains t'. Finally:

Definition 1 (Strongly Normalizable Terms). We write t — t' iff t' is
obtained from t by contracting a redex in t according to the reduction rules in
Figure 1. A sequence (finite or infinite) of terms t1,ta,...,tn,... is said to be
a reduction of t, if t = t1, and for all i, t; — t;1 1. A term t of N* is strongly
normalizable if there is no infinite reduction of t. We denote with SN the set of
strongly normalizable terms of N*.

The reduction tree of a strongly normalizable lambda term is well-founded. It
is well-known that it is possible to assign to each node of a well-founded tree
an ordinal number, that it decreases passing from a node to any of its sons. We
will call the ordinal size of a lambda term ¢ € SN the ordinal number assigned
to the root of its reduction tree and we denote it by h(t); thus, if ¢ — u, then
h(t) > h(u). To fix ideas, one may define h(t) := sup{h(u) + 1 | t — u}.

Constants c == It* [if* |co|ci...
Terms t,u:==x | Az.t| ()u | (t,u) | [t]7o | [t]m1 | ¢

Reduction Rules

(Az.u)t — ult/z] [{uwo, w1)]m; — u;, for i=0,1
ifuv > u if*uv v
n times
* —
It"uv — (v)...(v)u, for each natural number n

Fig. 1. Non-Deterministic Lambda Calculus A*

2.1 The zoom-in reduction

In order to really understand the phenomenon of non-termination in lambda
calculus it is crucial to isolate the mechanisms that are really essential to produce
it. For example, in the term (\y.y)(Az. zx)Az. zx (beware Krivine’s notation!),

the part that generates an infinite reduction is (Az.zz)Az. xx; the term Ay.y is
only a disturbing context and should be ignored. This is because the smallest
non-strongly normalizing subterm of our term is (A\x. zx)Ax. zx. We thus arrive
at the notion of elementary term: a non-strongly normalizable term that cannot
be decomposed into smaller non-strongly normalizable terms.

Definition 2 (Elementary Terms). A term tu is said to be elementary if
t € SN, v € SN and tu ¢ SN.

We observe that an elementary term cannot be of the form xzt; ... t,, since
t1,...,t, € SN, and hence zt;... t, € SN. Similarly, it cannot be neither
of the form c¢;ty ...t, nor ({t,u))t]...t, nor [Azt]mty ... t,. Therefore, every
elementary lambda term is either of the form (Azu)tt; ... ¢, or if*tut; ...t, or
It twty ...t, or [(t,u)]m;ts .. .t, (and clearly u,t,t1,...t, € SN).

Proposition 1. Suppose v ¢ SN. Then v has an elementary subterm.

Proof. By induction on v.

— If v =2 or v =c, it is trivially true.

— If v = ut, and w € SN and ¢ € SN, v is elementary; if instead u ¢ SN or
t ¢ SN, by induction hypothesis u or ¢ contains an elementary subterm, and
hence v.

— If v = Azu or v = um;, then u ¢ SN, and by induction hypothesis u contains
an elementary subterm, and thus also v.

— If v = (t,u), then t ¢ SN or u ¢ SN, and by induction hypothesis u contains
an elementary subterm, and thus also v.

The next proposition tells that it is always possible to contract the head
redex of an elementary term in such a way to preserve its property of being
non-strongly normalizable.

Proposition 2 (Saturation). Suppose that v is elementary. Then:

1. If v = (Azu)tty ...ty ¢ SN, then ut/z]ty...t, ¢ SN.
2. If v = [(ug,ur)]mity ... tn & SN, then u;ty ...t, ¢ SN.
3. Ifv=if"tuty...t, ¢ SN, then uty...t, ¢ SN ortty...t, ¢ SN

m times

—
4. If v =1It"tuty...t, & SN, then for some m € N, ((u)...(u)t)t;...t, ¢ SN.
Proof.

1. By lexicographic induction on the (n + 2)-tuple (h(u), h(t), h(t1), ..., h(t,)).
Since by hypothesis (Azu)tty ...t, ¢ SN, there exists a w ¢ SN such that
(Azu)tty ... t, — w. There are two cases. First case: w is either (Azu/)tty ... ¢,
or (Azu)t'ty...t, or (Aaw)tty...t,...t, with u — o/, t — ¢ and t; —
t. (i = 1,...n) respectively. We have h(u') < h(u),h(t') < h(t),h(t]) <
h(t;). Then, by induction hypothesis, u[t/z|t; ...t, — W' [t/x]t1 ... t, ¢ SN,
ult/xlty ...ty — ult'/x]t1 ...t ¢ SN and
u[t/xlty ..t by > uft/xlty .t t, ¢ SN (i = 1...n). Second case:
w = ult/x]t] ... t,. We conclude u[t/z]t; ...t, ¢ SN by hypothesis on w.

2. The other cases are similar.

Let v ¢ SN and s be an elementary subterm of v. Then s = (Azu)tty ...t,
or s =if"tuty...ty, or s =I1t"tuty... t, or s =[(t,u)]mty ...¢,. By Proposition
2, there exists an s’ ¢ SN such that s’ is obtained from s by the contraction
of its head redex. In particular, either s’ = ult/z]t1...t,, s = uty...t, or
s =tty...t, or 8 = ((u)...(u)t)ty...t,. This provides the justification for the
next definition and proposition.

Definition 3 (Zoom-in Reduction). Let t ¢ SN and s be an elementary
subterm of t. We write t¥>u if u has been obtained from t by replacing s with
an s’ ¢ SN such that s’ results from s by a contraction of the head redex of s.
A sequence (finite or infinite) of terms ti,ta, ... tp,... is said to be a zoom-in
reduction of t if t = t1, and for all i, t; > tip1; if i < j, we write t; »infj.

Proposition 3. Suppose t ¢ SN. There is an infinite zoom-in reduction of t.

The zoom-in reduction strategy was studied in Mellies’s PhD Thesis [15]. It is a
perpetual reduction (see [21]), in the sense it preserves non-strong normalization.
The idea is to contract each time a redex which is essential in order to produce
an infinite reduction. In this way, one concentrates on a minimal amount of
resources sufficient to generate non-termination. For example, the reduction
(\y.y)(A\z. z2) Az 22— (Az. z2) A2, 22 is smartly avoided by the relation
because the reduction of the first redex is not strictly necessary. Instead, one has
(Ay.y) Az zx) Az, 22 = (\y. y)(Ax. 22) Az zx by contraction of the second redex.

We now study what happens when the zoom-in reduction strategy is applied
to elementary terms. The goal is to prove an Inversion Property (Proposition
6). That is, starting from an elementary term ut, we want to show that ¢ will
necessarily be used in head position as an active function in the future of the
zoom-in reduction of ut. In this sense, there will be an inversion of the roles of
argument and function. We break the result in two steps.

The first observation is that the zoom-in reduction of ut will contract redexes
inside u as long as the term is “blocked”, i.e. u does not transform into a function.

Proposition 4. Let ut be elementary. Then one of the following cases occurs:

1. There exists a term (\zv)t such that ut = (\zv)t.
2. There exists a term [t*vt such that ut “>lt* vt

Proof. By induction on h(u). There are two cases:

— The head redex of ut is in u. Then ut % u't, with u — u’ and h(u') < h(u).
By induction hypothesis, u't = (Azv)t or v/t “>lt*vt, and we are done.

— The head redex of ut is ut itself. If ut = (Azv)t or ut = It*vt, we have the
thesis. Moreover, those are the only possible cases, for neither ut = if*v ¢ nor
ut = [{(v,v’)]m; can hold; otherwise by Proposition 2, v ¢ SN or v’ ¢ SN or
t ¢ SN, but since ut is elementary, v,v’,t € SN.

The second observation is that in a zoom-in reduction of a term u[t/z] ¢ SN,
with u, ¢t € SN, ¢t will necessarily be used at some point in head position, because
at some point one will run out of redexes in w.

Proposition 5. Suppose u,t € SN and u[t/xz] ¢ SN. Then there exists v such
that ult/x] v and v has an elementary subterm of the form tty ...t, (n >0).

Proof. By induction on h(u). Assume u[t/z] % w; let s be the elementary subterm
of u[t/z] whose head redex is contracted in order to obtain w. We have the
following possibilities:

— A redex inside u has been contracted, obtaining w'[t/x], with u — «’. Then,
h(u') < h(u) and the proposition immediately follows by induction hypothesis.
— A redex inside ¢ has been contracted. Since t € SN, s is not a subterm of ¢;
moreover, since the head redex of s must have been contracted, s = tty ...t,.
— A redex which is neither in ¢ nor in u has been contracted. Then, ¢ is a lambda
abstraction or a pair or if* or It*, u has a subterm of the form zu ...u, and
s=(auy...up)[t/z] = tty...t,. Of course, n > 0, since ¢t € SN and s ¢ SN.

We are now able to prove the Inversion Property, the most crucial result.

Proposition 6 (Inversion Property). Let ut be elementary. Then there exists

w such that ut™sw and w has an elementary subterm of the form tty...t,
(n>0).

Proof. By Propositions 4 and 5, one of the following cases occur:

1. ut ¥ (A\z.v)t — o[t /2] “w, with w containing an elementary subterm of the
form tty ...t, (n > 0).

2. ut ESslt vt — (t)... (v = (z)... (z)v[t/z] “>w (for some z not free in v),
with w containing an elementary subterm of the form ¢ty ...¢, (n > 0).

By iteration of the Inversion Property, we finally obtain our characterization
of non-strongly normalizable terms.

Theorem 2 (Characterization of non-strongly normalizable terms).
Let u ¢ SN. Then there exists an infinite sequence of terms uy,usg, ..., Up, ...
such that uy = u, for all i, u; nimiﬂ and:

Ullztl...tg, UQIZtQ...tg, U3Et3...t4,...,unEtn...th...

where for all i, t;...t;y1 s an elementary term.

Proof. We set u; = u. Supposing u, to have been defined, and that u, >
ty...th41 elementary. By Proposition 6, we can set u,; as the term obtained
from wu, by substituting t, ...t,41 with a v such that ¢, ...t,41 0" and v’
contains an elementary subterm of the form ¢,,41...t,2.

3 The System T* and its Strong Normalization

As well as one can consider a simply typed version of the ordinary lambda calculus
with pairs, we now introduce a simply typed version of the non-deterministic
lambda calculus A*. We call it System T*, since it will be interpreted as a non-
deterministic version of Godel’s System T. T* is formally described in Figure
2. The basic objects of T* are numerals and booleans, its basic computational
constructs are primitive iterator at all types, if-then-else and pairs; 7 is the usual
encoding S...S0 of the natural number n. The strong normalization of T* can
be readily proved from the Characterization Theorem 2.

Types
o,7u=N|Bool |oc =T |oXT
Constants
cu=It% | ifX | 0| S| True | False
Terms
t,bun= c|lz | (Hu| Az"u | (t,u) | [t]mo | [t]71

Typing Rules for Variables and Constants

-
x T

0:N,S:N—N
True : Bool, False : Bool
if: T T T

Ity :7 > (1= 7) =7

Typing Rules for Composed Terms

t:0 =T u:o u:T

tu: T Axu o — T
u:o t:T u:To X T1 .

B —F—— i €{0,1}
(u,t) 1o X T U T

Reduction Rules The same reduction rules of A*, restricted to the terms of T*.

Fig. 2. The system T*

Theorem 3 (Strong Normalization Theorem for T*). Every term w of T*
18 strongly normalizable.

Proof. Suppose for the sake of contradiction that w ¢ SN. By the Character-
ization Theorem 2 (which can clearly be applied also to the terms of T*),
we obtain the existence of an infinite sequence of typed elementary terms
ty...tg, to...t3, ...ty ... tus1.... which yields a contradiction, since for every
i, the type of ¢; is strictly greater than the type of ¢;41.

4 The System T and its Strong Normalization

In this section we will prove the strong normalization theorem for System T.
Syntax and typing rules of T are formally described in Figure 3.

Strong normalization follows as a corollary of Theorem 3. We define a simple
translation mapping terms of System T into terms of System T*:

Types

o,7u=N|Bool |o =T |oXT
Constants
cu=It; | if- | 0| S | True | False
Terms
t,bun=c|z” | Wu | AzTu | (tu) | [u]mo | [u]m

Typing Rules for Variables and Constants

T T
0:N,S: N—N

True : Bool,False : Bool
ifr:Bool > T =T —T

Ity :7—=(r—>7)>N—>7

Typing Rules for Composed Terms

t:o0—=T u:o U T
GRS Azu o — T

u:o t:T1 u:To X T1 .
U — — 1€ {0,1
(u,t) 1o X1 [u]m; + 75 {0, 1}

Fig. 3. Syntax and Typing Rules for Gédel’s system T

Definition 4 (Translation of T into T*). We define a translation * : T —
T*, leaving types unchanged. In the case of constants of the form if,, It,, we set:

(if)" := ABPo°L.ifx (k)" := Xx" Ay 7T AN It Loy

For all other terms t of Gédel’s System T, we set t* as the term of T* obtained
from t by replacing all its constants if, with (if;)" and all its constants It, with

(It,)".

In the following, we will proceed by endowing T with two distinct reduction
strategies, respectively dubbed as —, and . Informally, —, forces a call-by-
value discipline on the datatype N. The second one, +», is the usual strategy T is
endowed with. We will prove the strong normalization property in both cases.
Whereas the goal is straightforward for —, in the second case a bit of work is
required.

4.1 Strong Normalization for System T with the strategy —,

The reduction strategy +, is formally defined in Figure 4. Strong normalization
theorem for T with +, easily follows from Theorem 3. As a matter of fact, each
computational step in T (with —, reductions’ set) can be plainly simulated in
T* by a non-deterministic guess. In particular, each reduction step between T
terms corresponds to at least a step between their translations:

Proposition 7 (Preservation of the Reduction Relation). Let v be any
term of T. Then v—, w = v* =T w*

Proof. 1t is sufficient to prove the proposition when v is a redex r. We have
several possibilities:

Reduction strategy —
(AzTu)t >y uft/x"]
[{uo, u1)]m; —y u;, for i=0,1
n times
—_—
Itruvm —y (v) ... (V)u

if, Trueuv —, u if Falseu v >, v

Fig. 4. Reduction strategy —, for T

1. r = (Az"u)t >, u[t/z7]. We verify indeed that
(Oamw)* = (amu)e* s It fa7] = ult/a")"
2. r = (ug, u1)m; — u;. We verify indeed that
((ug, ur)m;)™ = (uh, ui)m — u}

3. r=ifTruetu +», t or r = if Falsetu —, u. We verify indeed — by choosing
the appropriate reduction rule for if* — that

(if Truetu)” = (if)" Truet™ u* — if "t u™ — t*
(if Falsetu)” = (if)" Falset* u* — if "t*u* — u*
n times
AH
4. r=ltutn —y (¢)...(t)u. We verify indeed — by choosing the appropriate
reduction rule for It* — that

(Itutn)” = () u*t* n =" tu*t" — (). ()"

Theorem 4 (Strong Normalization for System T with —, strategy).
Any term t of System T is strongly normalizable with respect to the relation .

Proof. By Proposition 7, any infinite reduction t = tq,t2,...,t,,... in System
T gives rise to an infinite reduction t* = ¢7,t5,...,¢5,... in System T*. By the
strong normalization Theorem 3 for T*, infinite reductions of the latter kind

cannot occur; thus neither of the former.

We have just proved the strong normalization theorem for T with the call-
by-value restriction on the datatype N. In any “practical” application (such as
realizability, functional interpretation, program extraction from logical proofs),
this evaluation discipline is perfectly suitable. From the constructive point of
view, the call-by-value evaluation on natural numbers is even desirable. In fact,
what essentially distinguishes the constructive reading of the iteration from the
classical one is that the first requires complete knowledge of the number of
times a functional will be iterated before the actual execution of the iteration.
Call-by-value performs exactly this task: in a term ltuvt, it first completely
evaluates t to a numeral, so providing a precise account about the number of
times the function v will be called. Even if that is constructively satisfying, for
the sake of completeness we will prove strong normalization with respect to the
most general reduction strategy. This is the aim of the following section.

4.2 Strong Normalization of System T with the strategy —

The reduction strategy — is formally defined in Figure 5. Notice that the only
difference with respect to the call-by-value strategy +, is that the term ¢ in the
reduction rule for It is not necessarily a numeral. We define SNt to be the set
of strongly normalizable terms of T with respect to the strategy — and Et to
be the set of elementary terms of T with respect to the strategy —. We observe
that it is still true that each term of T not in SNt contains a term in Et.

Reduction Strategy —
(AzTu)t — uft/z"]

[(uwo,w1)]mi = g, for i=0,1
Iltruv0 — u It-uv(St) — v(ltruvt)

if - Trueuv — u if ;Falseuv — v

Fig. 5. Reduction Strategy + for System T

One may be tempted to proceed as in the previous section, by directly
simulating +—-reduction steps in T with reduction steps in T*. Unfortunately, this
is not possible. On the T* side, in order to interpret Ituvt, one has to “guess”
the value of ¢+ by means of It*. But it can very well happen that ¢ is open, for
example, so without value. To solve this issue, we are going to define an “almost”
reduction relation & which can instead be simulated in T*. In fact, & turns
out to be a version of = adapted to System T, which can be proved perpetual
(Proposition 10). As a first step, we need to widen the class of numerals:

Definition 5 (Generalized Numerals). A generalized numeral is a term of
T of the form S...St, with t € NF, t # Su; GN is the set of generalized numerals.
If S...St is a generalized numeral and v occurs in the head of (v)...(v)u as
many times as S occurs in the prefiz of SS...St, then (v)...(v)u is said to be
the expansion of ltuw (S...St).

We remark that one could have equivalently defined GN as the set of type-N
terms; this latter definition however does not generalized to untyped lambda
calculus, while our results probably do, with some adaptation.

As a second step, we need to define a relation &2.

Definition 6 (Perpetual Relation &). Lett ¢ SNt and s € Et be a subterm
of t. We write t 2 u if u has been obtained from t by replacing s with an s’ such
that:

—s=Azu)tty ... t, = § =uft/z]ty .. . tn;

— s =[{ug,ur)]mity ...ty = & =wuit;...ty;

— s=ifTruetut;...t, = s =tt;...t,;

— s=ifFalsetuty...t, = s =uty...ty;

— s = ltuvtty...t, andt —* t' € GN = ¢ = ((v)(v)... (V)W)t1...tn,

where (v) ... (v)u is the expansion of ltuvt'.

The idea behind &2 is to make it behave like a call-by-value strategy on N, even
when it should not be possible, by considering a term in GN as a “numeral”. In
order to show that &2 is perpetual, we need some technical but quite simple
results.

The following lemma states that the set of non-strongly normalizable terms
is closed w.r.t. the substitution of subterms in SNt with their normal forms.

Lemma 1. Assumety,...,t, : N andty,...,t, € SNt. Let s1,...,8, : N be such
that, for alli=1...n, s; is the normal form of t;. Then, given any term u of T:

ulty /w1, ... tn/zn] € SNT = wls1/z1,...,80/7n]) & SNT

Proof. Tt suffices to prove that there exist terms ',],...,¢,, € SNt and
sy,...,s) such that for i =1,...,m, and

u'[ty/ze, .t Jom] € SNT
and
uls1/x1, ...y 8p)an] =T W[/o1, 80, T

where again each s/ is the normal form of ;. Since the end terms of the two lines
above satisfy the hypothesis of the proposition, one may iterate this construction

infinitely many times and obtains an infinite reduction of u[s1/x1, ..., Sn/Tx].
In order to show that, let us consider an infinite reduction of u[ty /z1, . .., tn /Ty
Since tq, ... ,t, € SN, only finitely many reduction steps can be performed inside

them. So the infinite reduction has a first segment of the shape:
u[tl/zla s 7tn/xn} = u[t/l/wla s at/n/zn] —w ¢ SNT

with ¢; —* t;. We have now two possibilities, depending on the kind of redex
that has been contracted in order to obtain w:

1. w = W[t /x1, ..., /z,], with uw — /. Then also u[si/x1,..., S /Tn] —
u'[s1/x1,. .., 8, /%,] and we are done.
2. w has been obtained from u[t] /z1,...,t, /x,] by reduction of a redex created

by the substitution ¢}/xz;. In this case, since t},...,t, : N, the only possible

redex of that kind has the form (ltuvz;)[t] /x4, .. t;/?:cj .t Jx,], with ltuvz;
subterm of u and ¢, = St,,+1. Then v is obtained by replacing
ltwvz;[t) /a1, .. .tz ., [2n] = 1t/ v'S(t41)
with
(Wt vt 1 = (V)ltwvz, 1 [t /1, .)2t [T b/ Ts]

where z,41 is a fresh variable. If we define v’ := u[(ltuvz;) = (v)ltwvz,41]
(i.e. v’ is obtained from u by replacing ltuvz; with (v)ltuva,+1) we then have

v="1[t) /1.)T tns1/Tnsa]

Since s; is the normal form of t; = St,, 1, we have s; = Ss;,41, where 41 is
the normal form of ¢,1. As before,

ltuvx;[s1/x1, ... 8i/Ti ... $p/xn] = (V)T p1[81/T1, . 8i/Ti - Sn/Tn Snt1/Tnt1]

which implies u[s1/x1 ... 8n/xn] — W[s1/21,...8i/Ti .. $n/Tn Snt1/Tni1]
and we are done.

By means of Lemma 1 it is possible to prove:

Proposition 8. If (ltuvt)t, ...t, € Et andt —* t' € GN, then (ltuvt’)t, ...t
Er.

S

n

Proof. By Lemma 1, applied to the terms ltuvaxty ... t,[t/z] and tuvzty ... 1,[t /2]
(z fresh).

Lemma 2 is similar to Lemma 1: the set of non-strongly normalizable terms can
be proved to be closed w.r.t. the substitution of subterms with their expansions.

Lemma 2. Let ty,...,t,,S1,...,5, be a sequence of terms such that for i =
1...n, s; is the expansion of t; and all the proper subterms of t; are in SNt.
Then given any term u of T,

ulti/T1, .. tn/xn] € SNT = uls1/z1,...,8,/7n] ¢ SNT

Proof. Tt suffices to prove that there exist terms «' and t},... ¢/, s},..., s,
such that for i = 1,...,m, s} is the expansion of ¢}, all the strict subterms of ¢

are in SNt and
[t /xe, ..t /Tm] € SN and

uls1/w1, ..y 8n /T =T W [S) T, 8 T

Since the end terms of the two lines above satisfy the hypothesis of the proposition,
one may iterate this construction infinite times and obtains an infinite reduction
of ulsi/x1,...,Sn/Tn].

In order to show that, let us consider an infinite reduction of u[t1/x1, ..., t,/zy].
By definition 5, t; = It u; v; n;, for some w;, v; and generalized numeral n;. Since
Ui, v; € SN, only finitely many reduction steps can be performed inside them.
So the infinite reduction has a first segment of the shape:

ult1/T1, . tnfxn] =F wlty /T, .t Jon] v € SNt

with t; = ltu,v.n; and u; —* u},v; —* v.. We have now two possibilities,
depending on the kind of redex that has been contracted in order to obtain v
(we notice that it must be already in u or in some t}):

1. v =4[ty /z1,... 1, /xy,], with u — . Let now, for i = 1,...,n, s; be the
expansion of ¢;. Then

si = (v;) ... (vi)u; =" (V) ... (V) = s

Therefore u[s1/T1, ..., 8. /Tn] =T W'[s)/x1,..., s, /z,] and we are done.

2. v has been obtained from u[t} /x1,...,t, /x,] by replacing one of the occur-
rences of t, = ltu} v, n; with (v})ltu; v, m; (assuming that n; = Sm;). Let
tr, 1 := ltuj v; m;. Then there exists a term v’ (obtained from u by replacing
a suitable occurrence of x; with (v})x,+1, where x,41 fresh) such that

o=ty /x1,. .t x T
Let now, for ¢ = 1,...,n+1, s, be the expansion of ;. We want to show that
ulsi/m1, ..., sp/zn] =T WS 21,8 /Tn Sty /T
As before, u[s1/x1,...,8n/xn] =" ul[s)/x1,..., s, /z,]. Moreover, since s is

4 !/ / 3 3 !
the expansion of It u} v; Sm; and s, is the expansion of It u]v; m;, we have

s; = (vj)sy, 1 1- Therefore ,

zi[si/zi] = i = (})Sp1 = (V) Tnt1[Sh41/Tn41]
and thus
ulst /a1, ... s an] = W [s] /21, 8 [Ty Sy /Tpi]
which concludes the proof.

The set Et is closed w.r.t. the expansion of a head It redex of an elementary
term:

Proposition 9. Suppose that s’ is the expansion of s. Then
sty...t, EEr = §'t1...t, € Ey

Proof. By Lemma 2, applied to xt; ...t,[s/z] and zt; ...t,[s'/z] (x fresh).
Finally, the perpetuality of & follows from Propositions 8 and 9.

Proposition 10 (Perpetuality of &7). Ift ¢ SNt and t 2 u, then u ¢ SNT.

Proof. Assume wu is obtained from ¢ by replacing an elementary subterm s of u
with s’; we show that s’ ¢ SNt. The only case not covered by a straightforward
adaptation of Proposition 2 is the one in which s = ltuvtt;...t, and t —*
t'e GN = s = ((v)(v)...(vV)u)ty...t,, where (v)...(v)u is the expansion of
ltuvt’. Now, by Proposition 8, we obtain that ltuvt’ is elementary; by Proposition
9, we obtain that ((v)(v)...(v)u)ty...t, is elementary too.

The perpetual relation & is simulated in T* by means of the translation _*.

Proposition 11 (Simulation of the Perpetual relation in T*). Let v be
any term of T. Then v 2w =— v* =T w*.

Proof. The proof is the same as that of proposition 7.
We are now able to prove the Strong Normalization Theorem for T:

Theorem 5 (Strong Normalization for System T). Every term t of Géodel’s
System T is strongly normalizable with respect to the relation — .

Proof. Suppose for the sake of contradiction that ¢t ¢ SNt. By Proposition 10,
there is an infinite sequence of terms t = ¢y, t2,...,t,,... in System T such that
for all i, t; #t;11. By Proposition 11 that gives rise to an infinite reduction
t=1t7,t5, ..., t, ... in System T*. By the strong normalization Theorem 3 for
T*, infinite reductions of the latter kind cannot occur: contradiction.

5 Conclusions and Related Works

Most of the proofs in this paper are intuitionistic. We remark however that our
proof of the Characterization Theorem 2 is classical, since the excluded middle
is used in a crucial way to prove Proposition 1. But this is not an issue: it is
nowadays well-known how to interpret constructively classical proofs, especially
when so limited a use of classical reasoning is made. One may thus obtain, by
using classical realizabilities [12] or functional interpretations [19], non-trivial
programs providing arbitrarily long approximations of the sequence of terms
proved to exists in the Characterization Theorem. The same considerations apply
to the proofs of the strong normalization theorems: it is possible to extract
directly from them normalization algorithms (giving a nice case study in the field
of program-extraction from classical proofs).

Our proofs of strong normalizations bear similarities with others. In [22], the
iterator It, is translated as the infinite term

AT (e, (F)e, (F) () (D)) (s)

and a weak normalization theorem is proven with respect to the new infinite
calculus. On our side, the use of the non-deterministic operator It* clearly allows
to simulate that infinite term. On a first thought, the move may not seem a big
deal, but, surprisingly, the gain is considerable. First, one radically simplifies
Tait’s calculus by avoiding infinite terms. Secondly, the Characterization Theorem
for A* and T* does not hold for Tait’s infinite calculus, since this latter does
not enjoy its main corollary, strong normalization (an infinite term may contain
infinite redexes). Last, with our technique we obtain strong normalization for T.

Our work has also some aspects in common with the technique of Joachimski-
Matthes [14], which provides an adaptation of the technique in [18] that works
for the lambda formulation of System T. For example, our use of generalized
numerals is similar to the evaluation function of [14] used to inject {2 in SN.
Indeed, we consider our work to be a refinement and an extension to an untyped
setting of the methods of [18,14]. In fact, we claim to be also able to prove the
strong normalization theorem for System T* directly, in a Van Daalen style (see
also [4]). In other words, one can simplify both our proof for T (call-by-value) and
the one in [14] by avoiding to reason on a inductively defined set of “SN” terms
and instead use a triple induction. This is possible since the non-deterministic
reduction relation of T* allows to express in a natural way a heavy inductive load,
which is performed in [18,14] by defining a set of “regular” terms and the set
“SN” by an omega-rule. Indeed, we believe that the idea of using non-determinism
to simplify the study of strong normalization can be applied in other situations
as well: we shall show that in future papers. Moreover, our technique makes
explicit as a perpetual reduction the “reduction” hidden in the family of proofs
in [18,20,14]. This enables not only to prove normalization, but also to increase
the qualitative understanding of non-termination in lambda calculus with explicit
recursion and to explain why it is avoided in the typed version. As for [1], we
consider our extension of the Characterization Theorem from lambda calculus to
T* as a genuine advancement: for quite a while, such a generalization seemed
hopeless for a system which can simulate in a so direct way System T.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Aschieri, F.: Una caratterizzazione dei lambda termini non fortemente normalizzabili.

Master Degree Thesis, Universita degli Studi di Verona (2007).

. Biasi, C., Aschieri, F.: A Term Assignment for Polarized Bi-Intuitionistic Logic

and its Strong Normalization. Fundamenta Informaticae 84(02) (2008).
Dal Lago, U., Zorzi, M.: Probabilistic Operational Semantics for the Lambda Calculus.
RAIRO-ITA- DOI 10.1051 /ita/2012012 46(03) (2012) 413-450.

. David, R., Nour, K: A short proof of the strong normalization of the simply typed

lambda-mu-calculus. Schedae Informaticae 12 (2003) 27-34.

de’ Liguoro, U., Piperno, A.: Non-Deterministic Extensions of Untyped Lambda-
Calculus. Information and Computation 122 (1995) 149-177.

Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press
(1989).

. Howard, W.A.: Ordinal analysis of terms of finite type. The Journal of Symbolic

Logic, 45(3) (1980) 493-504.

Gandy, R.O.: Proofs of Strong Normalization, Essays on Combinatoriay Logic,
Lambda Calculus and Formalism. (1980) 457-477. Academic Press, London.
Khasidashvili, Z., Ogawa, M.: Perpetualilty and Uniform Normalization, Algebraic
and Logic Programming, Springer LNCS, 1298 (1997) 240-255.

Kreisel, G.: Interpretation of Analysis by Means of Constructive Functionals of
Finite Types. Constructivity in Mathematics (1959)101128. North-Holland.
Krivine, J.-L.: Lambda-calcul types et modéles, Studies in Logic and Foundations of
Mathematics (1990) 1-176. Masson, Paris.

Krivine, J.-L.: Classical Realizability. In Interactive models of computation and pro-
gram behavior. Panoramas et syntheses 27 (2009) 197-229. Société Mathématique
de France.

Levy, J.-J.: Reductions correctes et optimales dans le lambda-calcul. PhD Thesis,
Université Paris 7 (1978).

Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Géodel’s T, Archive of Mathematical
Logic, 42(1) (2003), 49-87.

Mellies, P.-A.: Description Abstraite des Systémes de Réécriture. PhD Thesis,
Université Paris 7 (1996).

Nederpelt, R.-P.: Strong Normalization in Typed Lambda Calculus with Lambda
Structured Types. PhD Thesis, Eindhoven University of Technology (1973).
Prawitz, D.: Ideas and Results in Proof Theory. In Proceedings of the Second
Scandinavian Logic Symposium (1971).

Sanchis, L.-E.: Functionals Defined by Recursion. Notre Dame Journal of Formal
Logic, VITI(3) (1967) 161-174.

Spector, C.: Provably recursive functionals of analysis: a consistency proof of
analysis by an extension of principles in current intuitionistic mathematics. In
Proceedings of Symposia in Pure Mathematics, 5 AMS (1962) 1-27.

van Daalen, D.: The language theory of Automath. PhD Thesis, Eindhoven University
of Technology (1977).

van Raamsdonk, F., Severi, P., Sgrensen, M.H., Xi, H.: Perpetual Reductions in
Lambda-Calculus. Information and Computation 149 (1999) 173-225.

Tait, W.:Infinitely Long Terms of Transfinite Type. Formal Systems and Recursive
Functions 40 (1965) 176-185.

	Non-Determinism, Non-Termination and the Strong Normalization of System T

