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Quivers and representations
Definition
@ A quiver Q is an oriented graph.
@ We denote by Qg its vertices and by @ its edges.

@ The C-vector space whose basis elements are all paths in @ is denoted
by CQ.

Example

B

Q= 1—2>2—"-3

Qo =1{1,2,3} and Q1 = {«, 8}

CQ is a six-dimensional C-vector space with basis

P= {ela €, e37a757/8a}7

where e;, e and e3 are lazy paths and S« is the long path going from
vertex 1 to vertex 3. )
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Quivers and representations

Example

Q= 1QW
Qo = {1} and Q1 = {7}

CQ is an infinite-dimensional C-vector space with basis

P={e,7": neN}

@ The examples suggest a further operation on the vector space of
paths: concatenation of paths. When concatenation is not possible,
we set it to be zero!

@ This is a multiplication in the vector space CQ. The sum of all the
lazy paths acts as a multiplicative identity on any path.

o CQ has, thus, a ring structure. We call CQ the path algebra of Q.
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Quivers and representations

Example

B

Q= 1—2>2-—"-3

CQ is a finite-dimensional C-vector space with basis
P = {e, e, e3,a, 3, Ba}. Given two elements:

O = Aer + Aoex + Aze3 + M+ A58 + Ag o
U = pier + poey + pzes + pac + psf + pefor

with \;, p; in C, the multiplication ®W is defined distributively,
multiplying the scalars and using the concatenation rules. For example:

et =0, Ber=0, ee =0=ee, fa=7 a
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Quivers and representations

Example
Exercise 1: Check that the path algebra CQ of the quiver

Q= 12253
C 0 O
CcC C o
C C C
Exercise 2: Check that the path algebra CQ of the quiver

Q= 1 Q v
is isomorphic to the polynomial ring C[X].

Exercise 3: Check that the path algebra CQ of a quiver Q is a finite
dimensional vector space if and only if @ has no loops.

is isomorphic to the ring
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Quivers and representations
Definition

A representation of a quiver Q is a pair ((Vi)ieqy, (fa)ac@,) Where each V;
is a C-vector space and for any arrow o : i — j, f, is a linear map V; — V.

Example
a B
Q= 1—2—7->3
The following are examples of representations:

10
Me P00

N = C C3 C?

()

==
- O
N——

v
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Quivers and representations

Definition

A morphism between representations of a quiver @

¢ ((Vi)iEQov (fa)a€Q1) — ((VVI')/EQo’ (ga)ocEQl)

is a family (¢i)ieq, of linear maps ¢; : V; — W; such that, for any arrow

a:i— jin @, the diagram commutes

The morphism ¢ is said to be an isomorphism if all the ¢;'s are
isomorphisms of vector spaces.
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Quivers and representations

Example

Q: a—a>b—>c

C2(10) C 0 .
1
(10) (—1) 0
1
Cs3 C?
(_11) 55
1

This is a morphism between the representations M and N.
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Quivers and representations

Definition

A representation M of a quiver @ is said to be indecomposable if it is not
isomorphic to the direct sum of two other representations.

Example

1 0
Q: a—a>b—5>c, M = (Cz ( ) C 0
decomposable representation as it can be written P; @& P,, where

0 isa

Pr:= C 0 0 0 0

P,:= C C 0 0

Throughout, we will work with quivers @ that have no loops and our
representations will be finite dimensional.
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Gabriel's theorem
How can we understand and classify (up to isomorphism) all the
representations (and their morphisms) of a quiver Q7

Theorem (Krull-Schmidt-Azumaya)

Every finite dimensional representation of a quiver decomposes uniquely as
a direct sum of indecomposable representations.

@ We can, therefore, think of indecomposable representations as the
atoms of the category of finite dimensional representations.

@ There are also irreducible morphisms of representations, which provide
a set of morphisms such that every other morphism can be built from
them by forming compositions, linear combinations and matrices.

@ A first problem is that there might be too many indecomposable
representations.

Jorge Vitéria (University of Verona) A visual introduction to Tilting Padova, May 21, 2014 11 / 36



Gabriel's theorem

Definition
We say that a quiver @ is of finite representation type if @ has finitely
many indecomposable representations (up to isomorphism).

@ Gabriel's theorem will say precisely which quivers have finite
representation type.
@ Among quivers of infinite representation type, there are two subtypes:
» Quivers of tame type: Infinitely many indecomposable finite
dimensional representations (up to isomorphism) but which are possible
to parametrise;
» Quivers of wild type: Infinitely many indecomposable finite dimensional
representations (up to isomorphism) which cannot be parametrised.
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Gabriel's theorem

Theorem

A quiver Q is of finite representation type if and only if the underlying
graph belongs to one of the following families of graphs:

Jorge Vitéria (University of Verona) A visual introduction to Tilting Padova, May 21, 2014 13 / 36



Gabriel's theorem

Example
How many indecomposable representations for each type?

e Type An, n>1: n(n+ 1)/2 indecomposable representations;
Type D,, n > 4: n(n — 1) indecomposable representations;
Type Eg, 36 indecomposable representations;

Type E7, 63 indecomposable representations;

o
o
o
@ Type Eg, 120 indecomposable representations.

Example
@ The quiver 1 ——=2 is of finite type.
@ The quiver 1 —= 2 is of tame type.

@ The quiver 1 ——=2 is of wild type.
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The Auslander-Reiten quiver of Az

Definition
The Auslander-Reiten quiver of a quiver Q is a quiver defined by:

@ The vertices are the finite dimensional indecomposable representations
of Q;

@ The arrows are the irreducible morphisms between the indecomposable
representations.

Consider the following quiver of type As,

Q=1—2%>2—"-3.

It is of finite representation type, by Gabriel's theorem, and it has 6
indecomposable representations. We discuss its Auslander-Reiten quiver.
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The Auslander-Reiten quiver of Az

Indecomposable representations of Q:

@ Pp:= C——=0——=0, sometimes denoted by (1 0 0);
o P:= C—1>C——>0, sometimes denoted by (110)

o P3:= C—->C—2>C, sometimes denoted by (111)

S, := 0——= C ——0, sometimes denoted by (0 1 0);

o h:= 0—>C—>C, sometimes denoted by (011)

S3:= 0——=0——>C, sometimes denoted by (0 0 1).
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The Auslander-Reiten quiver of Az

Irreducible morphisms between representations of Q:
@ An injective morphism from P; = (1 00) to P> = (1 1 0), defined by:

C——0——0
RN
C—C——=0

Similar considerations give the following morphisms:
@ An injective morphism from P, =(110) to P3 = (11 1);
@ A surjective morphism from P, =(110) to S, = (0 1 0);
@ An injective morphism from S, = (01 0) to b = (0 1 1);
@ A surjective morphism from P3 =(111)to h = (01 1),
@ A surjective morphism from L, = (01 1) to S3=(00 1).
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The Auslander-Reiten quiver of Az

We are now ready to build the Auslander-Reiten quiver of As.

(111)
/ \
(110) (011)
(100) (010) (001)

@ This quiver contains all the information about the category of finite
dimensional representations of Q.

@ The triples identifying the representations are called dimension vectors
and they help us to keep in mind what the morphisms are.
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Some tilting representations and their endomorphism rings

@ Given finite dimensional representations M and N of a quiver Q, we
denote by Homg (M, N) the set of morphisms of representations
between M and N.

o It is clear that Homg(M, N) is a C-vector space.
o If M = N, we write Endg(M) for this space.

e Endg(M) has an additional operation: composition, which is
distributive with respect to addition and commutes with scalar
multiplication - i.e., Endg(M) has a ring structure. It is called the
endomorphism ring of M.
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Some tilting representations and their endomorphism rings

Example (The tilting module T =P, & P & S3)

As before, let Q = 1—2>2—" >3 With the help of the
Auslander-Reiten quiver, we can compute endomorphism rings of

/\
/\/\

Let T=P,® P3 B S,. To compute Endg(T) we look at irreducible
morphisms between the indecomposable summands of T.

representations.
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Some tilting representations and their endomorphism rings

Example (The tilting module T =P, & P; & S5)
T=PdP:dS

/\
/\/\

It turns out that Endg(T) = C( 1 <—— 2 ——3), where we identify the
vertex 2 with the representation P, and the vertices 1 and 3 with the
representations Pz and S,.
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Some tilting representations and their endomorphism rings

Example (The tilting module T =P, & P & S3)
The Auslander-Reiten quiver of Endg(T) =2 C(1<—2—>3)7

(011) (100)
(010) (111)
(110) (00 1)

Can we relate it to the Auslander-Reiten quiver of Q7
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Some tilting representations and their endomorphism rings

Example (The tilting module V =5L & P; & S,)
V=5hbeoPa&$5

/\
/\/\

It turns out that Endg(V) =2 C( 1 —— 2 <——3), where we identify the
vertex 2 with the representation /; and the vertices 1 and 3 with the
representations Pz and S,.
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Some tilting representations and their endomorphism rings

Example (The tilting module V = L& Ps & S,)
The Auslander-Reiten quiver of Endg(V) = C(1——=2<—3)7

(100) (011

~
PN

(001) (110

Can we relate it to the Auslander-Reiten quiver of Q7
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Some tilting representations and their endomorphism rings

@ The two representations T and V considered in the above examples
are tilting representations.

o A tilting representation M has good properties that allow to compare
representations of Q and representations of Endg(M).

@ More precisely, it allows to compare the derived categories of
representations of @ and Endg(M) - denoted by D?(Q@) and
DP(Endg(M)), respectively.

@ The Auslander-Reiten quiver of the derived category of a quiver @ can
be drawn by repetition of the Auslander-Reiten quiver of Q.
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Tilting representations and Happel's theorem

Example (Auslander-Reiten quiver of D?(CQ), @ = 1 ——=2——=3)
S2[-1] S3[-1] S3[1]

\/\/\/\/\
\/\/\/\/

Ps[—1] P1[2]

The Auslander-Reiten quiver of D?(Q) is obtained by repetition, where the colours represent:
Auslander-Reiten quiver of @ in position -1
Auslander-Reiten quiver of @ in position 0
Auslander-Reiten quiver of @ in position 1
Auslander-Reiten quiver of @ in position 2
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Tilting representations and Happel's theorem

Example (Tilting representation T = P, @ P;® S, over Q = 1——=2—=3))
So[-1] S3(-1] Pi[1] 52[1] Ss[1]
e
h[-1] \ /2[1]
\
Ps[-1] P / 3[1] P1[2]
Recall that Endg(T) = C(Q'), where Q' = 1<—2—=3, )
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Tilting representations and Happel's theorem

Example (Tilting representation T = P, @ P;® S, over Q = 1——=2—-=3))
S3[-1] P[] 52[11

N, 'S O ¢
/ \ \ / Ps[1] \Pl[Q]

Py

(@), where @ = 1<—2—=3, and we know its

S3[1]

S[-1]

Ps[-1]

Recall that Endg(T) = C

Auslander-Reiten quiver.
If we draw its repetition quiver, then we get
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Tilting representations and Happel's theorem

Example (Tilting representation T = P, @ P;® S, over Q = 1——=2—-=3))
S[-1] S3[-1] Pi[1] 52[1] Ss[1]

VAN N
\/ \ N

Pal-1] P i

b[-1]

Recall that Endg(T) = C(Q'), where @ = 1<—2——3, and we know its
Auslander-Reiten quiver.
If we draw its repetition quiver, then we get the same quiver!, i.e., the derived categories

D?(Q) and D?(Q') are equivalent.
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Tilting representations and Happel's theorem

Example (Tilting representation V = L ® P3@® S over Q = 1 —=2——=3)
So[-1] S3(-1] Pi[1] So[1] Ss[1]
. \/2[—1/ \ P, I \Pz[ll k[1]
e
P3[-1] P S / P[] P1[2]
Recall that Endg(T) = C(Q"), where Q" = 1—=2<~—3, )
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Tilting representations and Happel's theorem

Example (Tilting representation T = P, @ P;® S, over Q = 1——=2—-=3))
S2[1]

So[-1] S3(-1] Pi[1]
\ / \ \P ) / \I ) /
3 2 >

pa[—l/IZI_l]\*P ~ s - \Pa[ll/

Recall that Endg(T) = C(Q"), where Q" = 1——2<—3, and we know its

Auslander-Reiten quiver.
If we draw its repetition quiver, then we get

S3[1]

P1[2]
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Tilting representations and Happel's theorem

Example (Tilting representation T = P, @ P;® S, over Q = 1——=2—-=3))

S[-1] S3[-1] Pi[1] S[1] Ss[1]
- h[-1] P, b Pa[1] h[1]
Ps[—1] Py / Ss / Ps[1] P1[2]

Recall that Endg(T) = C(Q"), where Q" = 1——2<—3, and we know its
Auslander-Reiten quiver.
If we draw its repetition quiver, then we get the same quiver!, i.e., the derived categories

D?(Q) and D?(Q") are equivalent.
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Tilting representations and Happel's theorem

Definition (Tilting representation of a quiver)
A finite dimensional representation T of a quiver Q is said to be tilting if

o Extb(T, T) =0, i.e., every short exact sequence of representations of
the foom 0 - T — M — T — 0 splits.

@ The number of indecomposable summands of T equals the number of
vertices in Q.

v

Theorem (Happel, 1989)

Let T be a tilting representation of a quiver Q. Then D®(Q) is equivalent
to DP(Endg(T)).

Note that Endg(T) is not always of the form CQ’ for some quiver Q'.
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Tilting representations and Happel's theorem

Example (The tilting representation W = P; & P; & S3)
W=P@&P;s®S30overQ=1—>2—>3

PQ/P3\/2
VAYAN

To understand Endg(T), identify Py, P; and S3 with the vertices of a quiver but
remember that the composition P; — P3 — S3 is a morphism between the
representations P, = (1 0 0) and S3 = (00 1),

4
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Tilting representations and Happel's theorem

Example (The tilting representation W = P; & P; & S3)
W=P@&P;s®S30overQ=1—>2—>3

Ps
P> h
Py S S3
To understand Endg(T), identify Py, P; and S3 with the vertices of a quiver but

remember that the composition P; — P3 — S3 is a morphism between the
representations P; = (1 0 0) and S3 = (0 0 1), i.e., it is the zero morphism. Thus,

Endo(W) = C(1—2>2—"+3)/ < Ba >,
where < Ba > is the ideal generated by the path Sa.

4
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Tilting representations and Happel's theorem

Example (The tilting representation W = P; & P; & S3)
Still, Happel's theorem applies, and D?(Q) =2 D®(Endg(W)), with
Endo(W) = C(1—2>2—"+3)/ < Ba > .

Representations of Endg(W) are representations ((M;)icqy, (fy)veq:) of Q
satisfying the relation f3f, = 0.

v
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