
Chapter 3

Mutations of quivers with

potentials and derived

equivalences

3.1 Introduction

For a quiver with potential, Derksen, Weyman and Zelevinsky defined in 2008

([DWZ08]) a combinatorial transformation - mutations. Mukhopadhyay and Ray,

on the other hand, tell us how to compute Seiberg dual quivers for some quiv-

ers with potential through a tilting procedure, thus obtaining derived equivalent

algebras ([MR04]). In this chapter, we compare mutations with this approach to

Seiberg duality, concluding that for a certain class of potentials and under cer-

tain conditions they coincide. Therefore mutations provide us with some derived

equivalences.

A broad class of noncommutative algebras can be presented as a path

algebra of a quiver with relations. We shall be studying the derived categories of
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some of these algebras, namely when their relations can be suitably encoded on a

potential via cyclic derivatives as follows. Q0 and Q1 denotes the sets of vertices

and arrows, respectively, of a quiver Q. KQ is the path algebra of the quiver Q

over K and our convention is to write concatenation of paths as composition of

functions. The following definitions are due to Derksen, Weyman and Zelevisnky

([DWZ08]).

Definition 3.1.1. A potential on a quiver is an element of the vector space

spanned by the cycles of the quiver (denote it by KQcyc).

Remark 3.1.2. We will assume throughout this chapter, unless otherwise stated,

that every cycle in any potential S is simple, i.e., it does not pass through the

same vertex twice.

Definition 3.1.3. Let A = 〈Q1〉, i.e., the vector space spanned by all arrows.

For each ξ ∈ A∗ (the dual of A), define a cyclic derivative:

∂/∂ξ :
KQcyc → KQ

a1 . . . an 7→ ∑n
k=1 ξ(ak)ak+1 . . . ana1 . . . ak−1

.

If x ∈ Q1, we will denote by ∂/∂x the cyclic derivative correspondent

to the element of A∗ which is the dual of x in the dual basis of A. Potentials

are regarded as a way to encode the relations of certain path algebras, when the

relations are precisely given by the ideal generated by all the cyclic derivatives.

Different potentials can, however, define the same set of relations. For example,

the same cycle can be written with different starting vertices even though its

cyclic derivatives do not depend on such choices. To identify these, the following

equivalence relation is introduced.

Definition 3.1.4. Two potentials are cyclically equivalent if S − S ′ lies in the

span of elements of the form a1 . . . an−1an − a2 . . . ana1. A pair (Q,S) is said to
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be a quiver with potential if Q has no loops and no two cyclically equivalent

paths appear on S.

The following notion of (strong) right equivalence will be central in our

discussion. However, one needs at this point to introduce the notion of complete

path algebra. Recall that KQ can be seen as
⊕∞

i=0 Ai.

Definition 3.1.5. The complete path algebra is defined as K̂Q :=
∏∞

i=0 Ai.

Definition 3.1.6. Two quivers with potentials (Q,S) and (Q′, S ′) are said to

be right equivalent if there is isomorphism φ between K̂Q and K̂Q′ such that

φ(S) is cyclically equivalent to S ′. We shall say that they are strongly right

equivalent if we can take φ to be an isomorphism between KQ and KQ′ such

that φ(S) is cyclically equivalent to S ′.

In particular it is clear that strong right equivalence implies right equiva-

lence. We now introduce the algebras of our focus in this chapter.

Definition 3.1.7. Given a quiver with potential (Q,S), define the Jacobian

algebra of (Q,S) as J(Q,S) = KQ/ 〈J(S)〉, where J(S) = (∂S/∂x)x∈Q1 . We

call ̂J(Q,S) = K̂Q/ 〈〈J(S)〉〉 the complete Jacobian algebra, where 〈〈J(S)〉〉
is the closure of the ideal generated by J(S) in K̂Q in the m-adic topology, for m

the maximal in K̂Q generated by all arrows.

Remark 3.1.8. Note that two strongly right equivalent quivers with potentials

have isomorphic Jacobian algebras while two right equivalent ones have isomorphic

complete Jacobian algebras ([DWZ08]).

A very interesting class of examples arises naturally in toric geometry and

homological mirror symmetry ([UY07]). These examples are constructed from
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bipartite graphs on the torus as we now explain. Let G be a bipartite graph

embedded on a torus T , with the two sets of vertices being called W (white) and

B (black). We can construct a quiver Q and a potential S as follows:

• The vertices of Q are the faces of G, i.e., the connected component of T \G;

• There is an arrow between two vertices of Q if the corresponding faces of G

share a common edge;

• The direction of the arrow a in Q is determined by the convention that the

white vertex of the corresponding edge in G lies on the right side of a;

• The terms of the potential are the cycles that go around each vertex of G,

assigning positive signs to those coming from white vertices and negative

sign otherwise.

In some cases the quivers with potential obtained in this way are derived equivalent

to toric varieties combinatorially related to the bipartite graphs ([UY07]). To get a

quiver with potential we must ensure that no loops are allowed. For this we require

the embedding of G to be such that each edge separates two distinct faces.

In the next section we will define mutation and Seiberg duality for a quiver

with potential followed by some results on the links between them in section 3.3.

Section 3.4 explores an example of algebro-geometric nature and we end this

chapter by discussing the results of 3.3 in the 3-Calabi-Yau context.

3.2 Mutation and Seiberg Duality

For a quiver with potential (Q,S), Kb(Q,S) and Db(Q,S) will denote, respec-

tively, the bounded homotopy category and the bounded derived category of right
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modules over J(Q,S). Given an arrow α ∈ Q1, let t(α) denote the target of α

and s(α) the source of α (i.e., the arrival and departure vertices, respectively).

It is well known (see [Hap87]) that given a path algebra, reflection functors

on vertices that are either sources (i.e., vertices with no incoming arrows) or sinks

(i.e., vertices with no outgoing arrows) provide us with derived equivalences. Our

aim is to identify some derived equivalent algebras and hence we shall consider

a generalisation of these reflection functors, DWZ-mutations, for which we need

first the following definition and theorem ([DWZ08]).

Definition 3.2.1. A potential S (or a quiver with potential (Q,S)) is said to be

trivial if it is homogeneous of degree 2, i.e., if it is constituted only by 2-cycles.

A potential S (or a quiver with potential (Q,S)) is said to be reduced if it has

no 2-cycles. For a quiver with potential (Q,S), if m is the ideal generated by the

arrows in KQ, we define mtriv as the ideal generated by arrows appearing in the

two-cycles of the potential and mred = m/mtriv.

Note that, since we assume that all cycles in the potential are simple (i.e.,

no cycle in the potential passes through the same vertex twice), each 2-cycle of S

is a summand of S.

Theorem 3.2.2 (Derksen, Weyman, Zelevinsky). For a quiver with potential

(Q,S), there exist a trivial quiver with potential (Qtriv, Striv) (where the arrows

of Qtriv generate mtriv) and a reduced quiver with potential (Qred, Sred) (where

the arrows in Qred generate mred) such that (Q,S) is right equivalent to (Qtriv ⊕
Qred, Striv + Sred) (where the arrows in Qtriv ⊕ Qred generate mtriv ⊕ mred).

We can now describe the procedure of mutation of a quiver with potential

(Q,S) on a vertex k (denote it by µk(Q,S)).
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1. Suppose k does not belong to any 2-cycle and that S does not have any cycle

starting and finishing on k (if it does, substitute it by a cyclically equivalent

potential that does not).

2. Change the quiver in the following way:

• Reflect arrows starting or ending at k. Denote reflected arrows by (.)∗;

• Create one new arrow for each path βα of length two, with α, β ∈ Q1

such that t(α) = s(β) = k and denote it by [βα].

We denote the resulting quiver by Q̃.

3. Change the potential in the following way:

• Substitute factors appearing in S of the form βα with middle vertex k

by the new arrow [βα] and denote it by [S];

• Define S̃ := ∆k + [S] where ∆k =
∑

t(α)=s(β)=k

[βα]α∗β∗.

4. The mutation at k of (Q,S) is µk(Q,S) = (Q̄, S̄) := (Q̃red, S̃red).

We proceed to define Seiberg duality ([MR04]). This is a tilting procedure

and therefore it is an equivalence of derived categories. To check if a complex is

tilting we will have to compute homomorphisms in the derived category between

(finitely generated) projective modules. For this we will use remark 2.1.10.

From now on, we will assume that (Q,S) is a quiver with potential with n

vertices such that every vertex is contained in some cycle. Let Pi be the projective

right module over J(Q,S) associated to the vertex i of Q, i.e., Pi = eiJ(Q,S)

where ei is the stationary path on vertex i. For each vertex k, consider the following

complex:

T k =
n⊕

i=1

T k
i
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where

T k
i = 0 −→ Pi −→ 0, if i 6= k

(Pi is in degree zero of the complex) and

T k
k = 0 −→

⊕

t(α)=k

Ps(α)
(α)−−→ Pk −→ 0

(
⊕

t(α)=k

Ps(α) is in degree zero of the complex), where (α) denotes the morphism

defined in each component of the direct sum by

Ps(α) −→ Pk : u 7→ αu.

Remark 3.2.3. We observe that the projective modules Pi = eiJ(Q,S) are

indecomposable. This argument is due to Dong Yang and the result follows as a

consequence of a lemma proved by Keller and Yang ([KY10]). In their paper, they

observe that the projective modules eiΓ(Q,S) associated with the Ginzburg algebra

Γ(Q,S) - a differential graded algebra defined such that H0Γ(Q,S) = ̂J(Q,S)

- are indecomposable (indeed, they prove more: the perfect derived category,

per(Γ), is Krull-Schmidt). Hence, since

HomDb(Γ)(eiΓ, eiΓ) = eiH
0Γei = HomH0Γ(eiH

0Γ, eiH
0Γ),

the endomorphism algebra of P̂i = ei
̂J(Q,S) = Pi ⊗J(Q,S)

̂J(Q,S) is local and

hence P̂i is indecomposable. This implies that Pi is also indecomposable.

Lemma 3.2.4. T k is a tilting complex over the Jacobian algebra of (Q,S) if and

only if HomKb(P (J(Q,S)))(T
k
k , T k

s [−1]) = 0, ∀s ∈ Q0.

Proof. We split the proof into two parts: homomorphism vanishing and generation.

First we prove that HomKb(P (J(Q,S)))(T
k
r , T k

s [i]) = 0, for all i 6= 0 if r 6= k

and for all i > 0 if r = k.
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It is clear that if r, s 6= k, then HomKb(P (J(Q,S)))(T
k
r , T k

s [i]) = 0, for all

i 6= 0 (as this is some higher Ext-group between projectives). Now, suppose

s = k and r 6= k . We only have to check that HomKb(P (J(Q,S)))(T
k
r , T k

k [1]) is

trivial. Note that, since a homomorphism between Pr to Pk is identified with an

element of the path algebra with each term being a path from r to k, every such

homomorphism factors through
⊕

t(α)=k

Ps(α).

0 // Pi
//

{{
²²

0

0 //
⊕

t(α)=k

Ps(α) // Pk
// 0

This factorisation implies that such maps are homotopic to zero, thus zero in the

homotopy category.

If s = r = k then we also have such a homotopy just by taking identity

maps.

0 //
⊕

t(α)=k

Ps(α) //

yy
²²

Pk

}}

// 0

0 //
⊕

t(α)=k

Ps(α) // Pk
// 0

Secondly we check that T k generates Kb(P (J(Q,S))) as a triangulated

category.

It is enough to prove that the stalk complexes of indecomposable projective

modules are generated by the direct summands of T k.

Consider the direct summands of T k and take the cone of the map from
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T k
k to

⊕
t(α)=k

T k
s(α) defined by:

0 //
⊕

t(α)=k

Ps(α) //

id
²²

Pk
// 0

0 //
⊕

t(α)=k

Ps(α) // 0

That cone is just the following complex (the underlined term is in degree zero):

0 //
⊕

t(α)=k

Ps(α)
((α),id) // Pk ⊕ (

⊕
t(α)=k

Ps(α)) // 0 (3.2.1)

Consider the map from the complex (3.2.1) to the stalk complex of Pk in degree

zero defined by identity in the first component and −(α) in the second component.

Consider also the map from this same stalk complex to (3.2.1) defined by the

inclusion of Pk. We observe that the composition of these maps is homotopic to

the identity map, hence proving that these complexes are isomorphic in the derived

category. In fact, that follows from the following diagram:

0 //
⊕

t(α)=k

Ps(α)

§§

²²

((α),id) // Pk ⊕ (
⊕

t(α)=k

Ps(α))

(0,id)

££

(id,−(α))

²²

// 0

¥¥

0

²²

// Pk

(id,0)

²²

// 0

0 //
⊕

t(α)=k

Ps(α)
((α),id) // Pk ⊕ (

⊕
t(α)=k

Ps(α)) // 0

.

Similarly we can see the same phenomenon for the reverse composition and there-

fore (3.2.1) is isomorphic to the stalk complex Pk in degree zero.

Therefore, the complex is tilting if and only if the remaining conditions, i.e.,

HomKb(P (J(Q,S)))(T
k
k , T k

s [−1]) = 0, for all s ∈ Q0, are verified.
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Definition 3.2.5. Given a quiver with potential (Q,S), define δ(Q,S) as the set

of vertices for which the complex above is tilting over J(Q,S), i.e.,

δ(Q,S) =
{
k ∈ Q0 : HomKb(P (J(Q,S)))(T

k
k , T k

s [−1]) = 0, ∀s
}
.

If δ(Q,S) 6= ∅, then we say that (Q,S) is locally dualisable in δ(Q,S). Fur-

thermore, if δ(Q,S) = Q0 then we say that (Q,S) is globally dualisable.

Remark 3.2.6. Note that to check whether the complex is tilting we just need

to check that, for any s 6= k, there is no element f 6= 0 in the path algebra such

that ⊕
t(α)=k

Ps(α)

²²

(α) // Pk

f

²²
0 // Ps

commutes. The existence of such an f implies that the ideal of relations must

contain the set {fα : t(α) = k}. This allows us, given a potential S for Q, to

determine δ(Q,S).

Moreover, observe that if such f exists, then fJ(Q,S) ∼= Sk, where Sk

is the simple module at the vertex k. This means that soc(Ps) 6= 0. So, if

Hom(Sk, Ps) = 0 for all s 6= k then T k is tilting.

From now on we will drop the superscript on T whenever the vertex with

respect to which we are considering the tilting complex is fixed.

Definition 3.2.7. The Seiberg dual algebra of a quiver Q with potential S

(or of its Jacobian algebra) at the vertex k ∈ δ(Q,S) is EndDb(Q,S)(T
k), the

endomorphism algebra of T k.

Rickard’s theorem then asserts that Seiberg dual algebras have derived

equivalent categories of modules. For an illustrative example see section 3.4.
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3.3 Seiberg duality for good potentials

Let us consider the following class of potentials:

Definition 3.3.1. A potential on a quiver Q is a good potential if its cycles are

simple (i.e., do not pass through the same vertex twice), each arrow of Q appears

at least twice and no subpath of length two appears repeated in any two distinct

cycles of the potential.

Note that, in particular, a quiver with a good potential has the property

that every arrow is contained in at least two distinct cycles.

Proposition 3.3.2. A quiver with good potential is globally dualisable.

Proof. This is immediate from the definition of good potential. In fact, the gener-

ators for the ideal of relations are of the form ∂S/∂a =
∑d

i=1 λivi, where λi ∈ K.

Hence, d ≥ 2 and the vi’s are paths starting with different arrows thanks to the

requirement that no subpath of length two should be repeated in two distinct

terms of the potential. Thus, the ideal cannot contain any element of the form

uα where u is not a relation and α ∈ Q1. Therefore δ(Q,S) = Q0.

Remark 3.3.3. Let G be a bipartite graph embedded on a torus (such that each

edge separates two distinct faces) and (Q,S) the quiver with potential associated

to it as explained in the introduction of this chapter. Under very mild assumptions

on G, S is a good potential. In fact, it is always true that each arrow appears

exactly twice in S since there are no loops in G and thus each edge of G has

two vertices (thus, dually, each arrow appears in two terms of the potential). To

guarantee that no subpath of length two appears repeated we just have to ensure

that no face of G is limited by only two edges.
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Let (Q,S) be a quiver with good potential. We want to give a presentation

of its Seiberg dual algebra at a fixed vertex k. We will see that this algebra is

in fact the Jacobian algebra of a quiver with potential, which we shall call the

Seiberg dual quiver.

First we compute the quiver. It has the same number of vertices as the

initial quiver (since the indecomposable projectives of EndDb(Q,S)(T ) correspond to

the direct summands of T ) and, for each irreducible homomorphism between the

Ti’s, we draw an arrow between the correspondent vertices. As we shall see later,

those irreducible homomorphisms are of three types (the terminology below, used

for simplicity of language, is inspired by Mukhopadhyay and Ray’s work, [MR04]).

Also theorem 3.3.7 shows that our repeated choice of notation below is adequate

since the procedure to get the of the Seiberg dual quiver is the same as mutation

of the initial quiver.

• Arrows of the form a, where a is also an arrow in Q, will be called internal

arrows. These arrows correspond to morphisms between T k
i and T k

j (which

are stalk complexes of projective modules over J(Q,S)), for i 6= k, that do

not factor through the stalk complex of Pk;

• Arrows of the form α∗ will be called dual arrows. These arrows correspond

to morphims either from or to T k
k ;

• Arrows of the form [βα] will be called mesonic arrows. These arrows

correspond to morphisms between T k
i and T k

j (which are stalk complexes of

projective modules over J(Q,S)), for i 6= k, that factor through the stalk

complex of Pk.

Similarly to the mutation process, we will do Seiberg duality in two main steps:
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obtain a quiver Q̃ that may contain more arrows than the irreducible homomor-

phisms and then, looking at relations, eliminate the appropriate arrows that do

not correspond to irreducible ones (those will be the arrows lying in the 2-cycles of

the potential). It turns out that relations on the Seiberg dual quiver can also be

encoded in a potential (see proposition 3.3.9) and it will be determined as follows:

1. Determine S̃ := [S]+
∑

t(α)=s(β)=k

[βα]α∗β∗ (eventually containing some arrows

representing non-irreducible homomorphisms);

2. For every arrow a in a two cycle ab, take the relation ∂S̃/∂a = 0 and

substitute b in S̃ using this equality (and thus eliminate b from the quiver,

since b is not irreducible as it can be written as a composition of arrows).

Call S̄ to the potential thus obtained.

Remark 3.3.4. Again, for simplicity of language, arrows appearing in two cycles

will be called massive arrows and the process described on item 2 of the algorithm

above will be called integration over massive arrows.

Definition 3.3.5. If one massive arrow a appears in two or more different 2-cycles

of S̃, that is, if we get an expression of the form:

S̃ =
d∑

i=1

λiabi +
l∑

j=1

auj + W

where λi ∈ K, each bi is an arrow, d ≥ 2, each ui is a path of length greater or

equal than 2 and a does not appear in W, then we say that the bi’s are related

arrows (by a).

Given a quiver Q with good potential S, suppose that no related arrows

occur in S̃. Then S̃ can be written as follows:

S̃ =
N∑

i=1

(λiaibi +
∑

j

σi,jaiui,j + bivi) + W (3.3.1)
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where σi,j, λi ∈ K, each aibi is a 2-cycle (i.e., ai and bi are massive arrows), each

bi is mesonic (thus the coefficient of bivi is 1), uij does not contain any arrow

bk, vi is a composition of dual arrows and W does not have any term involving

massive arrows. Since there are no related arrows we have ai 6= aj and since each

bi is mesonic (and S, being good, does not have repeated subpaths of length two)

bi 6= bj, for all i 6= j.

Theorem 3.3.6. Let Q be a quiver with a good potential S. If k is a vertex such

that no related arrows occur in the mutation, there is a strong right equivalence

φ from (Q̃, S̃) to (Q̃, S ′ + S̄), where S ′ is trivial and S̄ is obtained by Seiberg

duality.

Proof. Since there are no related arrows, let us assume that S̃ is of the form

(3.3.1). Take the family of homomorphisms given by

φi : KQ̃ → KQ̃

ai 7→ ai − 1
λi

vi

bi 7→ bi − 1
λi

∑
j σi,jui,j

z 7→ z if z 6= ai,bi, z ∈ Q1

where i ranges from 1 to N , the number of 2-cycles in S̃. Note that φi is in fact

an automorphism for all 1 ≤ i ≤ N : injectivity is clear and all arrows lie in the

image since

φi(ai +
1

λi

vi) = ai and φi(bi +
1

λi

∑

j

σi,jui,j) = bi

and since they generate the algebra, surjectivity holds.

Let φ be the composition of all φi’s. Then we may compute φ(S̃) thus

getting

φ(S̃) =
N∑

i=1

(λiaibi −
1

λi

∑

j

σi,jui,jvi) + W
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whose reduced part is exactly

N∑

i=1

(− 1

λi

∑

j

σi,jui,jvi) + W.

Now, if we integrate over massive arrows in 3.3.1, taking in account that

∂S̃/∂ai = λibi +
∑

j

σi,jui,j ∂S̃/∂bi = λiai + vi

and using the relations ∂S̃/∂ai = 0 and ∂S̃/∂bi = 0 in S̃ we get

N∑

i=1

(− 1

λi

∑

j

σi,jui,jvi) + W

which is the same as φ(S̃)red. Thus φ is such a strong right equivalence.

The following theorem establishes the desired comparison between the mu-

tated quiver and the Seiberg dual quiver.

Theorem 3.3.7. Let Q be a quiver with a good potential S such that no related

arrows occur in the mutation at a vertex k. Then the jacobian algebra of the

quiver with potential obtained by mutation at k is isomorphic to with the Seiberg

dual algebra of (Q,S) at k.

Proof. We start by looking at the shape of the quiver.

1. First we prove that Seiberg duality at k inverts incoming arrows to k. The

complex Tk has in degree zero one copy of Pj for every arrow from j to k.

Therefore, for each such arrow we get one projection map from the direct

sum to Pj and thus an irreducible homomorphism from Tk to Tj, which

translates into an arrow from k to j in the dual quiver. For each arrow αj

from j to k, denote the correspondent homomorphism from Tk to Tj by

α∗
j . There are no more irreducible homomorphims from Tk to Tj: any other

homomorphism factors through some factor of the direct sum first.
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2. Now we prove that Seiberg duality at k inverts outgoing arrows from k. This

requires the commutativity of a diagram like the following:

0 // Pi
//

f
²²

0

²²
0 //

⊕
t(α)=k

Ps(α)
(α) // Pk

// 0

.

The diagram commutes if and only if (α)f = 0 and so we have to check the

relations in the quiver to obtain such a condition. Fix an arrow β from k to

i and take the (cyclic) derivative of the potential with respect to β. Since S

is a good potential, ∂S/∂β =
d∑

q=1

λqvq where the vq’s are paths from i to k

(since βvq is a cycle for all q) and d ≥ 2. To give a homomorphism from Pi

to
⊕

t(α)=k

Ps(α) we just need to give a homomorphism from Pi to each Ps(α).

Let αq be the arrow such that t(αq) = k and it is on the path vq. Observe

that vq = αqṽq, where ṽq is a path from i to s(αq) as in the picture.

•k

β

&&MMMMMMMMMMMMM

s(αq)•

αq

77ooooooooooooo
•i

ṽq

oo

.

Set a homomorphism from Pi to Ps(α), for α such that t(α) = k, as follows:

• zero if α 6= αq for some q;

• λqṽq if α = αq for some q;

and set β∗ to be the homomorphism induced by this set of homomorphisms

to the direct sum and therefore to the complex Tk. Clearly this map makes

the diagram above commute. Now we need to prove that it is irreducible. If

not, then it factors through other Tr via an element u ∈ erJ(Q,S)ei. This

would imply that ṽq = wqu for some wq ∈ es(αq)J(Q,S)er, for all 1 ≤ q ≤ d,
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which cannot happen since the potential is good. Hence β∗ is irreducible.

By construction, these homomorphisms are the only irreducible ones from Ti

to Tk.

3. For each path of length two βα such that t(α) = s(β) = k we clearly get

a homomorphism from Ts(α) to Tt(β). Denote this homomorphism by [βα].

We show that it is irreducible if and only it is not contained in a two cycle

of the potential S̃. Suppose a is an arrow such that [βα]a is a 2-cycle of

S̃. Then ∂S̃/∂a gives an explicit factorisation of the mesonic arrow. On

the other hand, if it is not contained in a 2-cycle of S̃ then it is irreducible

since it could only factor through the stalk complex of Pk which does not

correspond to an indecomposable projective module over EndKb(Q,S)(T ).

4. Finally, if none of the previous cases apply, then the homomorphisms between

Tj and Ti that can be irreducible are just arrows from j to i. Again, they

are in fact irreducible if and only if they are not contained in a 2-cycle of S̃

and a similar argument to the one above applies to this case.

Let Q̃ be the quiver obtained by taking all homomorphisms above considered

(α∗ for every arrow α with target k, β∗ for every arrow β with source k, [βα] for

every path βα with middle vertex k, and a for every arrow a not starting or ending

at k), even if they are not irreducible. Determining Q̃ is clearly the same procedure

either via mutations or via Seiberg duality. Now, by 3.3.6, we see that the reduced

part of (Q̃, S̃) can be found by eliminating the 2-cycles of Q̃ appearing in S̃ and

taking the potential obtained through integration over those massive arrows (thus

eliminating the non-irreducible morphisms). Thus the result follows.

Corollary 3.3.8. If Q is a quiver with a good potential S and if k is a vertex

such that no related arrows arise in the mutation procedure, then mutation at k
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produces a derived equivalence between the Jacobian algebras of (Q,S) and of

µk(Q,S).

Proof. From the previous theorem we have J(µk(Q,S)) ∼= EndDb(Q,S)(T
k). Then,

given that T k is a tilting complex over J(Q,S) (by lemma 3.3.2), Rickard’s theo-

rem 2.1.9 gives the desired derived equivalence.

To finish this section, we shall prove that the algorithm previously described

actually computes the Seiberg dual potential of a quiver with potential (Q,S) at

a fixed vertex k.

Proposition 3.3.9. The algorithm described in the beginning of this section

computes a potential for the Seiberg dual quiver such that its Jacobian algebra is

EndDb(Q,S)(T
k), for a quiver with a good potential (Q,S).

Proof. Let the homomorphisms represented by dual arrows of outgoing arrows be

as it is described in the proof of theorem 3.3.7 and keep the notation therein.

Denote by τβα the coefficient of [βα] in [S]. We will first prove that the relations

induced by the potential S̃ obtained through the algorithm above are satisfied in

EndDb(Q,S)(T ). Case by case, we analyse relations coming from differentiating:

• with respect to β∗ (dual of an outgoing arrow):

∂S̃/∂β∗ =
∑

t(α)=k

[βα]α∗ = β(α) = 0,

since it is homotopic to zero in the category of complexes;

• with respect to α∗ (dual of an incoming arrow):

∂S̃/∂α∗ =
∑

s(β)=k

β∗[βα] = (
∑

s(β)=k

β∗β)α.
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Let us check that
∑

s(β)=k

β∗β = 0. For this we compute each component of

this vector by looking at the occurrences of a fixed γ incoming to k in S.

We have in [S] some sub expression of the form

d∑

q=1

τβiγ[βiγ]ṽi

for some βi’s with source k, where each ṽi completes the corresponding cycle

and τβiα 6= 0. Then we have the corresponding entry of
∑

s(β)=k

β∗β given by

d∑

q=1

τβiαṽiβi

which is zero since it equals ∂S/∂γ;

• with respect to a, an internal arrow:

∂S̃/∂a = ∂[S]/∂a = 0,

since this is essentially the same as ∂S/∂a (with some extra square brackets);

• and, finally, with respect to [βiαj] (mesonic arrow):

∂S̃/∂[βiαj] = α∗
jβ

∗
i = 0

this follows from the definition of α∗
j and β∗

i as homomorphisms (see proof

of theorem 3.3.7).

Integration over massive arrows does not change the relations induced by the

potential since the expressions obtained by differentiating with respect to a massive

arrow are zero in the Jacobian algebra, according to the proof above.

The last thing we need to check is that this potential S̃ gives generators

for the ideal of relations. Let r be a nonzero relation in the new quiver such that
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none of its factors are relations (i.e., if r = uv then neither u nor v lie in the ideal

of relations). We prove that this relation has already been contemplated. We split

the proof into several cases.

• r does not pass by k. Observe that if r does not involve morphisms

to or from T k
k then it can be expressed as linear combinations of elements

of the path algebra of Q from j to i, for some vertices i and j (where we

identify such a path with the corresponding endomorphism of T k). Therefore

there are some internal arrows a1, ..., an such that a linear combination of

∂S/∂a1,...,∂S/∂an equals r up to square brackets.

• r passes by k and t(r), s(r) 6= k. If r involves morphisms both to T k
k and

from T k
k , then each of its terms involve both duals of arrows β outgoing from

k (β∗ is the natural map from T k
i to T k

k defined by the relation ∂S/∂β - see

proof of 3.3.7) and duals of arrows α incoming to k (α∗ is just a projection

map - see proof of theorem 3.3.7). Then r can be also be identified with

some linear combination of paths in Q, as the factor involving dual arrows

can be read as the projection of a component of β∗, which is an element of

KQ. Since r is a zero morphism and none of its factors are relations, it can

be identified with a linear combination of terms of the form ∂S/∂ai for some

internal arrows ai from t(r) to s(r). Now, each ai is also an arrow in Q̃ and

therefore r is a linear combination of ∂S̃/∂a.

• t(r) = k and s(r) = l 6= k. Suppose r =
∑

i β
∗
i ri where each ri is an

element of KQ̃. Then, as a map from T k
l to T k

k , it is identified with n

elements of J(Q,S), us(α), starting at l and ending at some s(α) (where

t(α) = k), n being the number of terms in the direct sum
⊕

α:t(α)=k

Ps(α) (see

proof of theorem 3.3.7). Each β∗
i ri appears in at least two components of the
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direct sum, by construction of β∗
i , since S is good. In each such component,

β∗
i ri provides a summand of us(α) (and us(α) yields a zero morphism from

Pl to Ps(α)). Also we identify that summand with an element of KQ by

definition of β∗
i . In order to be zero, us(α) must have as a factor some relation

in J(Q,S) and thus the summand mentioned above contains as a factor some

terms of this factor. Furthermore, this factor of the summand must contain

the terms coming from β∗
i otherwise r would not be irreducible (factoring

through the projective corresponding to the target of this factor).Now, in

order to be able to read a relation involving the terms from the morphisms

β∗
i , ri must pass through the vertex k (and the relation is the factor of that

component which starts at k). This follows from the definition of β∗
i as

a morphism and from the fact that the potential S is good, not allowing

repetition of subpaths of length two. Therefore all terms in each component

Ps(α) begin with a common nontrivial path from l 6= k to k. This path must

be the same in every component since β∗
i appears at least in two components

and such pairs of components do not coincide for any given two indices i, j

(this also follows from S being good). Since r is irreducible (in the sense

above), this path can only be an arrow to k (or a scalar multiple of it),

otherwise r would factor through some T k
m. This is because arrows to k

in Q are no longer arrows of Q̃.Denote this arrow by γ. Hence, ri = r′iγ

for some paths r′i starting at k with different arrows (otherwise, again, r

would split) and, as an element of J(Q,S),
∑

i β
∗
i r

′
i = 0, i.e.,

∑
i β

∗
i r

′
i is a

n-tuple of relations in J(Q,S) from k to all the vertices of the form s(α)

with t(α) = k. Therefore, by construction of β∗
i , r′i = βi for all i (again

because S is good) and the sum needs to run over all arrows βi starting at

k. Thus r =
∑

s(β)=k β∗[βγ] which is precisely ∂S̃/∂γ∗.
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• s(r) = k and t(r) = l 6= k. If r starts at k, the first arrow appearing in each

term is a dual of an arrow α incoming to k (again, α∗ is just a projection

map). This is a situation different in nature to the previous ones: we are

looking at a map from the direct sum
⊕

α:t(α)=k

Ps(α) to some projective Pl and

hence we are not able to identify r with a relation of J(Q,S). Therefore

the fact that r is zero must come from the fact that the map is homotopic

to zero in the category of complexes over J(Q,S). That is equivalent to

the existence of a linear combination of paths in Q, call it u, from k to l

such that u(α) = r in J(Q,S). Since r is minimal, u must irreducible - and

the space of irreducible maps from Pk to Pl has the arrows between k and

l as a basis. Therefore r must be a linear combination of terms of the form
∑

t(α)=k[βα]α∗ (which is precisely ∂S̃/∂β∗) for each β a summand of u.

To complete the proof we need to show that no such relation r can both

start and end at k. Suppose we have such a map r from T k
k to T k

k , i.e.,

0 //
⊕

α:t(α)=k

Ps(α)
(α) //

r0

²²

Pk
//

r1

²²

0

0 //
⊕

α:t(α)=k

Ps(α)
(α) // Pk

// 0

.

It can not be identified with an element of J(Q,S) so there is a homotopy to

zero h such that h(α) = r0. On the other hand, this is also a homotopy to zero

for r0 as a map from T k
k to

⊕
α:t(α)=k

T k
s(α) and r0 lies in the ideal of relations of

J(Q̃, S̃) and it is covered by the cases above. Since r1 is determined from r0 by

the commutation of the diagram as a linear combination of cycles in J(Q,S), this

means that r is generated by the relations contemplated above.

This completes the proof.
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3.4 An example

We shall exemplify mutation on a quiver with potential arising in derived algebraic

geometry. Given a Del Pezzo surface, we can study its derived category of coherent

sheaves using the existence of a strong exceptional sequence.

Theorem 3.4.1 (Kuleshov, Orlov, Hille, Perling, [KO95], [HP08]). If X

is a Del Pezzo Surface, we have strong exceptional sequences of sheaves given by:

• {O,O(1), O(2)} if X = P2

• {O,O(1, 0), O(0, 1), O(1, 1)} if S = P1 × P1

• {O,O(E1), ..., O(Er), O(1), O(2)} if X is dPr with r ≤ 8, where each Ei is

an exceptional curve of the blow up and dPr is the Del Pezzo obtained by

blowing up 1 ≤ r ≤ 8 points in P2.

As mentioned in the introduction, the direct sum of a strong exceptional

sequence over a projective variety X is a tilting sheaf, yielding a derived equivalence

between coh(X) and mod(KQ/I) for some quiver Q and some ideal of relations

I. These are determined by looking at the irreducible homomorphisms between

the sheaves in the sequence and taking relations between those homomorphisms.

We shall focus on X as in example 2.1.7, i.e., a blow-up of P2 at one point.

To get a derived equivalence to a Jacobian algebra of a quiver with potential, we

ought to consider not X itself but Y = ωX - the total space of the canonical

bundle of X - instead. This is a local Calabi-Yau three-fold. If we let π : Y → X

be the natural projection, we get that B̃ = EndY (⊕iπ
∗Ei) is derived equivalent to

coh(Y ), whenever the exceptional sequence (Ei)i is geometric over X ([Bri05]).

Geometric in this context means that its associated helix satisfies some extra
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Ext-vanishing conditions ([Bri05]), but we will not explore this. We proceed to

characterise the algebra B̃ and that is enough for our purposes.

The algebra B̃ can be seen as the path algebra of a quiver with relations. It

can be obtained from the correspondent quiver of a geometric exceptional sequence

(Ei)i adding one arrow for each generator of the ideal of relations in the opposite

direction of the composition of arrows in that relation ([Seg08]). This will be a

quiver with potential, where the potential is the sum of the cycles obtained through

the composition of each new arrow with the correspondent relations. This process

is also described in [ABS08]. In fact it is easy to observe in our concrete example

that the quiver with potential obtained via this construction is the same whether we

consider the exceptional sequence of example 2.1.7 or other sequences frequently

found in the literature ([Kin97],[Per09])

Example 3.4.2. The algebra B̃ associated to X, P2 blown-up at one point, with

exceptional sequence {O,O(E1), O(1), O(2)} is:

Q = •1 a //

b
@@

@@

ÂÂ@
@@

@@
@@

@@
@@

@

•2

c1

²²

c2

²²
•4

R3~~~

??~~~~~~~~~~~
R1

OO

R2

OO

•3
d1oo
d2oo
d3oo

with potential:

S = R3(d3c1 − d1c2) + R1(d1b − d2c1a) + R2(d2c2a − d3b)

Note that this is a good potential. For any fixed vertex k, it is easy to

check that no related arrows occur in the mutation. Hence, the results in this

section yield that mutations give derived equivalent path algebras. Since the one
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above is derived equivalent to coh(Y ) ([Bri05], [BS09]), so will be J(µk(Q,S)).

Let us present µ1(Q,S).

Q̃ = •1

R∗
1

²²

R∗
2

²²

•2a∗
oo

c1

²²

c2

²²
•4

[aR2]
~~~~~~~~~

??~~~~~

[aR1]
~~~~~~~~~~~

??~~~

R3~~~

??~~~~~~~~~~~

[bR1] //
[bR2] //

•3

b∗@@@@@@@@@@@

__@@@

d1oo
d2oo
d3oo

We take a cyclically equivalent potential since there are terms on it starting

and ending at 1. Then we substitute paths of length two passing through 1 by

new arrows and add ∆1.

S̃ = R3d3c1 − R3d1c2 − d2c1[aR1] + d1[bR1] − d3[bR2] + d2c2[aR2]

+ [aR1]R
∗
1a

∗ + [aR2]R
∗
2a

∗ + [bR1]R
∗
1b

∗ + [bR2]R
∗
2b

∗

Clearly this potential is not reduced. Following the proof of theorem 3.3.6, let us

condsider the following (strong) right equivalence:

φ : KQ̃ → KQ̃

d1 7→ d1 − R∗
1b

∗

d3 7→ −d3 + R∗
2b

∗

[bR1] 7→ [bR1] + c2R3

[bR2] 7→ [bR2] + c1R3

u 7→ u if u 6= d1, d3, [bR1], [bR2], u ∈ Q1

.

If we compute φ(S̃), it is of the form S ′ + S̄ and thus we can take the reduced

part. More simply, we can integrate over massive arrows by taking the relations:

[bR1] = c2R3, [bR2] = c1R3.
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In any case, as proved in theorem 3.3.6, we get the same result which is:

Q̄ = •1

R∗
1

²²

R∗
2

²²

•2a∗
oo

c1

²²

c2

²²
•4

[aR2]
~~~~~~~~~

??~~~~~

[aR1]
~~~~~~~~~~~

??~~~

R3~~~

??~~~~~~~~~~~

•3

b∗@@@@@@@@@@@

__@@@

d2oo

with potential

S̄ = c2R3R
∗
1b

∗ + c1R3R
∗
2b

∗ + d2c2[aR2] − d2c1[aR1] + [aR1]R
∗
1a

∗ + [aR2]R
∗
2a

∗.

3.5 3-Calabi-Yau algebras

Suggested by the example of section 3.4, we investigate ideas of the previous sec-

tions in the 3-Calabi-Yau context. Here, the restrictions on the Jacobian algebras

will be of homological rather than of combinatorial nature. 3-Calabi-Yau (3-CY for

short) algebras are, in general, quotients of smooth algebras by ideals of relations

coming from potentials ([Gin06]). In fact very recent results of Van den Bergh

([VdB10]) show that complete 3-CY algebras come from quivers with potential.

We use the following definition.

Definition 3.5.1. A K-algebra R is said to be n-Calabi-Yau (n ≥ 1) if:

1. R is homologically smooth, i.e., as an Rop⊗R-module it has a finite resolution

by finitely generated projective modules;

2. RHomRop⊗R(R,Rop ⊗ R) ∼= R[−d] in Db(Rop ⊗ R).

This definition is due to Ginzburg ([Gin06]). The following lemma is crucial

to our approach. In fact it is common to find in the literature definitions of Calabi-

Yau algebra based on the duality of the lemma.
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Lemma 3.5.2 (Keller, [Kel08]). Let R be an n-Calabi-Yau algebra. Suppose

X,Y ∈ Db(Mod(R)) such that X ∈ Db(fd(R)), i.e., X is a complex of finite

dimensional modules over K. Then we have a canonical isomorphism

HomDb(Mod(R))(X,Y )∗ ∼= HomDb(Mod(R))(Y,X[n]), (3.5.1)

where ∗ denotes K-duality.

Remark 3.5.3. For an n-Calabi-Yau algebra R, it is clear that Db(fd(R)) is

Hom-finite, i.e., the Hom-spaces are finite dimensional over K. Indeed, the duality

in lemma 3.5.2 applied twice (which is possible when both X and Y are elements

of Db(fd(R))) shows that

HomDb(Mod(R))(X,Y )∗∗ = HomDb(Mod(R))(X[n], Y [n]) = HomDb(Mod(R))(X,Y ).

The results obtained by Keller and Yang on the relations between mutations

and derived equivalences ([KY10]) are far more general than the remarks we present

here. There, it is proven that mutations hold derived equivalences between the

dg-algebras obtained through Ginzburg’s construction ([Gin06]) over the complete

Jacobian algebra. 3-CY complete Jacobian algebras are such that the associated

Ginzburg dg-algebras have their cohomology concentrated in degree zero (and

equal to the original algebra). Our approach, however, will be as before, not

working on the complete setting nor making use of Ginzburg’s differential graded

construction. Also Iyama and Reiten have obtained similar results for mutations

of quivers without potentials ([IR08]).

Let R be a 3-Calabi-Yau algebra such that there is (Q,S) quiver with

potential satisfying J(Q,S) = R. Let every vertex of Q be contained in some

cycle (this seems to be a reasonable assumption as we can see from the graded

3-Calabi-Yau case - [Boc08]) and let Q be without loops or two cycles.
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Fix a vertex k in Q. We want to prove that T k is tilting for any vertex k of

Q. It is enough to prove that Hom(Sk, Ps) = 0 for all s 6= k (see 3.2.6). Indeed,

as a consequence of 3.5.2 we have the following result

Corollary 3.5.4. If R is n-CY algebra, then Hom(Sk, Ps) = 0 for all s 6= k and

hence T k is tilting for any vertex k of Q.

Proof. Lemma 3.5.2 shows that

HomDb(mod(R))(Sk, Ps)
∗ = HomDb(mod(R))(Ps, Sk[n]) = Extn(Ps, Sk) = 0

and thus the result follows.

Remark 3.5.5. If we take as definition of a Calabi-Yau algebra the existence of

a duality (3.5.1) in Db(fd(R)), then it is still possible to prove corollary 3.5.4

through a result proved by Iyama and Reiten ([IR08]). Indeed, they prove that for

such algebras the duality can be extended to work also when one of the variables

is a complex in Kb(P (R)). Even though their results are primarily concerned with

finite dimensional algebras, the result is true in this generality as well.

We are now able to prove similar results to the ones obtained in previous

sections.

Theorem 3.5.6. If J(Q,S) is a 3-Calabi-Yau algebra, then EndKb(J(Q,S))(T
k) ∼=

J(Q̃, S̃) where (Q̃, S̃) are obtained in the process of mutation at k before re-

duction. Furthermore, ̂EndKb(J(Q,S))(Tk) ∼= ̂J(µk(Q,S)), where µk(Q,S) is the

reduced part of (Q̃, S̃).

Proof. Let us fix a vertex k and drop the superscript on T k for simplicity. First we

take the indecomposable projective modules Ti of EndKb(J(Q,S))(T ) and determine

’candidates’ to irreducible homomorphisms between them. This gives us a quiver

(call it G). We’ll start by proving that G = Q̃
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1. Inversion of incoming arrow : The argument on item 1 of proof 3.3.7 works

here;

2. Inversion of outgoing arrows : This requires the commutativity of a diagram

of the form:

0 // Pi
//

f
²²

0

²²
0 //

⊕
t(α)=k

Ps(α)
(α) // Pk

// 0

i.e. the existence of an f such that (α)f = 0. Thus we have to look

for relations on the quiver that may allow us to obtain such f . Fix an

arrow β from k to i and differentiate the potential with respect to β getting

∂S/∂β =
∑d

t=1 λtvt where the vt’s are paths from i to k (since βvt is a cycle

for all t). To give a homomorphism from Pi to
⊕

t(α)=k

Ps(α) we just need to

give a homomorphism from Pi to each Ps(α), by the universal property of the

direct sum. Define α−1γ for any path γ to be zero if γ does not end with

the arrow α and to be u if γ = αu for some u ∈ KQ. Then we can define

the following maps:

β∗
α : Pi → Ps(α)

γ 7→ α−1 ∂S
∂β

γ

and set β∗ to be the homomorphism induced by this set of homomorphisms

in the direct sum and therefore to the complex Tk. Clearly this map makes

the diagram above commute, as

(α)β∗ =
∑

t(α)=k

αβ∗
α =

∑

t(α)=k

α(α−1 ∂S

∂β
) =

∂S

∂β

which is zero in the Jacobian algebra. Now we need to prove that this is

irreducible.

59



Suppose this homomorphism is not irreducible, factoring through Tl for some

l ∈ Q0. Then we have the following diagram:

Pi
//

h
²²

0

²²
Pl

//

g
²²

0

²²⊕
t(α)=k

Ps(α)
(α) // Pk

where β∗ = gh and each square commutes. The commutativity of the

bottom diagram requires the existence of such relation in J(Q,S). If we

denote this relation by θ, then

∂S

∂β
= (α)β∗ = (α)gh = θh.

Now, let R be a minimal set of generators of the ideal of KQ generated by

all the cyclic derivatives of the potential S. We recall that the dimension of

Ext1(Sj, Sl) (respectively Ext2(Sj, Sl)), for j, l ∈ Q0, measure the number

of arrows from l to j (respectively the number of elements in R from l to j).

This can be understood by computing a projective resolution for Sj. Then,

since J(Q,S) is 3-CY, we have:

|{r ∈ R : t(r) = k, s(r) = i}| = dim Ext2(Sk, Si) =3−CY

= dim Ext1(Si, Sk) = |{a ∈ Q1 : t(a) = i, s(a) = k}| ,

However this yields a contradiction since, by the equation above, the relation

induced by β is not in R (θ is, and θ is not induced by β as l 6= i). Thus β∗

is irreducible.

3. Gluing arrows The argument on item 3 of proof 3.3.7 works here.
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4. Finally, if none of the previous cases apply, then homomorphisms between

Tj and Ti are just arrows from j to i. Again, these homomorphisms are

irreducible if and only if they are not contained in a 3-cycle of the potential

going through k and a similar argument to the one above applies to this case.

Let G then be the quiver obtained by taking all the homomorphisms consid-

ered in the cases above, even if they are not irreducible. We just proved that this

quiver is the same as Q̃. Using proposition 3.3.9 we have that EndKb(J(Q,S))(T ) ∼=
J(G, S̃) = J(Q̃, S̃). Now, since (Q̃, S̃) is right equivalent to µk(Q,S), we have

an isomorphism of complete path algebras as stated.

Remark 3.5.7. Note that we need to consider completions because, in general,

the removal of 2-cycles in the mutation procedure is not guaranteed. Derksen,

Weyman and Zelevinsky have produced examples of such phenomenon ([DWZ08]).

Indeed, we can only produce a strong right equivalence using the techniques of

section 3.3 when the mutated quiver has no 2-cycles. Therefore, we have a derived

equivalence between J(Q,S) and J(Q̃, S̃) but we cannot guarantee the existence

of a strong right equivalence between (Q̃, S̃) and µk(Q,S).
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