
ICALP’07 & LICS’07 Workshop

FCS-ARSPA’07

Joint Workshop on

Foundations of Computer Security

and

Automated Reasoning for Security Protocol Analysis

July 8, 2007

Proceedings

Editors:

Pierpaolo Degano, Ralf Küsters, Luca Viganò, Steve Zdancewic

Contents

Preface 5

From Securing Navigation Systems to Securing Wireless Communication Through Location-
Awareness
Srdjan Capkun 7

Automated Security Analysis of Ad Hoc Routing Protocols
Todd R. Andel and Alec Yasinsac 9

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and
Implicit Induction
Adel Bouhoula and Florent Jacquemard 27

Formal Analysis of Authentication in Bluetooth Device Pairing
Richard Chang and Vitaly Shmatikov 45

Deciding knowledge in security protocols for monoidal equational theories
Veronique Cortier and Stéphanie Delaune 63

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability
Simon Kramer 81

Secrecy Checking of Protocols: Solution of an Open Problem
Zhiyao Liang and Rakesh M. Verma 95

Authority Analysis for Least Privilege Environments
Toby Murray and Gavin Lowe 113

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries using
Task-Structured PIOA
Kazuki Yoneyama, Yuichi Kokubun, Kazuo Ohta 131

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005
Ender Yüksel, Hanne Riis Nielson, Christoffer Rosenkilde Nielsen, Mehmet Bülent Ören-
cik 149

3

FCS-ARSPA’07

4

Preface

The Joint Workshop on Foundations of Computer Security and Automated
Reasoning for Security Protocol Analysis (FCS-ARSPA’07) was held in Wroclaw
(Poland) on July 8, 2007, in association with ICALP’07 and LICS’07.

The workshop FCS-ARSPA’07 was the second edition of the fusion of two
workshops: FCS and ARSPA, which joined forces in 2006 for FCS-ARSPA’06,
which was affiliated to LICS’06, in the context of FLoC’06. The workshop FCS
continues a tradition (initiated with the Workshops on Formal Methods and
Security Protocols (FMSP) in 1998 and 1999, then with the Workshop on Formal
Methods and Computer Security (FMCS) in 2000, and finally with the LICS
satellite Workshop on Foundations of Computer Security (FCS) in 2002 through
2005) of bringing together formal methods and the security community. ARSPA
is a series of workshops on Automated Reasoning for Security Protocol Analysis,
bringing together researchers and practitioners from both the security and the
formal methods communities, from academia and industry, who are working
on developing and applying automated reasoning techniques and tools for the
formal specification and analysis of security protocols. The first two ARSPA
workshops were held as satellite events of the 2nd International Joint Conference
on Automated Reasoning (IJCAR’04) and of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), respectively, and their
proceedings have been published as volumes 125 and 135 of the Electronic Notes
in Theoretical Computer Science. FCS and ARSPA have spawned special issues
of the International Journal of Information Security (FCS 2002), of the Journal
of Automated Reasoning (ARSPA’04), of Theoretical Computer Science and the
International Journal of Information Security (ARSPA’05), and of Information
and Computation (FCS-ARSPA’06).

The FCS-ARSPA’07 workshop brought together researchers and practition-
ers who are working on the foundations of computer security and on the de-
velopment and application of automated reasoning techniques and tools for the
formal specification and analysis of security protocols. There were 13 submissions
of high quality, from countries in Asia, Europe, and North America. All the sub-
missions were evaluated by at least three referees and the Program Committee
then selected the 9 research contributions that are included in this volume. The
workshop program was enriched by an invited talk by Srdjan Capkun, whose
abstract is also included.

We would like to thank all the people who contributed to the organization
of the FCS-ARSPA’07 Workshop. In particular, we are deeply grateful to:

– the other members of the Program Committee: Alessandro Armando, Anin-
dya Banerjee, Massimo Bartoletti, Michele Boreale, Yannick Chevalier, Vero-
nique Cortier, Cas Cremers, Volkmar Lotz, Cathy Meadows, Sebastian Mö-
dersheim, David Naumann, Mark Ryan, Eijiro Sumii;

Preface

5

– the additional referees, who allowed us to review the papers in a very short
time while maintaining a very high standard: Sebastian Bala, Andrea Brac-
ciali, Marzia Buscemi, Stéphanie Delaune, Tomasz Truderung, Max Tuen-
gerthal, Emilio Tuosto, Eugen Zalinescu, Roberto Zunino;

– Andrei Voronkov, who allowed us to use the free conference software system
EasyChair, which greatly simplified the work of the Program Committee;

– last but not least, the organizers of ICALP’07 and LICS’07, who made all
this possible.

The Program Chairs of the FCS-ARSPA’07 Workshop

Pierpaolo Degano
Dipartimento di Informatica

Università di Pisa (Italy)

Ralf Küsters
Department of Computer Science

ETH Zurich (Switzerland)

Luca Viganò
Dipartimento di Informatica
Università di Verona (Italy)

Steve Zdancewic
Department of Computer and Information Science

University of Pennsylvania (USA)

FCS-ARSPA’07

6

From Securing Navigation Systems to Securing
Wireless Communication Through

Location-Awareness?

Srdjan Capkun

ETH Zurich, Switzerland
http://www.syssec.ethz.ch/people/capkun

Recent rapid development of wireless networks of sensors, actuators
and identifiers dictates the digitalization of our physical world and the
creation of the ”internet of things”. In this new internet, each wireless
device will sense and provide contextual information, of which crucial
component are locations of devices and objects. In this talk, we present
recent research results in secure computation and verification of locations
of wireless devices: we show that current localization systems are highly
vulnerable to attacks and we demonstrate that out solutions can prevent
these attacks. We further illustrate how location-awareness can help in
solving some of the fundamental security challenges of wireless networks,
e.g., enabling authenticated and confidential communication without pre-
shared keys of credentials.

? Invited talk of FCS-ARSPA’07 and WCAN’07.

From Securing Navigation Systems to Securing Wireless Communication Through Location-Awareness

7

FCS-ARSPA’07

8

Automated Security Analysis of Ad Hoc

Routing Protocols

Todd R. Andel and Alec Yasinsac

Florida State University
Tallahassee, FL, 32306-4530
{andel, yasinsac}@cs.fsu.edu

Abstract. Mainstream evaluation approaches in the mobile ad hoc net-
work routing community do not provide an automated or exhaustive se-
curity analysis capability. In this paper we offer an automated process to
evaluate security properties in the route discovery phase for on-demand
source routing protocols. We use the SPIN model checker to exhaustively
evaluate protocol abstractions against an attacker attempting to corrupt
the route discovery process.

Key words: Security analysis, model checking, formal methods, secure
routing, mobile ad hoc networks.

1 Introduction

Mobile ad hoc networks (MANETs) are comprised of portable wireless
nodes that do not use fixed infrastructure. Unlike wired networks that
depend on fixed routers for network connectivity and message forward-
ing, each node in a MANET must provide routing functionality. Ad hoc
routing protocols provide the core functionality enabling wireless nodes to
communicate with nodes outside their local transmission radius. Ad hoc
routing protocols [5, 17] commonly utilize two-phased routing approaches
in which a route is first determined using a route discovery phase and
data is then forwarded between a given source and destination pair over
the identified route. Both the route discovery phase and data forwarding
phase must be secured to protect the protocol operation from malicious
activity. As secure routing protocols are being developed, they must be
analyzed to ensure the protocol’s intended security requirements are met.
There are various techniques being used to analyze security properties in
MANET routing protocols, to include visual inspection, network simula-
tion, analytical proofs, simulatability models, and formal methods.

In this paper, we follow the formal methods approach by providing
an automated model checking technique to evaluate the route discovery

Automated Security Analysis of Ad Hoc Routing Protocols

9

process against route corruption. For a given network topology, our mod-
els exhaustively check all routing combinations to evaluate if an attacker
can corrupt the route discovery phase by successfully returning routes
that are not consistent within the network topology. Our protocol mod-
els utilize the SPIN model checker [16] to provide exhaustive analysis for
the specified protocol attackers. While SPIN has been used to evaluate
MANET routing protocol operation (e.g., loop freedom) [8, 15, 28], to the
best of our knowledge we are the first to use SPIN to evaluate security
properties in ad hoc routing protocols.

In the remainder of this paper, we discuss requirements for secure
routing and the current analysis techniques being used to evaluate secure
ad hoc routing protocols. We provide a brief background on the SPIN
model checker. The primary contribution is the secure routing model ab-
straction, including abstractions over the wireless medium, the routing
protocol, and the attacker abstraction. We illustrate the defined auto-
mated analysis of routing attacks against the Secure Routing Protocol
(SRP) [24] and conclude with future work.

2 Current Secure Routing Evaluation Techniques

As secure routing protocols are being developed, it is vital they receive
the appropriate analysis to determine if the security goals are being met
and to identify under what adversarial environments the protocols may
fail. We first define security requirements for a secure routing protocol
and discuss the current techniques used to evaluate security within this
context.

2.1 Requirements for Secure Routing Protocols

The term security protocol traditionally refers to authentication protocols,
or cryptographic protocols, where the goal is to securely share information
(e.g., a message or a session key) between two nodes. Security analysis for
authentication protocols evaluates if it is possible for a third party (i.e.,
the adversary) to obtain access to the protected key, regardless of inter-
mediate nodes within the communication path [26]. Conversely, security
evaluations for MANET secure routing protocols must consider actions
taken by intermediate nodes. That is, we must consider whether the in-
termediate nodes can impact the secure routing protocol’s intended goal.
More specifically, we must consider route accuracy (securing the route
discovery phase) and protocol reliability (securing the data forwarding
phase).

FCS-ARSPA’07

10

A routing protocol is considered to maintain route accuracy if it pro-
duces routes that exist within the current network topology. Route ac-
curacy is an integrity issue, ensuring that a malicious attacker has not
corrupted the path obtained during the route discovery phase. Since the
routes obtained during route discovery can fail due to both malicious ac-
tions and non-malicious failures (e.g., mobility, hardware failures, etc.),
the routing protocols must also provide reliability. Once route paths begin
to fail, reliability mechanisms identify that the path is no longer operat-
ing and initiate a new route discovery process or select an alternate path
if multi-path protocols [9, 19] are being utilized. Reliability mechanisms
may also attempt to detect and remove malicious nodes via probing pro-
tocols [6].

2.2 Current Evaluation Techniques

There are numerous proposed approaches to evaluate MANET routing
protocol security properties. These approaches include visual inspection,
network simulation, analytical methods, simulatability models, and for-
mal methods.

Visual inspection relies on human intuition to find attacks. While hu-
man reasoning is powerful in finding attacks, it cannot provide an exhaus-
tive approach to determine if a protocol is vulnerability free and cannot
guarantee a given attack does not exist when analyzing large or complex
distributed systems, such as ad hoc routing protocols.

Network simulation packages, such as ns-2, GloMoSim, and OPNET,
are primarily used to project average case performance, focusing on packet
deliverability ratios, network overhead, and network delay. However, it is
difficult to use network simulation to determine if a security property
holds in all situations or not, as an attack possibility is not necessarily
statistical in nature. While network simulation can identify overhead costs
and indicate how a routing protocol may mitigate certain attacks, sim-
ulation cannot provide an exhaustive method to claim protocol security
since it focuses on the resulting performance effects provided by security
enhancements. Just because an attack is not likely or does not show up
during a statistical simulation run, does not mean a protocol is secure
against the attack.

Analytical proof systems, as used to prove deliverability in single-
phased routing protocols [11], use mathematical properties, theorems,
and lemmas to prove or disprove security properties. While proof systems
can guarantee message deliverability in some cases, proof systems are

Automated Security Analysis of Ad Hoc Routing Protocols

11

highly tailored to individual problems, dependent on individual researcher
capabilities, and are not easily generalizable nor are they automated.

Simulatability models leverage the rigor provided by analytical proofs
by adapting a technique historically used to provide cryptographic proof
systems [7]. Simulatability models prove a protocol secure if an attacker
has no greater advantage over a real protocol than it has over an ab-
stracted ideal protocol. The ideal protocol contains complete knowledge
over a system through the use of a trusted third party, or oracle. The
oracle knowledge renders the attacker powerless in the ideal model.

The simulatability model has been adapted to evaluate route security
for MANET routing protocols [1, 2, 12]. If a protocol is not proven secure
via the simulatability approach, the results indicate an attack must be
possible. The attack itself must then be identified using another technique,
such as visual inspection. Additionally, provably secure routing protocols
are only secure under the attacker assumptions in which the protocol
was analyzed. Attackers with different capabilities may render a provably
secure protocol as insecure [3].

Formal methods have been used in isolated cases to evaluate route
security in ad hoc routing protocols. When using formal methods, a sys-
tem (e.g., a protocol) and its desired properties (e.g., a security property)
are formally specified in a specified mathematical or semantic descrip-
tion [13]. Once specified, theorem proving or model checking techniques
can be used to evaluate the system for failures. Theorem proving is a
manual process to prove the system outcome using the formal semantics
and axioms defined by the formal method being utilized.

Model checking [14] provides an automated process in which a finite
system model is created and then exhaustively searched to determine if
the given security property holds or fails within the model abstraction.
If the system fails, model checking can provide an event sequence that
leads to the failure, thus automatically finding protocol security failures.
In the context of security protocol analysis, automated formal methods
have shown success in analyzing authentication protocols [20, 22, 27, 30].
In isolated cases [23, 29], automated formal methods have also been used
to evaluate MANET route security for ad hoc on-demand distance vec-
tor protocols such as AODV and Secure AODV (SAODV), where the
attacker’s goal is to corrupt a node’s next-hop entry for destinations the
node may hold in its routing table.

Our research follows the model checking approach to evaluate route
accuracy in on-demand source routing protocols. In MANET on-demand
source routing protocols, such as the Dynamic Source Routing (DSR) pro-

FCS-ARSPA’07

12

tocol and the Secure Routing Protocol (SRP), the complete path to a des-
tination is explicitly determined during route discovery and subsequently
embedded into each packet during the data forwarding phase. We de-
velop our models for security analysis using the SPIN model checker. Our
models allows automated evaluation, producing attack sequences when a
protocol vulnerability is discovered.

3 The SPIN Model Checker

The SPIN model checker, developed by Holzmann [16], is designed to
verify correctness properties for concurrent (or distributed) systems. To
use SPIN, a protocol abstraction and its desired goals are specified in
the Promela (Process Meta Language) formal modeling language. SPIN
generates a finite state automaton (FSA) and verifies the claimed goal
through exhaustive reachability analysis. If the protocol analysis encoun-
ters a failure according to the specified criteria, a counter-example is
produced showing the event sequence leading to the discovered failure.

One of the factors into choosing SPIN for our evaluation is that
SPIN has been used to verify security properties in authentication pro-
tocols [21] and to formally identify loop-free failures (i.e., correctness in
non-malicious environments) in MANET routing protocols [8, 15, 28]. Our
research combines these two areas to model MANET routing protocol se-
curity properties using SPIN.

Other factors in choosing SPIN include Promela’s ability to model
message channels and the ability to model distributed processes as in-
dependent system threads. These factors are key to modeling routing
interaction between asynchronous wireless nodes. Another key feature to
the Promela language is the ability to code non-deterministic choices.
For instance, the if statement below has more than one entry condition,
leading to different executable sections:

if

:: conditional statement 1 ->

actions taken when statement 1 is true

:: conditional statement 2 ->

actions taken when statement 2 is true

fi .

If both conditional statements are true, then either true condition
is non-deterministically chosen and its corresponding actions are exe-
cuted. The non-deterministic choice depends on the seed value chosen
during SPIN simulation runs. For SPIN exhaustive analysis, all possible

Automated Security Analysis of Ad Hoc Routing Protocols

13

non-deterministic choices are examined independently. Using the non-
deterministic if construct provides the ability to model message deliv-
erability in a wireless environment, where message deliverability is not
guaranteed. The possibility of dropped messages enables attackers to in-
ject corrupted routing information into the route discovery process.

If exhaustive analysis is not possible, SPIN can utilize a bit-state
hashing method to use two bits to store a system state. Since bit-state
hashing does not provide 100% state coverage, a system evaluation show-
ing no errors does not guarantee that an attacker does not exist. However,
any failure found via bit-state hashing provides a correct attack sequence.
Exhaustive analysis should be performed if possible. SPIN increases its
chances for exhaustive analysis by providing a state-space compression
option that trades off execution time, and through the use of partial order
reduction. The partial order reduction technique refers to a state-space
elimination process that can occur if any concurrent process statement
interleavings result in the same outcome regardless of their execution or-
der.

4 Model Checking Secure Routing

Our model abstraction focuses on the MANET route discovery phase, an-
alyzing if the protocol can defend against an attacker attempting to inject
false routing information into the discovered routes. The model abstracts
only the required protocol elements in order to evaluate the desired se-
curity property. Our modeling focuses on source routing protocols, where
the route is explicitly embedded into the message. As illustrated in Fig. 1,
we use three primary process types: the wireless medium, non-malicious
node, and attacker node. We also note the global connectivity array which
specifies the current network topology for the given evaluation.

4.1 Eliminating Non-Malicious Failures

Before presenting our model development, we first analyze non-malicious
route failure impact in our MANET protocol abstraction. Non-malicious
failures can occur due mobility or failed nodes, either of which affects the
protocol’s message deliverability performance. MANET routing protocols
alleviate non-malicious failures through reliability mechanisms, such as
reinitiating route discovery or using multipath protocols. Our approach
is to model the protocol messages and associated security goals rather
than performance issues. Incorporating non-malicious failures may not be

FCS-ARSPA’07

14

Wireless Medium

Non-malicious

Node

1 .. L

Attacker

Node

1 .. M

N x N Connectivity Array

(N = L + M)

Fig. 1. MANET Model Abstraction

feasible and may inject meaningless results into the analysis. For instance,
consider the analysis feasibility of a model checker that includes mobility
in the model. Work in [28] to verify protocol operation shows that it is
not feasible to model mobility in model checking paradigms due to rapid
state-space explosion.

On the other hand, if we assume that we could model non-malicious
failures without limitations, the source of any routing inconsistencies
would be inconclusive. Consider analyzing a system to determine the abil-
ity of a MANET protocol to achieve a route consistent with the current
network topology. If the route fails within this model, it is impossible
to differentiate whether the failure was natural or malicious. Including
non-malicious failures is one of the limiting factors in using network sim-
ulation packages to evaluate route security. Routing failures discovered
using network simulation as a security evaluation tool cannot be differ-
entiated between malicious or non-malicious activity unless mobility and
other non-malicious failure causes are removed.

Based on these observations, we eliminate non-malicious routing fail-
ures from our model development. Our abstraction allows us to effectively
isolate discovered route failures due to malicious activity. However, we
must ensure that removing such items maintains the modeled protocol’s
security semantics. That is, by removing non-malicious routing failures we
must be careful not to change or bias the protocol’s security functionality
or vulnerabilities.

We justify eliminating non-malicious failures from our abstraction
based on the adversary advantage definitions presented in [10]. The adver-
sary advantage is the probability that an attacker can make a protocol fail.
A protocol can have either Γ -availability or Γ -tolerance, where Γ is the

Automated Security Analysis of Ad Hoc Routing Protocols

15

attacker node(s) within the network. A protocol maintains Γ -availability
if the adversary advantage is negligible for all Γ -adversaries, which is con-
sidered perfect security. Perfect security is not attainable in MANETs,
since attacks such as the invisible node attack [4] cannot be completely
eliminated and undetected compromised insiders can drop packets at any
time.

A protocol maintains Γ -tolerance if the |adversary advantage - non-
malicious protocol failure| is negligible. That is, if a protocol works X% of
the time without an adversary, does the presence of an adversary reduce
X ? Following the reasoning behind Γ -tolerance, we can effectively model
security features without including non-malicious failures. The failures
discovered in our model will therefore be attributable only to malicious
activity.

Eliminating non-malicious failures while analyzing route discovery se-
curity can also be intuitively justified. Consider node mobility during the
route discovery process. If node mobility disrupts an expected route re-
ply for a given path, the source never receives that respective route reply.
Therefore, no actual route is returned to be evaluated to determine if it
is a valid route according to the network topology. The original route no
longer exists due to mobility, not due to a malicious attacker corrupting
the route discovery process.

4.2 Modeling the Wireless Medium

The first priority in building a SPIN model for wireless ad hoc networks
is to implement message transmission. When a wireless node transmits a
message, all nodes within its transmission footprint receive the commu-
nication. The wireless recipients must then determine if it must process
or simply drop each packet.

Given that SPIN does not natively support broadcast communication,
we must implement a way to model the required communication compo-
nents. Since time is implicitly modeled by evaluating all computational
possibilities, we can transmit a broadcast message to all the intended
recipients via individual unicast messages. In Ruys’ dissertation [25], he
discusses implementing simple broadcast communication as a bus, a ma-
trix of channels for each node combination, or a separate process to model
the broadcast service. Ruys describes how each of these options can be
implemented in SPIN along with their associated features and limitations.

We choose to model MANET communication dedicating the wireless
medium as a separate process, thus limiting the state-space and simpli-
fying our communication into a modularized approach for future devel-

FCS-ARSPA’07

16

opment. We must also consider reachable neighbors when modeling the
wireless broadcast process. We use a two-dimensional array to hold the
network topology for the time instance we are evaluating. As an example,
Fig. 2 shows the associated array for a four node network topology.

0

1

2

3

0

1

2

0

0 1 2

1

0

0 0

1

1

1

1

3

3

0

1

1 1

0

0 0

Valid Path

Invalid INA Path

0 1 2 -

0 2 - -

Network Topology Modeled Topology Topology Checking

Fig. 2. MANET Model Abstraction

The model’s wireless medium process uses the array to determine
which neighbors are within the transmission of a given node and sends
the messages accordingly. The array is composed of N rows by N columns,
where N is the total number of non-malicious (L) nodes plus the total
number of malicious (M) nodes. Rows indicate the from node and columns
indicate the nodes’ local neighbors. Each location holds a Boolean value,
with true (or 1) indicating a connection exists between node pairs.

While the general process modeled into the wireless medium can sup-
port message transmission in any MANET routing protocol, we tune the
wireless medium to model on-demand source routing protocols. By tun-
ing the model abstraction to our research focus, we maintained a reduced
state-space.

Our wireless medium server approach allows route request (RREQ)
messages to be broadcast to each adjacent node, where each message is
then processed locally and sent back to the wireless medium server for
its next transmission. The route reply (RREP) process can use this same
procedure with the exception that each recipient within the footprint of
the transmitted message must determine if it is included in the explicit
path before it decides to accept and retransmit the message. Since we are
trying to minimize the required state-space, the server only transmits to
the intended recipient identified in the unicast RREP message and to all
attacker nodes within the current transmission footprint. This approach
reduces the state-space yet still captures the protocol’s required elements
for security analysis.

Automated Security Analysis of Ad Hoc Routing Protocols

17

4.3 Modeling Source Routing Protocols

MANET two-phased routing protocols can be reactive or proactive. In
reactive protocols, a route is only established between a source and des-
tination when required, as opposed to the proactive approach which at-
tempts to maintain current routes between all source-destination pairs
at all times. Reactive protocols, also known as on-demand protocols, can
utilize distance vector mechanisms or use source routing. On-demand dis-
tance vector protocols, such as AODV, use tables in each node to track
what the next hop is for a given destination. On-demand source routing
protocols, such as DSR, explicitly embed the path into each message.

Our focus is automating the security analysis process for evaluating
routing attacks against the route discovery phase for on-demand source
routing protocols. Our current modeling environment includes the DSR
protocol and the SRP extension to DSR. All abstraction choices are made
to simplify the resulting model and guard against state-space explosion.
As our security analysis focus is to determine if the route returned from
the route request process is valid, we must ensure the abstraction captures
all route discovery possibilities. Model checking over the abstraction ex-
haustively examines all routing possibilities. Our model abstraction does
not reflect message timing issues, as messages themselves may be lost.
Therefore, we search for possible route violations rather than probable
outcomes.

Modeling DSR. We assume the non-malicious nodes following the rout-
ing protocol use bi-directional links, thus any target receiving a route re-
quest (RREQ) will return the route reply (RREP) over the accumulated
path received in the RREQ message. Figure 3 illustrates The Dynamic
Source Routing (DSR) protocol [18] route discovery process.

The DSR route discovery message format can be viewed as:

< msg type, initiator, target, id, accum path > .

The msg type tags the message as a RREQ or a RREP, with the
initiator and target as the source-destination pair for the desired route.
The id is a unique identifier to ensure a node only forwards a given RREQ
the first time it sees the request. As many RREQs occur in an operational
setting, each node tracks the < initiator, id > for each RREQ it receives.
In our abstraction we focus on a single route discovery iteration at a
time; therefore, we remove the id from the message and implement a
simple Boolean flag in each node that tracks if a given node has sent a

FCS-ARSPA’07

18

RREQ process:
• Initiator node

◦ Initiate a RREQ to target
• Intermediate nodes

◦ If previously seen RREQ → drop
◦ Else

⋄ If target → generate RREP
⋄ If not target → append id to path and retransmit

RREP process
•Target node

◦ Unicast the RREP
• Intermediate nodes (along unicast path)

◦ If initiator → accept route
◦ If not initiator → rebroadcast

Fig. 3. DSR Route Discovery

RREQ. The accumulated path (accum path) lists all intermediate nodes
in the path and is updated at each node that forwards the RREQ. In our
implementation we list all nodes (to include the initiator and target) in
the accumulated path, allowing us to use this field to check against the
network connectivity graph during analysis. We also add a position value
(accum pos) to track the array element that the current node adds its
own id to. Our abstracted DSR message format follows as:

< msg type, initiator, target, accum path, accum pos > .

Once the RREQ is delivered to the intended target, a RREP is gen-
erated and sent back to the initiator. During the RREP, the accumulated
path and the current array position are read by the wireless medium server
to determine the next-hop destination node for the unicasted RREP. As
previously mentioned, wireless RREP messages are received by all nodes
within the current node’s transmission footprint and each receiving node
determines if it is the intended relay in the unicast packet. To reduce
the abstraction state-space, we make the relay decision in the wireless
medium process and send a single message to the appropriate node. We
also send the transmission to any malicious node that may be within the
current transmission footprint.

Modeling SRP. The Secure Routing Protocol (SRP) [24] provides an
extension to DSR, attempting to secure the route discovery phase from
maliciously corrupted routes. SRP assumes an existing security associ-
ation between an initiator and target node. Intermediate nodes do not

Automated Security Analysis of Ad Hoc Routing Protocols

19

utilize any cryptographic mechanisms during the route discovery process,
therefore, they interact following the underlying protocol process for DSR.

The SRP RREQ format is:

< RREQ, initiator, target,Qid,Qsn,MACit, accum path > .

The SRP RREP format is:

< RREP, initiator, target,Qid, Qsn,MACit,accum path > .

The bold message portions indicate which message parts the message
authentication code (MAC), subsequently stored in MACit, is generated
over using the security association between the initiator and target. The
route discovery process is similar to DSR, with changes added for the
MAC generation and associated checks in the initiator and target nodes.

The query id (Qid) and query sequence number (Qsn) are used to
ensure the route request is unique and has not been replayed. Similar to
DSR, the intermediate nodes check the Qid to ensure only the first RREQ
that is received is forwarded for the given < initiator,Qid, Qsn > value.
Following our DSR abstraction for a single protocol round we do not in-
clude the Qid and Qsn; however, the intermediate nodes will track if they
have already forwarded the single round route request and not respond to
more than one RREQ. Since the MAC during the RREQ ensures against
replay attacks, we focus on possible attacks that corrupt the path discov-
ered by the routing process. We target our model abstraction for attack
analysis against the accumulated path, ensuring the SRP abstraction can
properly account for the target MAC over the accumulated path. Our
abstracted SRP message format follows as:

< msg type, initiator, target, accum path, accum pos,mac path > .

During the route discovery process, the target node models the MAC
over the accumulated path by copying the path received in the RREQ into
the mac path variable and adding it to the RREP. The MAC is protected
against attacker corruption (other than blind bit manipulation), since it
can be accessed only by the initiator-target pair due to their security
association. Once the initiator node receives the RREP, it checks the
accumulated path against the path contained in the mac path value before
accepting the route.

4.4 Modeling the Attacker

Our security analysis model isolates the attacker actions into an individual
process. This simplifies later adaptations to the attacker capabilities and

FCS-ARSPA’07

20

goals against the various protocols. When modeling a different attacker,
the attacker process is simply replaced. The attacker cannot break any
cryptographic mechanism, but is not forced to follow the routing protocol
operations. In the attacker modeling that follows, we describe actions
within the context of SRP. The network topology used is illustrated in
Fig. 4, where Node 0 is the initiator, Node 3 is the target, and Node 4 is
the attacker node.

1

0

3

2

4

Fig. 4. Five-Node Evaluation Topology

The Invisible Node Attack. The invisible node attack (INA) [4] oc-
curs when an attacker refuses to add itself to the routing path during
route discovery. The attacker model relays the forward RREQ message
without adding itself to the accumulated path and relays any subsequent
RREP. As an example, an INAer using the network topology in Figure 4
results in the path 0-3 being returned instead of the actual path 0-4-3.
Even though the attacker is not part of the unicast RREP, our model
ensures the attacker receives any wireless message transmitted within its
reception range. The attacker does not expect to be within the accumu-
lated path and simply relays the RREP to the next upstream node in the
accumulated path.

The Node Drop Attack. The INA may be intuitively described as a
relay attack. Conversely, the node drop attack (NDA) occurs when a node
corrupts a route by proactively dropping a node from the accumulated
routing path embedded into the route discovery messages. Relating the
NDA to our SRP model development, recall the actions SRP takes to
protect the accumulated path against routing attacks is for the target
to calculate a MAC over the path extracted from the RREQ and include
the MAC in the RREP. Attacks corrupting the RREP will be detected by
SRP since the MAC value will not match the corrupted path. Therefore,

Automated Security Analysis of Ad Hoc Routing Protocols

21

the goal of the SRP attacker is to corrupt the RREQ phase to trick the
target into computing and returning a MAC for a corrupt route. The
target will compute a MAC over any path that is delivered with the
RREQ, to include paths that have been corrupted and do not contain
valid routes.

Our modeled NDAer provides complete automation without requiring
any a priori knowledge of the network configuration and does not rely
on any intervention from the security analyst. During the RREQ process
the attacker removes the previous node from the accumulated path and
replaces itself in the previous node’s place, as long as the previous node
is not the initiator. Once the corrupted route reaches the target, it is
included in the MAC calculation. During the RREP process the attacker
relays the unicast RREP to all upstream nodes from the embedded path,
attempting to deliver the corrupted packet to the initiator or a node in
the upstream path that can eventually reach the initiator. The attacker
cannot use the original stripped node to relay the RREP on the way back
to the initiator, as the stripped node is no longer part of the embedded
unicast path.

The only requirement for the NDA attack to be successful against SRP
is that the attacker must be able to successfully transmit the corrupted
path during the RREP to any upstream node from the accumulated path.
The ability to reach the initiator without using the stripped node depends
on the current network topology.

As an example, a NDA occurs when Node 4 in Figure 4 receives a
RREQ packet from Node 2 containing the current accumulated path 0-
1-2. Node 4 strips off Node 2 and adds itself to the accumulated path,
transmitting a RREQ to the target node containing the path 0-1-4, re-
sulting in 0-1-4-3 as the complete path between the initiator and target
node. While Node 3 may have already serviced a RREQ for the path
0-1-2-3, RREQ messages are not guaranteed deliverability in a wireless
environment, forcing us to consider all possible attack path sequences
during the security analysis. During the route reply process, Node 4 sim-
ply attempts to relay the RREP to all upstream nodes contained in the
accumulated path. That is, Node 4 will attempt to send a message to
Node 0 and Node 1. The message intended for Node 0, the initiator, can
successfully be delivered, returning the corrupted path 0-1-4-3 to the ini-
tiator. The SRP initiator accepts the corrupted path as valid, since the
corrupted path matches the MAC value computed by the target node.

FCS-ARSPA’07

22

5 Automated Analysis

In addition to modeling the protocol and attacker, we must also specify
our desired security property. For our analysis purposes, φ is defined as:

φ = returned routes must exist in the current topology .

Once the protocol model and desired properties are specified, formally
stating that the system model M models the given security property φ
over all σ computational paths is captured by the following equation:

(M |= φ) ↔ ∀σ, (σ ∈ M → σ |= φ). (1)

To evaluate if M |= φ in SPIN we add an analysis check for the path
once it is received and accepted by the node that initiated the route
discovery process. The node takes the returned path and checks each
link to ensure that link exists in the model’s connectivity array. If any
link check fails, an assertion violation is raised and SPIN halts execution,
creating a trail file that lists the event sequence leading to the failure. For
example, Fig. 2 shows how an invisible node attack sequence produces
a path that is not consistent with the topology check, since the row for
Node 0 does not indicate a link exists to Node 2.

During SPIN simulations, the chosen process interleaving sequence
and the resulting chosen path is determined by the initial seed value.
Depending on the seed, a given simulation run may or may not produce
an error. Once SPIN compiles the model into an exhaustive verifier, the
verifier searches all possibilities and finds the violation (i.e., a successful
attack) if one exists within the evaluated network topology.

To highlight the differences between a simulator and an exhaustive
model checker, we evaluate the SRP model development against the net-
work topology specified in Fig. 4. When using SPIN as a simulator, the
outcome is directly related to the initial seed value and simulator out-
comes cannot guarantee an attack does not exist. The seed determines
the process interleaving at each step, since each node is a concurrent
process and can operate independently. Additionally, the seed determines
whether a node receives or drops any incoming message, which allows the
possibility for any path to be exercised during the route discovery round.

During analysis over the NDA against the forward routing process our
analysis should detect an error when SRP accepts a corrupt route. SPIN
simulations found non-attacked valid routes for the paths 0-4-3 (with
seed set to 17) and 0-4-2-3 (with seed set to 173). After performing 300
simulations using different seed values, we did not find a case where SRP

Automated Security Analysis of Ad Hoc Routing Protocols

23

accepts a corrupt route. Seed dependent simulation may therefore lead us
to believe that SRP is secure against this attacker, however, the attack
indeed exists.

SPIN also allows interactive simulations. Performing an interactive
SPIN simulation allows the analyst to choose the outcome for all non-
deterministic decision points, showing that the attack is possible. While
interactive simulation requiring human intervention for each decision point
can produce the attack, it is a grueling process in which the analyst could
miss an attack.

The power in our analysis model lies in SPIN’s exhaustive verifica-
tion method. During verification, SPIN automatically checks all possible
message orderings until it finds that an attack is successful. The SPIN
verifier automatically generates a trail file that can then be read into the
SPIN simulator to view the successful attack, without having to guess the
seed to simulate the attack or interactively walk through all the simulation
choices. Evaluating SRP against the NDA attack using SPIN’s exhaustive
verifier identifies the corrupted path 0-1-4-3, which SRP inappropriately
accepts as a valid path.

6 Conclusion

In this paper we utilize the SPIN model checker to provide an automated
analysis technique to evaluate route corruption attacks against the route
discovery phase for on-demand source routing protocols. The current secu-
rity analysis techniques used to evaluate security properties in MANET
routing protocols are not automated (e.g., visual inspection, analytical
proofs, and simulatability models) or do not provide exhaustive attacker
analysis (e.g., current network simulation packages evaluate performances
characteristics).

While SPIN has been previously used to evaluate security in authen-
tication protocols and evaluate loop-freedom criteria in MANET routing
protocols, our work combines these two areas to provide security analy-
sis for MANET routing protocols. Our modeling automatically identifies
route discovery attacks against SRP. We are currently developing SPIN
models to study route discovery attacks against the Ariadne protocol.

An additional automated process we are currently developing is the
ability to search all possible network topology configurations for a given
number of nodes. One of the biggest impediments to manual analysis
methods (e.g., visual inspection) is the intuition to choose a network con-
figuration in which the attack exists. We also encounter this limitation

FCS-ARSPA’07

24

in our own current automated attack modeling. For instance, the attacks
we discovered automatically with SPIN are dependent on the attacker’s
ability to relay the corresponding RREP to a neighbor in the upstream
source routing path. The attacks were possible to detect within the topol-
ogy we chose to evaluate, corresponding to the network configuration in
Fig. 4. If that network topology did not contain a link between Node 0
and Node 4, the automated evaluation process would not have found the
NDA against SRP, indicating that SRP was secure against the NDAer.
To solve this problem and automate the entire process, we are develop-
ing Perl scripts to produce a separate SPIN model file for each possible
network configuration for the desired node population. Each file is sub-
sequently analyzed with SPIN, identifying any configuration producing
attacks along with the attack sequence.

Acknowledgments. Todd Andel is supported by the U.S. Air Force.
Alec Yasinsac’s work is in part supported by U.S. Army Research Lab-
oratory and the U.S. Army Research Office under grant W91NF-04-1-
0415. The views expressed in this article are those of the author and do
not reflect the official policy or position of the United States Air Force,
Department of Defense, or the U.S. Government.

References

1. Ács, G., Buttyán, L., Vajda, I.: Provable security of on-demand distance vec-
tor routing in ad hoc networks. European Workshop on Security and Privacy,
Vol. 3813. Springer-Verlag (2005) 113-127

2. Ács, G., Buttyán, L., Vajda, I.: Provably secure on-demand source routing in
mobile ad hoc networks. IEEE Transactions on Mobile Computing 5 (2006) 1533-
1546

3. Andel, T.R.: Can ad hoc routing protocols be shown provably secure. Computer
Science Department. Florida State University, Tallahassee, FL (2006)

4. Andel, T.R., Yasinsac, A.: The Invisible Node Attack Revisited. 2007 IEEE South-
eastCon, Richmond, VA (2007) 686-691

5. Argyroudis, P.G., O’Mahony, D.: Secure routing for mobile ad hoc networks. IEEE
Communications Surveys & Tutorials 7 (2005) 2-21

6. Awerbuch, B., Holmer, D., Nita-Rotaru, C., Rubens, H.: An on-demand secure
routing protocol resilient to byzantine failures. 3rd ACM Workshop on Wireless
Security. ACM Press, Atlanta, GA, USA (2002) 21-30

7. Beaver, D.: Secure multiparty protocols and zero-knowledge proof systems toler-
ating a faulty minority. Journal of Cryptology 4 (1991) 75-122

8. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. Journal of the ACM 49 (2002) 538-576

9. Burmester, M., Van Le, T.: Secure multipath communication in mobile ad hoc
networks. International Conference on Information Technology: Coding and Com-
puting (ITCC ’04), Vol. 2 (2004) 405-409

Automated Security Analysis of Ad Hoc Routing Protocols

25

10. Burmester, M., Van Le, T.: Provably secure routing for MANETs. in-submission
(2006)

11. Burmester, M., Van Le, T., Yasinsac, A.: Adaptive gossip protocols: Managing
security and redundancy in dense ad hoc networks. Ad Hoc Networks 5 (2007)
313-323

12. Buttyán, L., Vajda, I.: Towards provable security for ad hoc routing protocols.
2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, Washington
DC, USA (2004) 94-105

13. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Computing Surveys 28 (1996) 626-643

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA (1999)

15. de Renesse, F., Aghvami, A.H.: Formal verification of ad-hoc routing protocols
using SPIN model checker. 12th IEEE Mediterranean Electrotechnical Conference,
Vol. 3 (2004) 1177-1182

16. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23 (1997) 279-295

17. Hu, Y.C., Perrig, A.: A survey of secure wireless ad hoc routing. IEEE Security &
Privacy 2 (2004) 28-39

18. Johnson, D., Maltz, D.: Dynamic source routing in ad hoc wireless networks. In:
Imielinski, T., Korth, H. (eds.): Mobile Computing. Kluwer (1996) 153-181

19. Kotzanikolaou, P., Mavropodi, R., Douligeris, C.: Secure Multipath Routing for
Mobile Ad Hoc Networks. Second Annual Conference on Wireless On-demand
Network Systems and Services (WONS ’05) (2005) 89-96

20. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. Tools and Algorithms for the Construction and Analysis of Systems,
Vol. 1055. LNCS (1996) 147-166

21. Maggi, P., Sisto, R.: Using SPIN to Verify Security Properties of Cryptographic
Protocols. 9th international SPIN Workshop on Model Checking of Software,
Vol. 2318. Springer-Verlag (2002) 187-204

22. Meadows, C.: The NRL Protocol Analyzer: An Overview. The Journal of Logic
Programming 26 (1996) 113-131

23. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theoretical Computer Science 367 (2006) 203-227

24. Papadimitratos, P., Haas, Z.J.: Secure routing for mobile ad hoc networks. SCS
Communication Networks and Distributed Systems Modeling and Simulation Con-
ference (CNDS 2002), San Antonio, TX (2002)

25. Ruys, T.C.: Towards effective model checking. Department of Computer Science.
University of Twente, Deventer, The Netherlands (2001)

26. Ryan, P., Schneider, S.: Modelling and Analysis of Security Protocols. Addison-
Wesley, Harlow, England (2001)

27. Song, D., Berezin, S., Perrig, A.: Athena: A novel approach to efficient automatic
security protocol analysis. Journal of Computer Security 9 (2001) 47-74

28. Wibling, O., Parrow, J., Pears, A.: Automatized Verification of Ad Hoc Routing
Protocols. Formal Techniques for Networked and Distributed Systems (FORTE
2004), Vol. 3235. Springer-Verlag (2004) 343-358

29. Yang, S., Baras, J.S.: Modeling vulnerabilities of ad hoc routing protocols. 1st
ACM Workshop on Security of Ad hoc and Sensor Networks (2003) 12-20

30. Yasinsac, A., Wulf, W.A.: A Framework for A Cryptographic Protocol Evaluation
Workbench. The International Journal of Reliability, Quality and Safety Engineer-
ing (IJRQSE) 8 (2001) 373-389.

FCS-ARSPA’07

26

Verifying Regular Trace Properties of Security
Protocols with Explicit Destructors and Implicit

Induction?

Adel Bouhoula1 and Florent Jacquemard2

1 École Supérieure des Communications de Tunis, Tunisia. bouhoula@planet.tn
2 INRIA Futurs & LSV UMR CNRS–ENSC, France. florent.jacquemard@inria.fr

Abstract. We present a procedure for the verification of cryptographic
protocols based on a new method for automatic implicit induction the-
orem proving for specifications made of conditional and constrained
rewrite rules. The method handles axioms between constructor terms
which are used to introduce explicit destructor symbols for the specifica-
tion of cryptographic operators. Moreover, it can deal with non-confluent
rewrite systems. This is required in the context of the verification of se-
curity protocols because of the non-deterministic behavior of attackers.
Our induction method makes an intensive use of constrained tree gram-
mars, which are used in proofs both as induction schemes and as oracles
for checking validity and redundancy criteria by reduction to an empti-
ness problem. The grammars make possible the development of a generic
framework for the specification and verification of protocols, where the
specifications can be parametrized with (possibly infinite) regular sets of
user names or attacker’s initial knowledge and complex security proper-
ties can be expressed, referring to some fixed regular sets of bad traces
representing potential vulnerabilities. We present some case studies giv-
ing very promising results, for the detection of attacks (our procedure is
complete for refutation), and also for the validation of protocols.

1 Introduction

Inductive theorem proving techniques and tools have been successfully applied
in last years to the verification of security protocols, both for proving security
properties and for identifying attacks on faulty protocols.

Paulson’s inductive approach [15] has been applied to many case studies.
In this method, protocols are formalized in typed higher-order logic and the
Isabelle/HOL interactive theorem prover is used to prove security properties.
Paulson’s technique handles infinite state protocols and does not assume any
restriction on the number of protocol participants. However, it is not automatic
and requires interaction with the user and also a good expertise (if a proof fails
with Isabelle, it is difficult to conclude whether the proof attempt failed or the
conjecture to be proved is not valid).

? This work has been partially supported by the grant INRIA–DGRSRT 06/I09.

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

27

Bundy and Steel [8] derive attacks on faulty protocols specified in first-order
logic using a proof by consistency technique. Such a technique is sometimes also
called inductionless induction [11] since it does not construct an induction proof
following an induction schema but rather tries to automatically derive an incon-
sistency using first-order theorem proving techniques. This technique is hence
fully automatic but its outcome may be difficult to analyze and convergence is
difficult to achieve.

In this paper we present a new method for the formal verification of security
protocols based on an implicit induction procedure. The protocol, the insecure
communication network (attackers) and the security assumptions are modeled
with an equational specification which is passed to an inductive theorem prover
in order to validate the protocol or to derive an attack. The advantage of this pro-
cedure is that it is automatic and returns readable proofs or counter-examples.

The specifications are strongly typed and follow a constructor discipline: we
distinguish in the signature the constructor symbols, used to build terms repre-
senting the values of the computation, in our case the list (trace) of messages
exchanged. The other symbols, called defined symbols, represent functions de-
fined on these values (for instance, we use below a predicate trace characterising
the protocol traces) and are specified by Horn clauses.

Equational axioms between terms made of constructors are very difficult to
deal with in automated induction and are generally not allowed. Our procedure
however allows such axioms, and we use them in order to specify cryptographic
operators like decryption. This approach with explicit destructors is the base
of a uniform framework for the verification of security protocols in an insecure
communication environment [1]. Explicit destructors both simplify the specifica-
tion of attacker’s capabilities and increase the expressiveness of specification as
models with explicit destructors are strictly more expressive than models based
on free algebra, in the sense that they captures more attacks [14].

Our induction procedure introduces another important novelty, compared
to other implicit induction techniques, since it handles specifications which are
not confluent. The property of ground confluence (any two divergent reduction
sequences starting from the same ground term converge ultimately) is usually
required for induction procedures. For the application to protocol verification, we
consider a model with an active attacker which interferes non-deterministically
with the communications of honest users. Such a model, relevant in the context
of security, can not be expressed with a ground-confluent specification.

The axioms of the specification contain constraints such as equations, dise-
quations and membership to fixed term languages (characterized by tree gram-
mars). The membership constraints come almost for free as our induction pro-
cedure is based on constrained tree grammars. This feature appeared however
extremely useful in a setting of protocol specification. It permits to parametrize
the specifications of protocols and attackers with (possibly infinite) regular sets
of user names or attacker’s initial knowledge. Moreover, and more important, it
also allows to deal with a rich language of security properties, not limited to the
confidentiality of some fixed piece of data as it is the case in many approaches.

FCS-ARSPA’07

28

Indeed, assume given a set B of bad traces (lists of messages exchanged corre-
sponding to an attack) which is a regular tree language (of constructor terms),
characterized by a tree grammar. We can express as a conjecture to be proved
the property that every protocol trace (as defined by the predicate trace) does
not belong to B. This allows to write a wide range of security properties, like for
instance variants of authenticity.

In contrast to the technique of [8], implicit induction is a goal directed proof
technique, and we believe that it is therefore quite efficient for automatically
finding attacks on faulty protocols. The use of tree automata techniques permits
in particular to focus on traces of events in normal form, and consequently to
minimize the set of traces to be checked. Since our procedure is refutationally
complete (under some conditions for the specification) its application on any
flawed protocol will return a readable attack in finite (and typically very small)
time and in a completely automatic way, as illustrated by the examples of Sec-
tion 3. Moreover, it can also help in protocol validation (proof that there is no
attack), though the interactive addition of lemmas may be required for that
purpose, see the example in Section 4.

2 Preliminaries

We consider a many-sorted signature F . As explained in introduction, F is
partitioned into a subset C of constructor symbols and a subset D of defined
symbols. Each symbol f is given with a profile f : S1 × . . . × Sn → S where
S1, . . . , Sn, S are sorts and n is the arity of f . We note T (F ,X) (resp. T (C,X))
the set of well-sorted terms over F (resp. constructor well-sorted terms) with
variables in X and T (F) (resp. T (C)) and the subsets of variable-free terms, or
ground terms. The subterm of t at position p is denoted by t|p. The result of
replacing t|p with s at position p in t is denoted by t[s]p. This notation is also
used to indicate that s is a subterm of t, in which case p may be omitted. A
term t is linear if every variable occurs at most once in t. A substitution is a
finite mapping from variables to terms, extended as usual as a morphism from
terms to terms, written in postfix notation.

Conditional constrained rewriting. We shall consider below constraints
which are Boolean combinations of atoms of the form P (t1, . . . , tn) where P
belongs to a fixed language of constraints predicates interpreted over terms of
T (C) and t1, . . . , tn ∈ T (C,X). The solutions of a constraint c, whose set is de-
noted sol(c), are (constructor) substitutions σ grounding for all terms in c and
such that cσ is interpreted to true. Constrained terms have the form t JcK where
t ∈ T (F ,X) and c is a constraint and conditional constrained rewrite rules are
constrained Horn clauses such as:

u1 = v1, . . . , un = vn ⇒ `→ r JcK

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

29

where u1, v1, . . . , un, vn, `, r ∈ T (F ,X), the terms ` and r (called resp. left- and
right-hand side of the rule, ` → r is an oriented equation) are linear3 and have
the same sort, and c is a constraint. Our procedure takes as input a constrained
constructor rewrite system (CTRS) RC , which is a set of rules such that n = 0
(no conditions) and `, r ∈ T (C,X) and a conditional constrained rewrite system
(CCTRS) RD, with rules such that n ≥ 0, ` = f(`1, . . . , `k) where f ∈ D and
`1, . . . , `n, r ∈ T (C,X). We note R = RC]RD.

A term t JdK rewrites to s JdK by the above rule, denoted by t JdK −−→R s JdK,
if t|p = `σ for some position p and substitution σ, s = t[rσ]p, the substitution
σ is such that d ∧ ¬cσ is unsatisfiable and uiσ ↓R viσ for all i ∈ [1..n]; where
↓R denotes −−→∗R ◦ ←−−∗R and −−→∗R is the reflexive transitive closure of −−→R . If there
exists such a term s, then t JdK is called reducible, otherwise it is called a normal
form. A constrained term t JcK is ground reducible (resp. ground irreducible) by
R if for every irreducible substitution σ ∈ sol(c) grounding for t, tσ is reducible
(resp. irreducible) by R.

The CCTRS R is terminating if there is no infinite sequence t1 −−→R t2 −−→R
. . ., and R is ground-confluent if for any ground terms u, v, w ∈ T (F), v ←−−∗R
u −−→∗R w, implies that v ↓R w, and R is ground convergent if R is both ground-
confluent and terminating.

Inductive theorems, tautologies Let R be a terminating CCTRS. A con-
strained equation a = b JcK is called an inductive theorem of R (denoted by
R |=ind a = b JcK) if for all substitution σ ∈ sol(c) grounding for a and b,
aσ ←−−→∗R bσ, and it is called a joinable inductive theorem of R (denoted by
R |=jind a = b JcK) if for all substitution σ ∈ sol(c) grounding for a = b, and all
R-normal forms na, nb respectively of aσ, bσ, we have na = nb. These notions are
extended to clauses as expected. The definition of joinable inductive theorems
is motivated by the applications presented in Sections 3 and 4.

Note that the two notions of inductive and joinable inductive theorem coin-
cide when R is ground-confluent. However, they can differ otherwise. Consider
for instance R = {c → a, c → b}. The conjecture a = b is an inductive theo-
rem (since a ←−−→∗R b) but it is not a joinable inductive theorem (as a and b are
R-normal forms). On the other hand, a = b ⇒ f(x) = c is a joinable inductive
theorem but not an inductive theorem (for the same reasons).

We call tautology of R a constrained clause of the form a = a ∨ L JcK such
that a is ground irreducible by R or of the form a = b ∨ a 6= b ∨ L JcK such
that a and b are ground irreducible by R. Note that every tautology is both an
inductive and a joinable inductive theorem of R.

Constrained tree grammars A constrained tree grammar G = (Q,∆) is
given by a finite set Q of non-terminals of the form xuy, where u is a lin-
ear term of T (F ,X), and a finite set ∆ of production rules of the form
xty := f(xu1y, . . . , xuny) JcK where f ∈ F , xty, xu1y,. . . , xuny ∈ Q and c is
a constraint.
3 Note that assuming that l and r are linear is not restrictive since non linearities may

be expressed as equalities between variables in c.

FCS-ARSPA’07

30

fst
`
pair(x1, x2)

´ → x1 snd
`
pair(x1, x2)

´ → x2 inv
`
inv(y)

´ → y

dec
`
enc(x, y), y

´ → x adec
`
aenc(x, y), inv(y)

´ → x adec
`
aenc(x, inv(y)), y

´ → x

Figure 1: Constructor rules

The non-terminals are always considered modulo variable renaming. In par-
ticular, we assume that the term f(u1, . . . , un) is linear. The production relation
`x
G on constrained terms is defined by:

t[x] Jx: xuy ∧ dK `x
G t[f(x1, . . . , xn)] Jx1: xu1y ∧ . . . ∧ xn: xuny ∧ c ∧ dσK

if there exists xuy := f(xu1y, . . . , xuny) JcK ∈ ∆ such that f(u1, . . . , un) = uσ
(we assume that the variables of u1, . . . , un and c do not occur in the con-
strained term t[x] Jx: xuy ∧ dK) and x1,. . . ,xn are fresh variables. The variable x,
constrained to be in the language defined by the non-terminal xuy, is replaced
by f(x1, . . . , xn) where x1, . . . , xn are constrained to the respective languages
of xu1y, . . . , xuny. The union of the relations `x

G for all x is denoted `G and
the reflexive transitive and transitive closures of the relation `G are respectively
denoted by `∗G and `+

G .
The language L

(G, xuy
)

is the set of ground terms t generated by a con-
strained tree grammar G starting with the non-terminal xuy, i.e. such that
x Jx: xuyK `∗G t JcK where c is satisfiable. The above membership constraints
t: xuy, with xuy ∈ Q, are interpreted by: sol(t: xuy) = {σ ∣∣ tσ ∈ L(G, xuy)}.
Note that we shall use below such membership constraints in order to restrict a
term to a given sort or a given regular tree language.

3 Verification of a Key Distribution Protocol

In this section, we describe in an example how to specify a protocol, its environ-
ment and security properties with conditional constrained rewrite rules, and how
the implicit induction procedure of Section 5 can be applied to the verification
of the security properties, expressed as a joinable inductive conjectures.

Signature. Assume some sorts Nat, Bool, Name, Id, Key, Msg, MsgList, with
the subsort relations: Name ⊆ Msg and Key ⊆ Msg. The messages exchanged
during the protocol execution are abstracted by well sorted terms built with
constructor symbols pair : Msg ×Msg → Msg, and projections fst, snd : Msg →
Msg, encryption and decryption in symmetric and asymmetric key cryptography
enc, aenc, dec, adec, all with profile Msg×Msg→ Msg and which follow the rules
in Figure 1. The variables x represents the encrypted plaintext and the y is a
symmetric or a public encryption key. The idempotent operator inv : Key→ Key
associates to a public key its corresponding private key (for decryption), and
conversely; We assume moreover an operator pub : Name→ Key which associates
to the identity of a user its public key. The symbol inv is called secret and all
the others symbols are called public.

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

31

Let us also consider a public constructor sent : Id×Name×Name×Msg→ Msg
used to encapsulate messages with a header. Its first argument is a message
identifier, the second and third arguments are respectively the names of sender
and receiver of the message and the last argument is the message itself. The
public constructor symbol body : Msg → Msg can be used for removing the
header, with the rule: body

(
sent(xi, xa, xb, x)

)→ x.
We assume moreover some additional secret constructors for Boolean:

true, false : Bool, for natural numbers 0 : Nat, s : Nat → Nat, for lists of mes-
sages, nil : MsgList, :: : Msg×MsgList→ MsgList and constant values used in the
protocol messages: K : Key, S : Msg. Finally, we assume that the set of names
of honest users (i.e. the set of terms of sort Name) is a (possibly infinite) regular
tree set4 whose terms are made only of public constructor symbols.

Let us denote RC the set of rewrite rules given above, which are sometimes
referred as explicit destructors rules in the protocol verification literature. We
propose in Appendix A a constrained tree grammar GNF(RC) which generates
the constructor normal forms. It contains in particular the non terminals xyListy
and xxNaty generating normal forms of respective sorts List and Nat.

Protocol. We consider a simplification (without certificates and timestamps) of
a key distribution protocol of Denning & Sacco [13] for a symmetric key exchange
in an asymmetric cryptosystem. Following the approach of [15], we consider
traces of messages modelled as lists (built with nil and ::) and characterized by
the defined symbol trace : Int × MsgList → Msg. In trace(n, `), ` is a list of
messages exchanged (protocol trace) and n can be seen as a resource consumed
by each operation executed by an honest or dishonest agent. As we shall see below
(in the description of the conjectures proved), the principle of our verification
method is to perform an induction on the initial value of this resource (at the
beginning of the protocol).

The symbol trace is defined recursively by extension with messages sent by the
users participating to the protocol (honest or not). In the case of the Denning &
Sacco protocol, the conditional rule (DS-A) of RD describes the user xa sending
to user xb a message with identifier 1, which contains a freshly chosen symmetric
key K for further secure communications:

trace(s(n), y)→ trace
(
n, sent(1, xa, xb, pair(xa, aenc(aenc(K, inv(pub(xa))),

pub(xb)))) :: y
) Jxa : Name, xb : Name, xa 6≈ xbK (DS-A)

This key K is encrypted, for authentication purpose, using the asymmetric
encryption function aenc and the secret key of xa, represented as the inverse
inv(pub(xa)) of its public key pub(xa). The result of this encryption is then en-
crypted with xb’s public key pub(xb) so that only xb shall be able to learn K.
Moreover, xa appends its name at the beginning of the message (using pair) so
that the receiver xb knows which public key to use in order to recover K.

4 We will not define explicitly a tree grammar for Name here, we just assume that it
contains the constants A, B and I.

FCS-ARSPA’07

32

In the second conditional rule (DS-B) of RD, the honest user xb, while read-
ing a message xm, expects that xm has the above form (though he does not
check this) and extracts the symmetric key K, applying twice the asymmetric
decryption function adec to the second component of xm, obtained by applica-
tion of the projection function snd. This key K is then used by xb to encrypt
(with the function enc) a secret code S that he wants to communicate to the
user xa, and this ciphertext is sent in a message with identifier 2.

sent(1, x′a, xb, xm) ∈ y = true⇒ trace
(
s(n), y)→ trace(n, sent(2, xb, fst(xm),

enc(S, adec(adec(snd(xm), inv(pub(xb))), pub(fst(xm))))) :: y
)

(DS-B)

Attacker. We assume asynchronous communication of the messages through
an insecure public network controlled by a dishonest user called attacker. The at-
tacker is able to read and analyse any message sent to the network and to resend
new messages composed from the information collected. Both the extraction
of information from the messages read and the composition of new messages
are modeled by the application of public constructor symbols and the reduc-
tion using the rules of RC . This makes the framework with explicit destructors
more uniform that others (often called ”Dolev-Yao” models) where information
extraction is modeled with extra ad-hoc inference rules. Note that we do not
need here the extra predicates analyze and synthesis of [15] for the specification
of trace. Besides uniformity, the addition of explicit destructor rules makes the
model strictly more expressive, in the sense that it captures strictly more attacks,
like for instance the attack described below. The operations of the attacker are
specified by the following rules of RD for the specification of trace:

trace
(
s(n), y

)→ trace(n, x :: y) Jx : InitK (att-init)

x1 ∈ y, . . . , xk ∈ y ⇒ trace
(
s(n), y

)→ trace
(
n, f(x1, . . . , xk) :: y

)
(att-anlz)

In the rule (att-init), Init is an extra non-terminal of GNF(RC) which generates a
regular tree language representing the initial knowledge of the attacker. In this
example, we assume that this language contains all the terms of sort Name and
Id. In the rule (att-anlz), xi ∈ y has to be read as xi ∈ y = true. This rule actually
represents one conditional rule for each public constructor symbol f of arity k.

The function ∈: Msg ×MsgList→ Bool is defined by the three rules of RD:

x ∈ nil→ false, x1 ∈ x2 :: y → true Jx1 ≈ x2K, x1 ∈ x2 :: y → x1 ∈ y Jx1 6≈ x2K
Note that the set of the above rules form a CCTRS sufficiently complete and
terminating, but not ground-confluent.

Security properties. We construct a tree grammar G by intersection of
GNF(RC) and a regular tree grammar Bad which generates bad traces. The gram-
mar G is built with a product construction and for the sake of readability, every
non-terminal of G will be denoted below N1 ∩ N2 where N1 is a non-terminal
of GNF(RC) and N2 is a non-terminal of Bad . We assume two particular non-
terminal in the grammar Bad :

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

33

– a non-terminal BDS
auth which generates the set of lists (built with nil, :: and the

other constructor symbols) containing a message of the form sent(2, B,A, . . .)
not preceded by a message of the form sent(1, A,B, . . .). Such a list corre-
sponds to an authentication flaw. Note that this set is a regular tree language.

– a non-terminal Bsec which generates the set of lists containing the constant
S. Such a list corresponds to a secrecy flaw: it indicates that the secret value
S is publicly revealed.

The two conjectures (Cauth), (Csec) express that every bad trace y cannot be
a trace of the protocol obtained in n steps, for any n:

trace(n, nil) 6= trace(0, y) Jy : xyListy ∩BDS
auth, n : xxNaty K (Cauth)

trace(n, nil) 6= trace(0, y) Jy : xyListy ∩Bsec, n : xxNaty K (Csec)

More precisely, (Cauth) expresses that no authentication flaw (man-in-the-middle
attack) occurs during protocol executions, and (Csec) expresses that the constant
S remains secret to the attacker. The negation trace(n, nil) 6= trace(0, y) should
be understood as trace(n, nil) = trace(0, y) ⇒ true = false. Note that the above
variables y and n are constrained to be instantiated by terms generated by
GNF(RC) starting respectively with the non-terminals xyListy and xxNaty , and y is
moreover constrained to be instantiated by terms generated by Bad .

Note that (Cauth) and (Csec) have the same form, only the regular tree gram-
mar Bad differs. In general, with this approach, we can express that there is no
intersection between protocol traces and bad traces for any regular set of bad
traces, which makes quite a rich language of security properties.

Disproofs. The application of our procedure shows that none of the conjectures
is a joinable inductive theorems of R, by induction on traces, revealing attacks
on the protocol.
Among the instances of the conjecture (Cauth) generated5 by application of the
production rules of G, we have the instance where the variable y is replaced
by nil and n is replaced by s8(0), denoted 8 below. We can show that this
instance is a counterexample for the conjecture (Cauth), with the normaliza-
tion with R presented in Figure 2, where mI = pair(A, aenc(A, pub(B)))) and
mB = sent(2, B,A, enc(S, adec(A, pub(A)))) (A, B and I are arbitrary distinct
constructor terms of sort Name). The normalization of Figure 2 indicates quite
legibly an authentication attack on the protocol. In the first steps of the reduc-
tion, the attacker builds a message sent(1, I, B,mI) using its initial knowledge
(generated by G from the no-terminal Init), with rule (att-init) and some public
constructor symbols, with rule (att-anlz). Then B reads this message and believes
that it originated from A. He therefore sends to A an answer which is reduced
by RC into: sent(2, B,A,mB). Hence, the list obtained after the reduction in
Figure 2 belongs to L(G, BDS

auth), since this message sent(2, B,A,mB) is not pre-
ceded in the list by a message of the form sent(1, A,B, . . .) (this indicates the
5 The procedure generates all the instances which are smaller than d(R) (the maxi-

mum depth of the left-hand sides of rules of R), see Section 5.

FCS-ARSPA’07

34

trace
`
8, nil) −−−−−→∗

(att-init)
trace

`
5, I :: A :: B :: 1 :: nil

´ −−−−−−→∗
(att-anlz)

trace
`
2, mI :: I :: A :: B :: 1 :: nil

´
−−−−−−→
(att-anlz)

trace
`
1, sent(1, I, B, mI) :: mI :: I :: A :: B :: 1 :: nil| {z }

`

´ −−−−→
(DS-B)

trace
`
0, sent(2, B, fst(mI), enc(S, adec(adec(snd(mI), inv(pub(B))), pub(fst(mI))))) :: `

´
−−−→∗RC

trace
`
0, sent(2, B, A, mB) :: `

´
Figure 2: An authentication attack on DS protocol

trace(12, nil) −→∗ trace
`
4, sent(2, B, A, mB) :: `

´
−−−−−−→
(att-anlz)

trace
`
3, body(sent(2, B, A, mB)) :: sent(2, B, A, mB) :: `

´
−−−→RC

trace
`
3, mB :: sent(2, B, A, mB) :: `

´
let `′ = mB :: sent(2, B, A, mB) :: `

−−−−−−→∗
(att-anlz)

trace(1, adec(A, pub(A)) :: `′
´

−−−−−−→
(att-anlz)

trace
`
0, dec(mB , adec(A, pub(A))) :: adec(A, pub(A)) :: `′

´
−−−→∗RC

trace
`
0, S :: dec(mB , adec(A, pub(A))) :: adec(A, pub(A)) :: `′

´
= trace(0, `′′)

Figure 3: An attack on the secrecy of S for DS protocol

authentication flaw). It means that the instance of conjecture (Cauth) is reduced
to a clause of the form sent(2, B,A,mB) :: ` 6= sent(2, B,A,mB) :: `, which leads
to a case of disproof.

For Conjecture (Csec), we consider now n = s12(0) and the reduction in Fig-
ure 3. The first steps of this figure are the same as in Figure 2. In the next steps,
the attacker builds (with rules (att-init) and (att-anlz)) a fake key adec(A, pub(A))
which he uses latter in order to decipher the message mB from B and recover
S. Hence, the lists obtained in Figure 3 belongs to L(G, Bsec). It means that the
instance of conjecture (Csec) are reduced to a clause trace(0, `′′) 6= trace(0, `′′),
which leads to a case of disproof.

Shamir-Rivest-Adleman Three Pass Protocol. Another example of deriva-
tion of an attack is proposed in [6] (see also Appendix B and Figure 6). We won’t
reproduce it in details here. We would just like to outline one interesting use of
constraints in explicit destructor axioms in this example. Indeed, the protocol
RSA 3-pass relies on a commutativity-like property for the encryption operator.
In our model, it is expressed by the following rule of RC :

aenc(aenc(x, k1), k2) = aenc(aenc(x, k2), k1) Jk1 > k2K (1)

Note the addition of the ordering constraint, for termination purposes.

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

35

4 Towards Joinable Inductive Validation of Protocols

Let us modify the protocol rules of Section 3 in order to fix the above attacks.
We add a pair(xa, xb) along with the key K in the first message:

trace(s(n), y)→ trace
(
n, sent(1, xa, xb, pair(xa, aenc(aenc(pair(pair(xa, xb),K),

inv(pub(xa))), pub(xb)))) :: y
) Jxa : Name, xb : Name, xa 6= xbK (DS-A’)

Before sending the second message, xb checks first the pair pair(xa, xb) sent in
the ciphertext (we let k = adec(adec(snd(xm), inv(pub(xb))), pub(fst(xm)))):

sent(1, x′a, xb, xm) ∈ y = true, snd(fst(k)) = xb, fst(fst(k)) = fst(xm)⇒
trace(s(n), y)→ trace(n, sent(2, xb, fst(xm), enc(S, k))) :: y) (DS-B’)

We present below some parts of the validation of the amended version of the
protocol with our procedure, i.e. the proof that the conjecture Csec is a joinable
inductive theorem of the above specification. The proof is much more difficult
than in the previous sections. Indeed, we need here to verify all the execution
traces in order to validate the protocol (by definition of joinable inductive theo-
rems), since R is not ground-confluent. In comparison, it is sufficient to find one
erroneous trace in order to show that the protocol is flawed.

The application of the procedure generates several subgoals, amongst them:

y 6= nil Jy : xyListy ∩BsecK
y 6= trace(n, x :: nil) Jy : xyListy ∩Bsec, n : xxNaty , x : InitK
x1 ∈ y = true, . . . , xk ∈ y = true⇒ y 6= trace(n, f(x1, . . . , xk) :: nil)Jy : xyListy ∩BDS

sec , n : xx Naty K
Let us recall that Init is a non-terminal of a regular tree grammar generating

the language of the initial knowledge of the attacker. This language contains all
the ground constructor terms of sort Name and Id in our example. In the third
subgoal, f denotes any public constructor symbol of arity k. In our example,
k = 1 and f is pub, fst, snd, body or k = 2 and and f is pair, enc, dec, aenc, adec.

The proof of the first subgoal is immediate, but the other subgoals need
more developments and the interactive addition of some lemmas in order to
derive a proof. We are working on an extension of our inference system with
new simplification rules in order to avoid the divergence during the validation
of correct authentication protocols.

5 Implicit Inductive Theorem Proving procedure

We present in this section a goal-directed inductive theorem proving procedure
for conditional and constrained specifications.

This procedure belongs to the family of implicit induction (in the lines of [7])
and combines the power of two classical methods for automatic induction: explicit

FCS-ARSPA’07

36

induction and proof by consistency [11]. As outlined above, the procedure sup-
ports features which are generally not found in former inductive theorem proving
approaches, like handling non ground-confluent rewrite systems, axioms between
constructors (used here for specifying explicit destructors) or the parametriza-
tion of the specification and conjectures with given regular set of terms. A key
for these characteristics is that the whole procedure is based on a constrained
tree grammar, which is computed automatically from the given specification.
It is used for several purposes: (i) as an induction scheme. Using a constrained
tree grammar instead of a test-set like in the former procedures [7, 4] permits
precisely to handle constrained rewrite rules between constructors, (ii) as an
oracle for checking validity and redundancy at each induction steps, by reduc-
tion to an emptiness problem, (iii) in order to characterize regular sets of terms
representing specific values or traces, see Section 3.

5.1 Constrained Tree Grammar for Induction

Constrained tree grammars permit an exact representation of the set of ground
constructor terms irreducible by a given CTRS. For this reason, such formalisms
have been studied in many works related to inductive theorem proving, see
e.g. [11]. Indeed, under some assumptions like sufficient completeness and termi-
nation for constructor axioms, they provide a finite description of the minimal
Herbrand model (a set of representatives of the minimal Herbrand model is the
language of ground constructor RC-normal forms in this case).

For every constructor CTRS RC , we can construct a constrained tree gram-
mar GNF(RC) which generates the language of ground RC-normal forms. This
construction, presented in [5] and exemplified in the Section 3, intuitively cor-
responds to the complementation and completion of a tree grammar for RC-
reducible terms, where every subset of non-terminals (for the complementation)
is represented by the most general unifier of its elements. In a first step of our
induction procedure, we construct a constrained tree grammar G = (Q,∆). This
grammar is assumed fixed in the rest of the section. For the construction of G,
we start with GNF(RC) and possibly make an intersection with one or several
regular tree grammars, (see Section 3). The intersection between a constrained
tree grammar and a regular tree grammar is a constrained tree grammar.

We call a constrained term t JcK decorated if c = x1: xu1y ∧ . . .∧ xn: xuny ∧ d,
{x1, . . . , xn} = var(t), xuiy ∈ Q and sort(ui) = sort(xi) for all i ∈ [1..n].

Some of the following inference rules invoke tests for (a) satisfiability of con-
straints in clauses, (b) ground irreducibility of constructor clauses and (c) join-
able inductive validity of ground irreducible of constructor clauses. It is shown
in [5] that the properties (a) and (b) are reducible to emptiness decision for con-
strained tree grammars which slightly extend GNF(RC). A similar reduction is
also possible for (c), following the idea that when a clause is ground irreducible,
testing joinable inductive validity amounts, by definition, at testing syntactic
equality. In other terms, when a and b are ground irreducible R |=jind a = b JcK

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

37

iff the constraint c ∧ a 6≈ b is unsatisfiable, and (c) is reducible to (a), hence to
emptiness decision.

Based on former decision results for tree automata with equality and dise-
quality constraints [9], some restrictions on RC are given [5] which ensure the
decidability of the three above problem. The rewrite systems described in Sec-
tions 3 and 4 fulfill these restrictions.

5.2 Simplification Rules

We present in Figure 4 the system S of simplification rules for constructor
clauses. Rewriting simplifies goals with axioms. Since R may not be ground-
confluent, we consider all the (one step) reductions with R. Rewrite Splitting
simplifies a constrained clause which contains a subterm matching some left
member of rule of RD. The inference checks moreover that all cases are covered
for the application of such rules of RD, i.e. that for each ground substitution
τ , the conditions and the constraints of at least one rule is true wrt τ . Par-
tial Splitting eliminates ground reducible terms in a constrained clause C JcK by
adding to C JcK the negation of constraint of some rules of RC . Therefore, the
saturated application of Partial splitting and Rewriting will always lead to Dele-
tion or to ground irreducible constructor clauses. Finally, Deletion and Validity
remove respectively tautologies and clauses with unsatisfiable constraints, and
ground irreducible constructor joinable inductive theorems of R. As explained
in Section 5.1, the tests in the rules Deletion and Validity are discharged to a
decision procedure for the emptiness of constrained tree grammars.

Rewriting C JcK `S ˘
D1 JcK, . . . , Dk JcK¯

if for all i ≤ k, Di JcK � C JcK where {D1 JcK, . . . , Dk JcK} are all the clauses
obtained by one-step rewriting with R from C JcK.

Rewrite Splitting C JcK `S ˘
Γiσi ⇒ C[riσi]pi Jc ∧ ciσiK ˛̨

pi pos. of C
¯

i∈[1..n]

if R |=jind Γ1σ1 Jc ∧ c1σ1K ∨ . . . ∨ Γnσn Jc ∧ cnσnK, C|pi > riσi and {C|pi} >mul Γiσi

where the Γiσi ⇒ liσi → riσi JciσiK, i ∈ [1..n], are all the instances of rules
Γi ⇒ li → ri JciK ∈ RD such that liσi = C|pi

Partial Splitting C[lσ]p JcK `S ˘
C[rσ]p Jc ∧ c′σK, C[lσ]p Jc ∧ ¬c′σK¯

if l → r Jc′K ∈ RC , lσ > rσ, and neither c′σ nor ¬c′σ is a subformula of c
where C JcK is a constructor clause.

Deletion C JcK `S ∅
if C JcK is a tautology or c is unsatisfiable.

Validity C JcK `S ∅
if C JcK is a ground irreducible constructor clause and R |=jind C JcK.

Figure 4: System S: simplification rules

FCS-ARSPA’07

38

Simplification

`E ∪ ˘
C JcK¯

,H´`E ∪ E ′,H´
if Indvar(C JcK) = ∅ and C JcK `S E ′

Inductive Narrowing

`E ∪ ˘
C JcK¯

,H´`E ∪ E1 ∪ . . . ∪ En,H ∪ {C JcK}´
if for all i in [1..n], d(Ci)− d(C) ≤ d(R)− 1 and Ci JciK `S Ei

where {C1 Jc1K, . . . , Cn JcnK} is the set of clauses s. t. C JcK `+
G Ci JciK

Subsumption

`E ∪ ˘
C JcK¯

,H´
(E ,H)

if C JcK is subsumed by another clause of R∪ E ∪H

Disproof

`E ∪ ˘
C JcK¯

,H´
(Disproof,H)

if C JcK is a constructor clause and no other rule applies to C JcK
Failure

`E ∪ ˘
C JcK¯

,H´
(Failure,H)

if C JcK is not a constructor clause and no other rule applies to the clause C JcK
Figure 5: System I: inference rules for joinable-induction

5.3 Main inference system

The main inference system I is displayed in Figure 5. Its rules apply to pairs
(E ,H), where E is the set of current conjectures and H is the set of inductive
hypotheses (constrained clauses). The inference rules of I use the constrained
tree grammar G in order to instantiate variables. The replacements are limited
to variables, called induction variables, whose instantiation is needed in order to
trigger a rewrite step.

Definition 1. The set Indpos(f,R) of induction positions of f ∈ D is the set
of non-root and non-variable positions of left-hand sides of rules of RD with
the symbol f at the root position. The set Indvar(t) of induction variables of
t = f(t1, . . . , tn), with f ∈ D and t1, . . . , tn ∈ T (C,X), is the subset of variables
of var(t) occurring in t at positions of Indpos(f,R) .

Let us now describe the inference rules of I. Simplification reduces a conjec-
ture which does not contain any induction variable using the rules of System S
(Figure 4). Inductive Narrowing generates new subgoals by application of the
production rules of the constrained grammar G until the obtained clause is deep
enough to cover left hand side of rules of RD. Each obtained clause must be
simplified by one of the rules of S (if one instance cannot be simplified, then the
rule Inductive Narrowing cannot be applied). Subsumption deletes clauses redun-
dant with axioms of R, induction hypotheses of H and other conjectures not yet
proved (in E).

5.4 Soundness and Completeness

Our inference system is sound, and refutationally complete.

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

39

Definition 2. We call derivation a sequence of inference steps generated by
a pair of the form (E0, ∅), using the inference rules in I, written (E0, ∅) `I
(E1,H1) `I · · · (En,Hn) `I · · · . We say that a derivation is fair if the set of
persistent constrained clauses (∪i∩j≥iEj) is empty or equal to Disproof or Failure.
The derivation is said to be a disproof or failure, respectively, in the two last
cases, and a success in the first case.

Finite success is obtained when the set of conjectures to be proved is
exhausted. Infinite success is obtained when the procedure diverges, assum-
ing fairness. When it happens, the clue is to guess some lemmas which are
used to subsume or simplify the generated infinite family of subgoals, there-
fore stopping the divergence. This is possible in our approach, since lem-
mas can be used in the same way as axioms are. The proof of the follow-
ing theorems can be found in the long version [6] of this extended abstract.

Theorem 1 (Soundness of successful derivations). Let E0 be a set of
decorated constrained clauses. If there exists a successful derivation (E0, ∅) `I
(E1,H1) `I · · · then R |=jind E0.

The following theorem states that the derivation of Disproof by our inference
system is a correct refutation of the conjecture.

Theorem 2 (Soundness of disproof). If a derivation starting from (E0, ∅)
returns the pair (Disproof,H), then R 6|=jind E0.

The derivation of Failure means that we cannot conclude, however, this never
happens providing the property of strongly completeness for R. A function sym-
bol f ∈ D is sufficiently complete wrt R iff for all t1, . . . , tn ∈ T (C), there exists
t in T (C) such that f(t1, . . . , tn) −−→+R t. We say that the system R is sufficiently
complete iff every defined operator f ∈ D is sufficiently complete wrt R.

Definition 3. Let f ∈ D and let:
{
Γ1 ⇒ f(t11, . . . , t

1
k) → r1 Jc1K, . . . , Γn ⇒

f(tn1 , . . . , t
n
k) → rn JcnK} be a maximal subset of rules of RD whose left-hand

sides are identical up to variable renaming µ1, . . . , µn i.e. f(t11, . . . , t
1
k)µ1 = . . . =

f(tn1 , . . . , t
n
k)µn. We say that f is strongly complete wrt R (see [4]) if f is

sufficiently complete wrt R and R |=jind Γ1µ1 Jc1µ1K ∨ . . . ∨ Γnµn JcnµnK for
every subset of R as above. The system R is said strongly complete if every
f ∈ D is strongly complete wrt R.

Theorem 3 (Refutational completeness). Assume that R is strongly com-
plete and let E0 be a set of decorated constrained clauses. If R 6|=jind E0, then all
fair derivations starting from (E0, ∅) end up with (Disproof,H).

FCS-ARSPA’07

40

Conclusion

We have developed a procedure for proving joinable inductive theorems of condi-
tional and constrained constructor based specifications which may be non conflu-
ent. This procedure is shown correct and refutationally complete, and has been
applied to the verification of security properties of cryptographic protocols, both
for the research of attacks or protocol validation.

A closely related first order model, also based on trace, was proposed in [10].
This exact model was defined in order to prove a theoretical result on the minimal
number of user names required in order to prove security properties. To our
knowledge, this model has not been applied in practice for protocol verification.

We are planing several development of this method for protocol verification.
First, a natural case study for induction are group protocols, see e.g. [8], with
some induction on the number of participants.

Several procedures permit automatic validation of protocols described by
first order specifications, e.g. [2], but they generally rely on over-approximating
models, and are not suitable for the research of attacks, as they generate false
positives. Trace based models, like the one presented here, are not approximated
and hence appropriate for the search of attack, but automatic protocol valida-
tion in such models is considered as a difficult problem. The main difficulty is to
generate invariants about the set of data that the attacker can not deduce. Sys-
tems like Securify [12] or Hermes [3] are based on some fixed generic invariants.
We would like to study the problem of the automatic generation of appropriate
ad-hoc invariants, based on the theoretical framework proposed in this paper.

Acknowledgments. The authors wish to thank Hubert Comon-Lundh for the
fruitful discussions they have had about this method and the reviewers for their
useful remarks.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 104–115, 2001.

2. B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols In IEEE
Symp. on Security and Privacy, pages 86-100, 2004.

3. L. Bozga, Y.‘Lakhnech, M. Périn. HERMES: An Automatic Tool for Verification
of Secrecy in Security Protocols. In Proc. of the 15th Computer-Aided Verification
conf. (CAV’03), vol. 2725 of Spinger LNCS, 2003.

4. A. Bouhoula. Automated theorem proving by test set induction. Journal of Symbolic
Computation, 23(1):47–77, 1997.

5. A. Bouhoula and F. Jacquemard. Automated induction for complex data structures.
Research Report LSV-05-11, Laboratoire Spécification et Vérification, 2005.

6. A. Bouhoula and F. Jacquemard. Tree Automata, Implicit Induction and Explicit
Destructors for Security Protocol Verification. Research Report LSV-07-10, 2007.

7. A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Journal
of Automated Reasoning, 1995.

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

41

8. A. Bundy and G. Steel. Attacking group protocols by refuting incorrect inductive
conjectures. Journal of Automated Reasoning, vol. 36, numbers 1-2, pages 149-176.
January 2006.

9. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. http://www.grappa.

univ-lille3.fr/tata, 2002.

10. H. Comon and V. Cortier. Security properties: two agents are sufficient. Science
of Computer Programming 50(1-3), pages 51-71, Elsevier, 2004.

11. H. Comon-Lundh. Handbook of Automated Reasoning, chapter Inductionless In-
duction. Elsevier, 2001.

12. V. Cortier, J. Millen, and H. Rueß. Proving secrecy is easy enough. In Proc. 14th
IEEE Computer Security Foundations Workshop (CSFW’01), pages 97-110. IEEE
Comp. Soc. Press, 2001.

13. D. E. Denning and G. M. Sacco. Timestamps in Key Distribution Protocols. In
Communications of the ACM, 1981.

14. C. Lynch and C. Meadows. On the relative soundness of the free algebra model
for public key encryption. Electr. Notes Theor. Comput. Sci., 125(1):43–54, 2005.

15. L. C. Paulson. The inductive approach to verifying cryptographic protocol. Journal
of Computer Security, 6:85–128, 1998.

Appendix

A Normal form constrained tree grammar for Section 3

The constrained tree grammar GNF(RC) for the generation of constructor
normal forms contains the following sorted non terminals: xpair(x1, x2)y,
xenc(x, y)y, xaenc(x, y)y, xinv(v)y, xaenc(x, inv(y))y, xsent(xi, xa, xb, x)y, Name,
xx

Key
y , xx

Msg
y , xxListy , xxBooly , xxNaty and xxredy . We assume that Name is the initial

non-terminal of a regular tree grammar generating the constructor terms of sort
Name. The constrained production rules of GNF(RC) are (M represents below
any non-terminal of sort Msg):

xxNaty := 0
∣∣ s(xxNaty) xxListy := nil

∣∣ M :: xxListy xx
Key
y := K

∣∣ pub
(
Name

)
xenc(x, y)y := enc(M1,M2) xinv(y)y := inv(xx

Key
y)

xaenc(x, y)y := aenc(M1,M2) xaenc(x, inv(y))y := aenc(M, xinv(y)y)
xpair(x1, x2)y := pair(M1,M2) xxredy := fst

(
xpair(x1, x2)y

) ∣∣ snd
(

xpair(x1, x2)y
)

xsent(xi, xa, xb, x)y := sent(xxIdy , xxNamey , xxNamey ,M) xxredy := body
(

xsent(xi, xa, xb, x)y
)

xx
Msg
y := dec

(
xenc(x, y)y,M

) Jy 6≈MK xxredy := dec
(

xenc(x, y)y,M
) Jy ≈MK

xx
Msg
y := adec

(
xaenc(x, y1)y, xinv(y2)y

) Jy1 6≈ y2K xxredy := . . . Jy1 ≈ y2K
xx

Msg
y := adec

(
xaenc(x, inv(y))y,M

) Jy 6≈MK xxredy := . . . Jy ≈MK
The non terminal xxredy generates all RC-reducible ground constructor terms,
and the other n.t. generate all the ground constructor RC-normal forms.

FCS-ARSPA’07

42

B Shamir-Rivest-Adleman Three Pass Protocol

We consider the same signature as in Section 3 and also the same constructor
CTRSRC extended with the following commutativity-like rule for the encryption
operator:

aenc(aenc(x, k1), k2) = aenc(aenc(x, k2), k1) Jk1 > k2K (2)

The protocol runs between two users xa and xb in 3 pass, which are described
by the following 3 CCTRS rules of RD.

trace(s(n), y) = trace
(
n, sent(1, xa, xb, pair(xa, aenc(S, key(xa)))) :: y

)
Jxa, xb : Name, xa 6= xbK (RSA-A1)

Initially, the honest user xa sends to xb a message containing a secret value S
encrypted with its own public key pub(xa). The ciphertext is sent in a pair, along
with the identity of xa.

sent(x′a, xb, x) ∈ y = true⇒
trace(s(n), y) = trace

(
n, sent(2, xb, fst(x), aenc(snd(x), key(xb))) :: y

)
(RSA-B)

While reading a message x from x′a, xb is not able to decipher it and recover
S, because he does not know the private key of A. Instead, he sends an answer
obtained by encrypting again the message read with its public key key(xb). The
message sent by xb has hence the form: aenc

(
aenc(S, key(xa)), key(xb)

)
which,

by the rule (2) of RC is equivalent to aenc
(
aenc(S, key(xb)), key(xa)

)
.

sent(xa, xb, x) ∈ y = true, sent(x′b, xa, x) ∈ y = true⇒
trace(s(n), y) = trace

(
n, sent(3, xa, xb, adec(x, inv(key(xa)))) :: y

)
(RSA-A2)

After reading the message from xb, xa decrypts it with its private key
inv(key(xa)), and send the result aenc(S, key(xb)). Then, B is able to decipher
this message and recover S.

We consider the same rules of RD for ∈, trace and for the attacker (att-
init and att-anlz) as in Section 3. We assume moreover here that the language
generated by the non-terminal Init (initial knowledge of the attacker) contains
the private key inv(key(I)).

Like in Section 3, we construct the constrained tree grammar G by inter-
section of GNF(RC) with a regular tree grammar Bad . We consider again the
non-terminal Bsec which generate the set of lists containing the constant S (like
in Section 3) and another non-terminal BRSA

auth for authentication flaws, which
generates the lists containing a message of the form sent(1, A,B, . . .) followed
by a message sent(3, A,B, . . .), without a message of the form sent(2, B,A, . . .)

Verifying Regular Trace Properties of Security Protocols with Explicit Destructors and Implicit Induction

43

trace(11, nil) −−−−−−→
(RSA-A1)

trace
`
10, sent(1, A, B, pair(A, aenc(S, key(A)))) :: nil

´
−−−−−−→
(att-anlz)

trace
`
9, body(sent(1, A, B, pair(A, aenc(S, key(A))))) :: . . .

´
−−−→RC

trace
`
9, pair(A, aenc(S, key(A))) :: . . .

´
−−−−−−→
(att-anlz)

trace
`
8, fst(pair(A, aenc(S, key(A)))) :: . . .

´
−−−→RC

trace
`
8, aenc(S, key(A)) :: . . .

´
−−−−−→
(att-init)

trace
`
7, I :: aenc(S, key(A)) :: . . .

´
−−−−−−→
(att-anlz)

trace
`
6, key(I) :: I :: aenc(S, key(A)) :: . . .

´
−−−−−−→
(att-anlz)

trace
`
5, aenc(aenc(S, key(A)), key(I)) :: . . .

´
−−−→RC

trace
`
5, aenc(aenc(S, key(I)), key(A)) :: . . .

´
−−−−−−→
(att-anlz)

trace
`
4, sent(2, I, A, aenc(aenc(S, key(I)), key(A))) :: . . .

´
−−−−−−→
(RSA-A2)

trace
`
3, sent(3, A, B,

adec(aenc(aenc(S, key(I)), key(A)), inv(key(A)))) :: . . .
´

−−−→RC
trace

`
3, sent(3, A, B, aenc(S, key(I))) :: . . .

´
−−−−−−→
(att-anlz)

trace
`
2, body(sent(3, A, B, aenc(S, key(I)))) :: . . .

´
−−−→RC

trace
`
2, aenc(S, key(I)) :: . . .

´
−−−−−→
(att-init)

trace
`
1, inv(key(I)) :: aenc(S, key(I)) :: . . .

´
−−−−−−→
(att-anlz)

trace
`
0, adec(aenc(S, key(I)), inv(key(I))) :: . . .

´
−−−→RC

trace
`
0, S :: . . .

´
Figure 6: An attack on the secrecy of S for RSA protocol

in between. The conjectures are the same as in Section 3, (Cauth and Csec), with
BRSA

auth instead of BDS
auth in (Cauth).

Again, we show with our procedure that these conjectures are not joinable
inductive theorems ofR (by induction on traces), revealing known authentication
and secrecy flaws of the protocol.

Let us consider an instance of Conjecture (Csec) where y is replaced by nil
and n is replaced by 11. The reductions in Figure 3 shows that it is a counter
example and hence that the protocol has a secrecy flaw. The first part of the
reduction suggests also a counter-example for Conjecture (Cauth), demonstrating
an authentication flaw of the protocol.

FCS-ARSPA’07

44

Formal Analysis of Authentication in
Bluetooth Device Pairing

Richard Chang and Vitaly Shmatikov

The University of Texas at Austin

Abstract. Bluetooth is a popular standard for short-range wireless com-
munications. Bluetooth device pairing enables two mobile devices to au-
thenticate each other and establish a secure wireless connection.
We present a formal analysis of authentication properties of Bluetooth
device pairing. Using the ProVerif cryptographic protocol verifier, we first
analyze the standard device pairing protocol specified in the Bluetooth
Core Specification, which relies on short, low-entropy PINs for authenti-
cation. Our analysis confirms a previously known attack guessing attack.
We then analyze a recently proposed Simple Pairing protocol. Simple
Pairing involves Diffie-Hellman-based key establishment, in which au-
thentication relies on a human visual channel : owner(s) of the mobile
devices confirm the established keys by manually comparing the respec-
tive hash values of the parameters used to generate each key, as displayed
on the devices’ screens. This form of authentication presents an interest-
ing modeling challenge. We demonstrate how to formalize it in ProVerif.
Our analysis shows that authentication can fail when the same device is
involved in concurrent Simple Pairing sessions. We discuss the implica-
tions of this authentication failure for typical Bluetooth usage scenarios.
We then refine our model to incorporate session identifiers, and prove
that the authentication properties of Simple Pairing hold in the new
model.
Out-of-band human verification based on image- or audio-matching is
increasingly used for authentication of mobile devices. This study is
the first step towards automated analysis of formal models of human-
authenticated protocols.

1 Introduction

Bluetooth radios are becoming ubiquitous in mobile devices such as cell
phones, laptops, and even many modern cars. Over one billion Bluetooth-
enabled devices have been shipped to date [5]. These devices are often
used to store users’ private data. For example, a user may enjoy the con-
venience of being able to wirelessly transfer contact data between his or
her laptop and a mobile phone, but probably does not want that contact
data to be publicly available to all Bluetooth devices in range. The Blue-
tooth specification [4] supports the establishment of pairwise symmetric

Formal Analysis of Authentication in Bluetooth Device Pairing

45

keys to allow two devices to securely communicate with each other. The
process by which a pair of devices establishes the initial symmetric key
is called device pairing. The device pairing process comprises authentica-
tion, generation of the initialization key, and generation of the link key.

Our main contribution is a formal, tool-supported security analysis
of two Bluetooth device pairing protocols. The Simple Pairing protocol
presents an interesting challenge to formal verification methods because
it relies on out-of-band, human authentication (explained in more detail
below). Human-verifiable protocols based on image- or audio-matching
are becoming increasingly popular for mobile device authentication [12,
13, 7]. Although cryptographic security proofs have been manually derived
for similar protocols [9, 15], we view our work as the initial step in applying
formal methods to this class of protocols.

The first protocol we analyze is the device pairing protocol defined
by the Bluetooth Specification [4]. We will refer to this protocol as stan-
dard pairing. The second is a recently proposed protocol called Simple
Pairing [6]. Informally, the security properties we verify for both pairing
protocols are (1) key secrecy for the initialization key, and (2) authenti-
cation of session participants. Intuitively, our key secrecy property states
that upon successfully completing a device pairing between devices A and
B, the initialization key is known only to A and B. Our authentication
property states that, if A has completed a device pairing in which A be-
lieves that it has successfully paired with B, then it has indeed paired
with B (and vice versa). To support our analysis, we use ProVerif, an
automated verifier for cryptographic protocols [3].

As a warm-up exercise, intended to demonstrate the capabilities of for-
mal verification tools as applied to the security analysis of wireless proto-
cols, we use ProVerif to re-discover a known vulnerability in the standard
pairing protocol which allows an attacker to impersonate a Bluetooth de-
vice after eavesdropping on a successful pairing session. The attack is a
guessing attack against the low-entropy, human-memorable shared secret
which is used to generate the initialization key [8].

The main part of this paper is devoted to the analysis of the Simple
Pairing protocol, which was designed to rectify vulnerabilities caused by
the use of low-entropy secrets in the standard pairing protocol. For key
establishment, Simple Pairing uses plain, unauthenticated Diffie-Hellman
key exchange. Authentication relies on an interesting out-of-band mecha-
nism. Each device computes a short cryptographic hash of the established
key and displays it on the device’s screen. The two devices’ owner(s) vi-
sually compares the displayed values and manually confirms that they

FCS-ARSPA’07

46

match. In other words, authentication is done via key confirmation on a
secure human channel, i.e., a human “equality oracle.” In this paper, we
present the first formal model for this type of authentication amenable to
automated analysis. While there are other protocols in the literature that
employ similar human authentication mechanisms [12, 13], to the best of
our knowledge none of them have been formally analyzed.

When analyzing our model of human key confirmation, ProVerif was
unable to prove that the authentication conditions hold. Further manual
analysis revealed that the failure is due to an interaction between concur-
rent protocol sessions. Authentication requires that the keys established
by the two participants be equal in any successfully completed protocol
session. The hash value displayed by a Bluetooth device does not indicate
in which session of the protocol the underlying key was established. As
our formal analysis shows, even if the human “equality oracle” confirms
that two keys (or, more precisely, their hashes) are equal, these keys might
not have been established in the same session.

We emphasize that the specification of the Simple Pairing protocol
does not appear to allow any input from the user other than a confirma-
tion that two hash values are equal. In this sense, our symbolic model
is an appropriate abstraction of user interaction in Simple Pairing. At
the same time, the “attack” in the symbolic model is fundamentally con-
current, and only works if the same device is simultaneously engaged in
multiple Simple Pairing sessions. Many real Bluetooth implementations
can only conduct a single pairing session at any given time—even though
this is not required by the actual specification, which, by default, appears
to permit concurrent executions.

The failure of authentication in our formal model indicates the lack
of precision in the Simple Pairing specification. Either the specification
should rule out concurrent sessions outright, or it should explicitly re-
quire that the hash values presented to the user be accompanied by ses-
sion identifiers or other means of distinguishing the values established in
different sessions. We discuss this further in section 4.3. This may have
implications for other wireless protocols, which are secure when multiple
instances are executed sequentially, but insecure when they are executed
concurrently.

We modify our model to incorporate explicit session identifiers into the
equality tests, i.e., in the modified protocol the human oracle is asked to
verify not only that the key hashes match, but also that they correspond
to the same protocol session. ProVerif has been able to verify both key
secrecy and authentication in the modified protocol.

Formal Analysis of Authentication in Bluetooth Device Pairing

47

Organization of the paper. Section 2 gives a brief overview of ProVerif.
Section 3 describes standard Bluetooth device pairing and our analysis
thereof. Section 4 describes the new Simple Pairing protocol based on a
human visual channel, and our analysis. Conclusions are in section 5.

2 Analysis Methodology

For our formal verification of Bluetooth device pairing, we use ProVerif, a
cryptographic protocol verifier developed by Bruno Blanchet (see [2] for a
detailed overview of the syntax and semantics of ProVerif). ProVerif uses
a resolution-based solving algorithm which is sound, but not complete.
The general approach employed by ProVerif is as follows. The protocol
to be verified is specified in a process calculus, explained in more detail
below. Each protocol role is represented by a separate process. The com-
plete protocol is modeled by the parallel composition of an unbounded
number of copies of the individual protocol role processes.

ProVerif automatically translates these processes into a set of first-
order logic formulas (Horn clauses) which abstractly represent the proto-
col. The solving algorithm takes these clauses as input and determines the
set of facts that an attacker can learn from protocol executions. Properties
to be verified are modeled as derivability queries. For example, secrecy of
a key k can be modeled as a derivability query for the attacker’s knowl-
edge k : if ProVerif’s solving algorithm terminates and the set of attacker
knowledge does not include k, then k has been proved to be secret. Such
proofs are sound even with an unbounded number of sessions and without
an a priori bound on the structural size of messages sent by the attacker.

The process calculus used to specify protocols is an extension of
the π-calculus. Among the extensions are function symbols that model
cryptographic operations as symbolic “black boxes.” Messages are rep-
resented by abstract terms. Terms are names, variables, or constructor
applications. Constructors are functional symbols used to build terms.
For example, encryption is modeled by a constructor: given term m rep-
resenting a message, and term k representing a symmetric key, the term
encrypt(m, k) represents the encryption of m under k generated by the
application of the encrypt constructor. The process calculus also includes
destructors, which are functional symbols that manipulate terms. The de-
cryption destructor, decrypt, is modeled by the following reduction rule:
decrypt(encrypt(m, k), k)→ m. Other cryptographic primitives are mod-
eled symbolically in a very similar fashion. Communication is modeled by

FCS-ARSPA’07

48

named “channels,” and sending and receiving messages is modeled by
inputing and outputting terms over channels.

ProVerif uses the so called Dolev-Yao model of an attacker. The at-
tacker can eavesdrop or intercept any message sent over the network, com-
pute new messages, and send them to protocol participants. In ProVerif’s
formalism, the attacker’s knowledge is represented by a set of terms. Let
us call this set A. If a process P sends a term M over channel c, and
c ∈ A (i.e., the channel is public and readable by the attacker, modeled
symbolically by the fact that the attacker knows its name), then M is
added to A. The attacker can also apply constructors to elements of A,
generating new elements for A, and send elements of A over channels in
A.

After a protocol has been specified as a set of processes using the
process calculus described above, ProVerif automatically translates these
processes into a set of Horn clauses. Essentially, these Horn clauses repre-
sent the attacker’s potential knowledge from protocol executions as a set
of implications. A special predicate attacker(M) is used in these clauses
to represent the fact that an attacker knows the term M . Another predi-
cate mess(c,M) is used to represent the fact that a message M has been
sent by a process over the channel c. The ability of the attacker to receive
message M ′ from the network is represented by the following Horn clause:
mess(c,M ′) ∧ attacker(c)⇒ attacker(M ′), which basically encodes part
of the attacker model above. If a message is sent over a channel that the
attacker can read, then the attacker receives that message.

To see how constructors and destructors are translated into Horn
clauses, recall the encryption/decryption example above. The encrypt
constructor is translated into the following clause:

attacker(m) ∧ attacker(k)⇒ attacker(encrypt(m, k)).
The decrypt destructor is translated into the following clause:
attacker(decrypt(m, k)) ∧ attacker(k)⇒ attacker(m)
The solving algorithm employed by ProVerif applies resolution-based

theorem proving to this set of clauses to determine the derivability of facts
(not unlike logic programming in Prolog). Modeling and verifying basic
secrecy properties is relatively straightforward. If one wishes to verify that
a private symmetric key, ks, used in a protocol’s specification is secret, the
derivation query attacker(ks) is given as input to the solving algorithm.
The solving algorithm applies resolution with free selection to the set of
Horn clauses obtained by translating the process calculus specification.
If the algorithm terminates and the attacker’s knowledge set does not
include attacker(ks), then secrecy of ks is preserved by the protocol.

Formal Analysis of Authentication in Bluetooth Device Pairing

49

ProVerif supports verification of security properties other than basic
secrecy. Most of these properties are based on the notion of equivalence
between processes. For example, consider strong secrecy. Intuitively, a
value is strongly secret if the attacker cannot observe any difference be-
tween a process where this value is used, and an “ideal” process where a
completely different value (e.g., a fresh random nonce) is used in the same
position. (This definition of secrecy is similar in spirit to cryptographic
definitions of secrecy, which are based on real-or-random indistinguisha-
bility.) If, in fact, there is an observable difference between the real and
ideal processes—for example, some destructor application succeeds for
one and fails for the other—then a special “bad” fact is derivable. There-
fore, strong secrecy properties are modeled as derivability of this fact.
ProVerif also supports verification of weak secrecy (useful for reasoning
about low-entropy secrets, as we show in our model for standard pair-
ing) and the so called “correspondence assertions” (used for modeling
authentication, and also employed in our models).

While ProVerif’s solving algorithm is not guaranteed to terminate, if
it does terminate, the resulting proof is valid for an unbounded number
of sessions. Also, as our analysis of Simple Pairing shows, failure to prove
a protocol secure can be used to identify attack traces associated with
potential vulnerabilities.

3 Standard Pairing

This section presents the results of our analysis of the Bluetooth standard
pairing protocol. We provide an overview of the protocol, discuss the
interesting aspects of formal modeling, and present the results of our
ProVerif-based analysis, including the guessing attack found by ProVerif.

3.1 Overview of Standard Pairing

The standard pairing protocol aims to enable a pair of Bluetooth devices,
A and B, to generate a symmetric initialization key, Kinit, mutually au-
thenticate each other, and generate a link key. The link key that is gener-
ated during a standard pairing session is derived using the initialization
key. The protocol specification provides a number of ways for the link
key to be generated. One device’s unit key can be used as the link key
by sending it to the other device under encryption of the initialization
key, or each device can generate a random number, send this number un-
der encryption of the initialization key to the other device, after which

FCS-ARSPA’07

50

Initiating Device A

Generate random na

Kinit = e22(BD_ADDRA, PIN, na)

Generate random AU_RANDB

verify that
SRES1 = e1(Kinit, BD_ADDRA, AU_RANDB)

na

AU_RANDB

SRES1

Non-Initiating Device B

Kinit = e22(BD_ADDRA, PIN, na)

SRES1 = e1(Kinit, BD_ADDRA, AU_RANDB)

Generate random AU_RANDA
AU_RANDA

SRES2 = e1(Kinit, BD_ADDRB, AU_RANDA)

SRES2

verify that
SRES2 = e1(Kinit, BD_ADDRB, AU_RANDA)

Fig. 1. Sequence diagram for Bluetooth standard pairing

the pair of random numbers are used to generate the link key. In some
scenarios introduced in newer versions of the specification the link key is
generated before mutual authentication is performed, while in others the
link key is generated after mutual authentication is performed using the
initialization key. Each of these scenarios suffers from the same problem.
An offline guessing attack against the low-entropy secret used to generate
the initialization key allows an attacker to impersonate a Bluetooth de-
vice. We illustrate this attack using the simplest version, which matches
the paper [8] where this attack was first discovered.

The sequence diagram for this protocol appears in Figure 1. Initially,
both devices share a low-entropy, human-memorable secret value, PIN .
A and B also have access to the each other’s Bluetooth device addresses.
We call these addresses BD ADDRA and BD ADDRB for A and B, re-
spectively. The device that initiates the standard pairing session is called

Formal Analysis of Authentication in Bluetooth Device Pairing

51

the initiating device. Assume, without loss of generality, that A is the
initiating device. B is then the “non-initiating” device (this awkward ter-
minology is borrowed from the Bluetooth product literature).

A begins the protocol by generating a random nonce na and sending it
to B. Both devices then compute the initialization key Kinit as a function
of na, BD ADDRA, and PIN (we omit the details of the key generation
function, as it has been extensively studied—e.g., see [14, 11, 10]). A and
B then execute a two-way challenge-response for authentication. First, A
authenticates itself to B. B generates a new random value AU RANDB

and sends it to A. Upon receiving the new random value, A computes the
response as a function of Kinit, BD ADDRA, and AU RANDB. A sends
this value to B, which verifies the response. The process is repeated with
roles reversed to provide mutual authentication.

It is clear from the protocol specification that if an attacker knows the
shared PIN value, then both secrecy and authentication will be violated.
Key secrecy is violated because all of the parameters used to compute
Kinit are known to the attacker. Additionally, to successfully impersonate
a device it is sufficient to know Kinit and the device’s (public) Bluetooth
address.

3.2 Analysis of Standard Pairing

As described in section 3.1, breaking secrecy of PIN is sufficient to vio-
late both secrecy and authentication of standard pairing. Therefore, our
analysis focuses on secrecy of PIN .

Modeling secrecy of PIN is fairly subtle. In the standard pairing
protocol, PIN is intended to be human-memorable, and therefore has
low entropy. In practice, 4-digit PINs are used. The main property of
low-entropy secrets that we need to model is that they are guessable.
If an attacker is able to guess a PIN value and verify his or her guess
offline, this could constitute a real attack because exhaustively attempting
to verify all 4-digit numbers is computationally feasible.

ProVerif supports reasoning about guessing attacks [3]. Modeling this
requires declaring term t in question as a weaksecret. While executing its
solving algorithm, ProVerif attempts to prove an observational equiva-
lence between the attacker’s knowledge given a correctly guessed value
for t and the attacker’s knowledge given a fresh value. Intuitively, should
be no observable difference between a process in which the guessed se-
cret is used, and a process in which a different value is used instead. If
observational equivalence holds, then there is no guessing attack. In our

FCS-ARSPA’07

52

ProVerif model for standard pairing, however, observational equivalence
fails.

Msg 1. A → B : na

Msg 2. B → A : AU RANDB

Msg 3. A → B : e1(e22(BD ADDRA, P IN, na), BD ADDRA, AU RANDB)

Fig. 2. Standard Paring Guessing Attack Messages

The attack found by ProVerif is essentially the same offline guessing
attack as described in [8]. Figure 2 shows a transcript of messages that an
attacker can use to perform a guessing attack on the shared secret PIN
value. An attacker can eavesdrop on a successful standard pairing session
between A and B and use these three messages to verify a guessed PIN
value offline. Verification works as follows. First, the attacker guesses a
value for PIN , say, PINg. Then the attacker tries to recompute the third
message using PINg. In order to compute this message, he or she must
know BD ADDRA, na, and AU RANDB. BD ADDRA is A’s Bluetooth
address, which is public. The values of na and AU RANDB are learned
by the attacker from the first and second messages, respectively. To verify
whether his guess PINg is correct, the attacker uses these values to com-
pute e1(e22(BD ADDRA, P INg, na), BD ADDRA, AU RANDB) and com-
pares the result to the third message.

4 Simple Pairing

This section presents of the results of our analysis of the Simple Pairing
protocol. We give an overview of the protocol, discuss the authentication
scheme used in Simple Pairing, and present the results of our ProVerif-
based analysis.

The most interesting aspect of our analysis is our formal model of
the “human visual channel,” which is essentially a secure equality ora-
cle which enables two Bluetooth devices (or, more precisely, their human
owner) to test the established keys for equality. Because equality testing
is based on the visual comparison of two numbers, a network attacker
cannot interfere with it. Intuitively, a visual channel provides a secure
“ideal functionality” for comparing two values for equality. This ideal
functionality is then leveraged into complete authentication of the key
establishment protocol. Similar mechanisms are used for device authen-
tication in other protocols [12, 13].

Formal Analysis of Authentication in Bluetooth Device Pairing

53

Initiating Device A

Generate random na Generate random nb

cb= f1(PKb,PKa, nb, 0)

verify that cb= f1(PKb,PKa, nb, 0)
else abort

va= g(PKa,PKb,na,nb) vb= g(PKa,PKb,na,nb)

PKa

PKb

cb
na

nb

User verifies va= vb

Non-Initiating Device B

Fig. 3. Sequence diagram for Bluetooth Simple Pairing

4.1 Overview of Simple Pairing

One of the goals of the Simple Pairing protocol is shared with standard
pairing: to enable a pair of Bluetooth devices, A and B, to authenticate
each other and generate a symmetric initialization key Kinit. The differ-
ences are as follows. First, Simple Pairing has several distinct association
models based on the device’s hardware capabilities. Second, under most
of these association models Simple Pairing does not use any shared secrets
at all, let alone low-entropy PINs. The protocol we analyze in this pa-
per uses the Numeric Comparison association model [6]. This association
model is designed for pairing Bluetooth devices that have displays, such
as a cell phone and a laptop. Authentication involves a human oracle:
the user is asked to examine the screens of both devices and confirm that
they display the same number.

As before, assume that A is the initiating device. First, A and B ex-
change Elliptic Curve Diffie-Hellman public values PKA and PKB. Then
A and B generate random values na and nb, respectively. B computes a
commitment value cb which is a collision-resistant function of both Diffie-
Hellman values and nb, and sends cb to A. A sends na to B. B sends

FCS-ARSPA’07

54

its nonce nb to A. A re-computes the commitment value cb and checks
whether it is equal to the commitment value previously received from B.
Note that there is no authentication so far, i.e., an attacker who controls
the communication medium can easily substitute different values into A’s
and B’s messages.

To verify that the parties’ views of the conversation match, each device
computes a cryptographic hash H(PKA, PKB, na, nb) of the two Diffie-
Hellman public values PKA and PKB, and the two nonces na and nb. The
hash value is truncated to a 6 decimal digits, which are displayed on the
device’s screen. The user is asked to check whether the numbers displayed
on the two screens are equal. If the user confirms equality, the devices are
considered authenticated, and the symmetric key Kinit is derived from
the joint Diffie-Hellman value and the nonces in the usual way.

4.2 Analysis of Simple Pairing

Our formal model of the Simple Pairing protocol includes a model of
the human equality oracle. We formalize it as a special process with two
private channels which the attacker cannot read or write. Privacy of the
channels between the devices and the equality testing process is very
important: it models the fact that the user is looking directly at the screen
of the Bluetooth device, and the network-based attacker cannot force him
to see a number which is different from what the device is displaying.
The oracle process reads a value from each channel and outputs a special
constant on each channel if the values are equal.

To model secrecy of each device’s key, we use standard secrecy in
ProVerif, as opposed to weak secrecy. Secrecy of the key values is handled
as a derivation query, as mentioned previously.

Modeling authentication is more interesting, and requires correspon-
dence assertions. In [1], the ProVerif process calculus is extended to allow
processes to emit special begin and end events that are parameterized
by protocol terms. To express authentication of A to B, we modify B’s
process so that it emits an end(B) event upon successful completion of
a Simple Pairing session, modeling the fact that B has completed a Sim-
ple Pairing session. Similarly, A’s process is modified to emit a begin(B)
event immediately after public keys are exchanged, modeling the fact that
A has started a simple pairing session in which it believes it is pairing
with B.

Authentication properties can be expressed as an implication of the
following form: if end(B) is output, then begin(B) is output. ProVerif
supports two types of implication properties, injective and non-injective.

Formal Analysis of Authentication in Bluetooth Device Pairing

55

The non-injective version of this property says that if end(B) is out-
put, then at least one begin(B) event is output. The injective version is
stronger and says that for every end(B) event, there should be a matching
begin(B) event.

In our analysis, we model both the injective and non-injective versions
of two types of authentication properties, which we call weak and strong
authentication. Weak authentication is modeled by the implication con-
ditions in which the begin and end events are parameterized only by the
participants’ identities. If weak authentication holds, then each partici-
pant is not mistaken about the identity of the other participant in the
protocol, but other session parameters do not necessarily match. Strong
authentication, on the other hand, is modeled by the implication condi-
tions in which the events are parameterized by all data values used in
computing the challenge-response values.

We consider all four types of authentication properties for both A-to-
B and B-to-A authentication, modeled modeled as eight correspondence
assertion queries. The results of running the ProVerif tool on our Simple
Pairing model to check these properties appear in Table 1.

Table 1. Simple Pairing Authentication Properties

Property Result

A-to-B Injective Weak Authentication FAILS

B-to-A Injective Weak Authentication FAILS

A-to-B Non-Injective Weak Authentication HOLDS

B-to-A Non-Injective Weak Authentication HOLDS

A-to-B Injective Strong Authentication FAILS

B-to-A Injective Strong Authentication FAILS

A-to-B Non-Injective Strong Authentication FAILS

B-to-A Non-Injective Strong Authentication FAILS

In our Simple Pairing model, the non-injective weak authentication
properties were proved by ProVerif, but all other authentication proper-
ties failed, including injective weak authentication and all strong authen-
tication properties. Manually examination of ProVerif’s output reveals
that the violating derivations involve concurrent execution of multiple
Simple Pairing sessions between A and B, and correspond to the situa-
tion where the human user’s key confirmation is interpreted as successful
authentication in a different protocol session.

FCS-ARSPA’07

56

An example of a protocol trace which violates all four strong authenti-
cation properties appears in Figure 4. This trace contains messages from
two concurrent sessions in which A and B attempt to pair. O represents
the equality oracle in our model. Events used by ProVerif to handle cor-
respondence assertions also appear in the trace. They do not correspond
to actual messages sent in the protocol; we show them to aid the reader
in understanding how the properties are violated.

The first part of the trace consists of messages 1 through 7, in which A
initiates a Simple Pairing session with B. This session pauses execution
immediately after both A and B send their hashes, va and vb respec-
tively, to O. Because this is an uncorrupted session, these values will be
the same, and the oracle will eventually return ok to both devices. Mes-
sages 1’ through 7’ represent a different session, running concurrently,
where again A initiates a Simple Pairing Session with B. In this session,
message 4’ is actually a corrupted message from an attacker impersonat-
ing A, represented by I(A). Instead of receiving A’s real nonce for this
session, n′

a, B receives ni. Because A and B’s view of A’s nonce in the
second session differs, the pairing should fail in this session. Specifically,
the hashes generated for the human verification step will differ; the keys
generated for this session will not agree; and therefore, O should not re-
turn ok to A and B. Messages 6’ and 7’ consist of A and B sending their
hashes to O for equality verification. At this point in the execution of both
sessions, all participants are expecting to receive a reply from O over their
respective private channels. Messages 8 and 9 represents a pair of equality
confirmation messages to A and B from the first session. In this trace,
both instances of A receive message 8 from O and output end events cor-
responding to a successful Simple Pairing session completion. Similarly,
both instances of B receive message 9 from O and output the appropriate
end events. The strong authentication correspondence assertions for the
second session are violated by this trace. At the end of this transcript, the
event endBconfirm(PKa, PKb, ni, n

′
b) appears but there is no correspond-

ing beginBconfirm(PKa, PKb, ni, n
′
b) message. This represents a viola-

tion of both the injective and non-injective versions of B-to-A strong au-
thentication. A similar unmatched endAconfirm(PKa, PKb, n

′
a, n

′
b) event

from the second session appears in the transcript which violates both ver-
sions of A-to-B strong authentication.

4.3 Interpreting the Results of Formal Analysis

What do the results of our formal analysis imply about the security of
Bluetooth Simple Pairing, as deployed on real-world mobile devices?

Formal Analysis of Authentication in Bluetooth Device Pairing

57

Msg 1. A → B : PKa

event beginAparam(PKa).
Msg 2. B → A : PKb

event beginBparam(PKb).
Msg 3. B → A : f1(PKb, PKa, nb, 0)
Msg 4. A → B : na

event beginAconfirm(PKa, PKb, na, nb).
Msg 5. B → A : nb

event beginBconfirm(PKa, PKb, na, nb).
Msg 6. A → O : va

Msg 7. B → O : vb

Msg 1’. A → B : PKa

event beginAparam(PKa).
Msg 2’. B → A : PKb

event beginBparam(PKb).
Msg 3’. B → A : f1(PKb, PKa, n′b, 0)
Msg 4’. I(A) → B : ni

event beginAconfirm(PKa, PKb, ni, n
′
b).

Msg 5’. B → A : n′b
event beginBconfirm(PKa, PKb, n

′
a, n′b).

Msg 6’. A → O : v′a
Msg 7’. B → O : vi

Msg 8. O → A : ok
event endAparam(PKa).
event endAparam(PKa).
event endAconfirm(PKa, PKb, na, nb).
event endAconfirm(PKa, PKb, n

′
a, n′b).

Msg 9. O → B : ok
event endBparam(PKb).
event endBparam(PKb).
event endBconfirm(PKa, PKb, na, nb).
event endBconfirm(PKa, PKb, ni, n

′
b).

Fig. 4. Simple Paring trace in which strong authentication is violated

Formal verification has been very successful in analyzing (and discov-
ering bugs in) a broad class of network protocols such as SSL/TLS and
IKE, which are intended to operate in Internet-like environments, where
concurrent execution of multiple instances of the same protocol is a fact
of life (e.g., a single Web server may be carrying out hundreds of concur-
rent TLS sessions). Therefore, protocol analysis tools such as ProVerif are
designed to prove that secrecy and authentication hold for an unbounded
number of concurrent and sequential sessions. In ProVerif, this is modeled
by allowing unbounded replication of the authenticating processes.

This strong notion of security is certainly appropriate for Internet
security protocols. Bluetooth, on the other hand, is designed for more

FCS-ARSPA’07

58

constrained environments. In particular, it is not clear whether any Blue-
tooth device ever has the need to carry out concurrent pairing sessions,
or is even capable of doing it. The Simple Pairing white paper does not
address concurrent executions at all, nor does it forbid the same device
from being engaged in concurrent sessions.

The failure of authentication discovered by ProVerif and illustrated
by the trace in Figure 4 represents a genuine attack when the same device
is engaged in concurrent sessions. In this scenario, the number displayed
on the screen for human verification may not have been computed in the
session which the user is trying to authenticate.

Effectively, our analysis shows that if the same device is allowed to
execute multiple concurrent instances of Simple Pairing, then its user
interaction component must associate session identifiers with the hash
values it displays to the user (and thus deviate from the Simple Pair-
ing specification). If concurrent executions are not permitted, then this
restriction should be clearly spelled out in the protocol specification. Oth-
erwise, Simple Pairing or a similar protocol may end up being deployed
in a setting where concurrent executions are a possibility, e.g., when the
same mobile phone is trying to pair simultaneously with a music player
and a laptop.

One may argue that no “reasonable” implementation would support
concurrent sessions without giving the user a means of distinguishing hash
values produced in different sessions. This may or may not be true, since
such an implementation would not be compliant with the current Simple
Pairing specification, in which user interaction is limited to displaying two
values and asking whether they are equal. It is hard to guess, let alone
analyze formally, under what circumstances a “reasonable” implementor
might deviate from the protocol specification. It is better to explicitly
include all restrictions in the specification.

Normally user interaction is not considered as part of the specification,
but in protocols where authentication relies on human input (e.g., all
protocols authenticated via short authenticated string), security depends
on correctness of user interaction, that is, representing the right state of
the right instance of the protocol to the user. Our analysis points out not
so much an inherent flaw of Simple Pairing, but how important it is that
the user interaction piece of the system match the underlying protocol
precisely.

Formal Analysis of Authentication in Bluetooth Device Pairing

59

4.4 Fixing the Simple Pairing Protocol

The vulnerability discovered in our model involves the human user’s key
confirmation from one session being interpreted as successful authenti-
cation in a different session. Therefore, we propose a minor modification
to the Simple Pairing protocol, in which session identifiers are included
in the messages to and from the human oracle. These identifiers allow
each “instance” of a device in a given session to correctly identify which
confirmation messages correspond to its session.

We built a process calculus model for the modified Simple Pairing
protocol, in which each instance of the same device (i.e., when the same
device is participating in multiple instances of the protocol) is assigned a
unique session identifier. We also added a check to ensure that each session
instance only accepts human oracle responses associated this instance’s
session identifier. Therefore, there is no possibility that an instance ac-
cepts an oracle response intended for a different instance (recall that the
channel between the human oracle and the instance is the device’s physi-
cal interface, presumed to be secure). In the new model, ProVerif was able
to prove both the injective and non-injective versions of weak and strong
authentication, even in the case of an unbounded number of concurrent
sessions.

5 Conclusions

We have presented an automated, tool-supported analysis of two Blue-
tooth authentication protocols—one based on low-entropy PINs, the other
based on human verification of equality. For the standard protocol, our
analysis confirms a previously known guessing attack. For the new Simple
Pairing protocol, we discover a potential vulnerability caused concurrent
executions of authentication, and show how to fix the problem by adding
explicit session identifiers to the protocol.

From the verification perspective, our main contribution is a formal
model for a non-standard form of authentication, which is based not on
cryptography, but on access to a “human oracle” who visually checks
whether the key confirmation values derived by the two devices match.
This is an increasingly popular device authentication technique [12, 13].
We expect that our work will serve as the first step towards richer formal
models of human authentication.

An interesting topic for future work is to develop a proper crypto-
graphic (rather than symbolic) proof of security for Simple Pairing. In

FCS-ARSPA’07

60

such a proof, human oracles can be modeled as a secure ideal functional-
ity for equality testing, and the protocol can be proved secure relative to
this functionality.

References

1. B. Blanchet. From secrecy to authenticity in security protocols. In Proc. SAS,
2002.

2. B. Blanchet. Automatic proof of strong secrecy for security protocols. In Proc.
IEEE S&P, 2004.

3. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiv-
alences for security protocols. In Proc. LICS, 2005.

4. Bluetooth Special Interest Group. Specification of the Bluetooth system. http://
www.bluetooth.com/NR/rdonlyres/1F6469BA-6AE7-42B6-B5A1-65148B9DB238/

840/Core v210 EDR.zip, 2004.
5. Bluetooth Special Interest Group. Bluetooth wireless technology surpasses one

billion devices. http://www.bluetooth.com/Bluetooth/Press/SIG/BLUETOOTH

WIRELESS TECHNOLOGY SURPASSES ONE BILLION DEVICES.htm, 2006.
6. Bluetooth Special Interest Group. Simple pairing whitepaper. http://www.

bluetooth.com/NR/rdonlyres/0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/

SimplePairing WP V10r00.pdf, 2006.
7. M. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Urzun. Human-verifiable

authentication based on audio. In Proc. ICDCS, 2006.
8. M. Jakobsson and S. Wetzel. Security weaknesses in Bluetooth. In Proc. CT-RSA,

2001.
9. S. Laur and K. Nyberg. Efficient mutual data authentication using manually

authenticated strings. In Proc. CANS, 2006.
10. O. Levy and A. Wool. A uniform framework for cryptanalysis of the Bluetooth E0

cipher. In Proc. SecureComm, 2005.
11. Y. Lu and S. Vaudenay. Cryptanalysis of Bluetooth keystream generator two-level

E0. In Proc. ASIACRYPT, 2004.
12. J. McCune, A. Perrig, and M. Reiter. Seeing-is-believing: Using camera phones

for human-verifiable authentication. In Proc. IEEE S&P, 2005.
13. N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing

based on a visual channel. In Proc. IEEE S&P, 2006.
14. J. Vainio. Bluetooth security. http://www.niksula.cs.hut.fi/∼jiitv/bluesec.

html, 2000.
15. S. Vaudenay. Secure communications over insecure channels based on short au-

thenticated strings. In Proc. CRYPTO, 2005.

Formal Analysis of Authentication in Bluetooth Device Pairing

61

FCS-ARSPA’07

62

Deciding knowledge in security protocols for
monoidal equational theories ?

Véronique Cortier and Stéphanie Delaune

LORIA, CNRS & INRIA project Cassis, Nancy, France

Abstract. In formal approaches, messages sent over a network are usu-
ally modeled by terms together with an equational theory, axiomatiz-
ing the properties of the cryptographic functions (encryption, exclusive
or, . . .). The analysis of cryptographic protocols requires a precise un-
derstanding of the attacker knowledge. Two standard notions are usually
used: deducibility and indistinguishability. Only few results have been
obtained (in an ad-hoc way) for equational theories with associative and
commutative properties, especially in the case of static equivalence. The
main contribution of this paper is to propose a general setting for solv-
ing deducibility and indistinguishability for an important class (called
monoidal) of these theories. Our setting relies on the correspondence be-
tween a monoidal theory E and a semiring SE which allows us to give
an algebraic characterization of the deducibility and indistinguishability
problems. As a consequence we recover easily existing decidability results
and obtain several new ones.

1 Introduction

Security protocols are paramount in today’s secure transactions through
public channels. It is therefore essential to obtain as much confidence as
possible in their correctness. Formal methods have proved their usefulness
for precisely analyzing the security of protocols. Understanding security
protocols often requires reasoning about knowledge of the attacker. In
formal approaches, two main kind of definitions have been given in the
literature for this knowledge. They are known as message deducibility
and indistinguishability relations.

Most often, the knowledge of the attacker is described in terms of
message deducibility [13, 16, 14]. Given some set of messages φ represent-
ing the knowledge of the attacker and another message M , intuitively the
secret, one can ask whether an attacker is able to compute M from φ. To
obtain such a message he uses his deduction capabilities. For instance, he
may encrypt and decrypt using keys that he knows.
? This work has been partly supported by the RNTL project POSÉ and the ARA

SSIA Formacrypt

Deciding knowledge in security protocols for monoidal equational theories

63

This concept of deducibility does not always suffice for expressing
the knowledge of an attacker. For example, if we consider a protocol
that transmits an encrypted Boolean value (e.g. the value of a vote), we
may ask whether an attacker can learn this value by eavesdropping the
protocol. Of course, it seems to be completely unrealistic to say that the
Boolean true and false are not deducible. We need to express the fact that
the two transcripts of the protocol, one running with the Boolean value
true and the other one with false are indistinguishable.

In both cases, deduction and indistinguishability apply to observa-
tions on messages at a particular point in time. They do not take into
account the dynamic behavior of the protocol. For this reason the in-
distinguishability relation is called static equivalence. Nevertheless those
relations are quite useful to reason about the dynamic behavior of a pro-
tocol. For instance, the deducibility relation is often used as a subroutine
of many decision procedures [17, 7, 8]. In the applied-pi calculus frame-
work [2], it has been shown that observational equivalence (relation which
takes into account the dynamic behavior) coincides with labeled bisimula-
tion which corresponds to checking static equivalences and some standard
bisimulation conditions.

Both of these relations rely on an underlying equational theory ax-
iomatizing the properties of the cryptographic functions (encryption, ex-
clusive or, . . .). Many decision procedures have been provided to decide
these relations under a variety of equational theories. For instance al-
gorithms for deduction are provided for exclusive or [8], homomorphic
operators [9] and subterm theories [1]. These theories allow basic equa-
tions for functions such as encryption, decryption and digital signature.
There are also results for static equivalence. For instance, a general de-
cidability result for the class of subterm convergent equational theories
is given in [1]. This class contains classical cryptographic primitives like
encryption, signatures and hashes. Also in [1] some abstract conditions on
the underlying equational theory are proposed to ensure decidability of
deduction and static equivalence. Note that the use of this result requires
checking some assumptions, which might be difficult to prove. Regard-
ing theories with associative and commutative properties (AC), they only
obtain decidability for pure AC and exclusive or. A weakness of most of
these approaches is their lack of generality since each new theory requires
a new proof. Homomorphic properties occur in many protocols, alone or
in combination with other operators, and cannot be dealt with by a simple
adaptation of the techniques that have been developed so far.

FCS-ARSPA’07

64

In this paper, we consider the axioms of Associativity-Commutativity
(AC), Unit element (U), Nilpotency (N), Idempotency (I), homomorphism
(h), and more especially the combinations of these axioms that constitute
monoidal theories. We propose a general approach to handle monoidal
theories that covers several cases already studied, and furthermore in-
cludes some new decidability and complexity results on homomorphic
operators. Monoidal theories have been extensively studied by F. Baader
and W. Nutt [15, 4, 5] who have provided a complete survey of unification
in these theories. More recently, these theories have been studied in the
context of security protocols. S. Delaune et al. have shown that deduction
is decidable for a subclass of monoidal equational theories, also consider-
ing active attacks [10]. However, they do not address static equivalence.

Studying monoidal theories might seem very restricted since they do
not contain the equational theories for classical operators like encryption
or signatures. However, it has been shown in [3] that equational theories
can easily be combined for both deduction and static equivalence, pro-
vided the signatures are disjoint. That is why it is sufficient to focus on
the important case of monoidal theories. As a consequence of our general
approach, we recover many existing results and we obtain several new
ones (10 new decidability or complexity results) for static equivalence or
deduction.

Outline of the paper. In Section 2 we recall some basic notation and the
central notion of monoidal theory. Then, in Section 3, we define the two
notions of knowledge we are interested in. In Section 4 we show how to
represent terms and substitutions by means of vectors and matrices over
semirings. Then Sections 5 and 6 are devoted to the study of deduction
and static equivalence respectively. In Section 7, we sum up our results
and provide new results obtained as a consequence of our main theorems.

2 Preliminaries

2.1 Terms

A signature Σ consists of a finite set of function symbols, each with an
arity. A function symbol with arity 0 is a constant symbol. We assume
given a signature Σ, an infinite set of names N , and an infinite set of vari-
ables X . LetM be a set of names and variables, we denote by T (Σ,M)
the set of terms over Σ ∪M. T (Σ,N) is called the set of ground terms
while T (Σ,N ∪ X) is simply called the set of terms. We write fn(M)
(resp. fv(M)) for the set of names (resp. variables) that occur in the

Deciding knowledge in security protocols for monoidal equational theories

65

term M . A substitution σ is a mapping from a finite subset of X called
its domain and written dom(σ) to T (Σ,N ∪ X). Substitutions are ex-
tended to endomorphisms of T (Σ,X) as usual. We use a postfix notation
for their application. Given two terms u and v, the replacement of u by v,
denoted by [u 7→ v], maps every term t to the term t[u 7→ v] which is
obtained by replacing all occurrences of u in t by v.

2.2 Monoidal theories

Equational theories are very useful for modeling the algebraic proper-
ties of the cryptographic primitives. Given a signature Σ, an equational
theory E is a set of equations (i.e. a set of unordered pairs of terms
in T (Σ,X)). Given two terms M and N such that M,N ∈ T (Σ,N ∪X),
we write M =E N if the equation M = N is a consequence of E. In this
paper, we are particularly interested in the class of monoidal theories in-
troduced by W. Nutt [15]. It captures many theories with AC properties,
which are known to be difficult to deal with.

Definition 1 (monoidal theory). A theory E over Σ is called monoidal
if it satisfies the following properties:

1. The signature Σ contains a binary function symbol + and a constant
symbol 0, and all other function symbols in Σ are unary.

2. The symbol + is associative-commutative with unit 0, i.e. the equations
x+ (y + z) = (x+ y) + z, x+ y = y + x and x+ 0 = x are in E.

3. Every unary function symbol h ∈ Σ is an endomorphism for + and 0,
i.e. h(x+ y) = h(x) + h(y) and h(0) = 0.

Example 1. Suppose + is a binary function symbol and 0 is nullary. More-
over assume that the others symbols, i.e −, h, are unary symbols. The
equational theories below are monoidal.

– The theory ACU over Σ = {+, 0} which consists of the axioms of
associativity and commutativity with unit 0.

– The theories ACUI and ACUN (exclusive or) over Σ = {+, 0} which
consist of the axioms (AC) and (U) with in addition Idempotency (I)
x+ x = x, or Nilpotency (N) x+ x = 0.

– The theory AG (Abelian groups) overΣ = {+,−, 0} which is generated
by the axioms (AC), (U) and x+−(x) = 0 (Inv). Indeed, the equations
−(x+ y) = −(x) +−(y) and −0 = 0 are consequences of the others.

– The theories ACUh, ACUIh, ACUNh over Σ = {+, h, 0} and AGh over
Σ = {+,−, h, 0}: these theories correspond to the ones described

FCS-ARSPA’07

66

above extended by the homomorphism laws (h) for the symbol h,
i.e. h(x+ y) = h(x) + h(y) and h(0) = 0 (if it is not a consequence of
the others equations).

Note that there are two homomorphisms in the theory AGh, namely −
and h. These two homomorphisms commute: h(−x) = −(h(x)) is a conse-
quence of the others. Other examples of monoidal theories can be found
in [15].

3 Deduction and static equivalence

We now describe our two notions of knowledge for an intruder.

3.1 Assembling terms into frames

At a particular point in time, while engaging in one or more sessions
of one or more protocols, an attacker may know a sequence of mes-
sages M1, . . . ,M`. This means that he knows each message but he also
knows in which order he obtained the messages. So it is not enough for
us to say that the attacker knows the set of terms {M1, . . . ,M`} since the
information about the order is lost. Furthermore, we should distinguish
those names that the attacker knows from those that were freshly gen-
erated by others and which are a priori secret from the attacker; both
kinds of names may appear in the terms. In the applied pi calculus [2],
such a sequence of messages is organized into a frame φ = νñ.σ, where ñ
is a finite set of restricted names (intuitively the fresh ones), and σ is a
substitution of the form:

{M1/x1 , . . . ,
M`/x`

} with dom(σ) = {x1, . . . , x`}.

The variables enable us to refer to each Mi and we always assume that the
terms Mi are ground. The names ñ are bound to φ and can be renamed.
Moreover names that do not appear in φ can be added or removed from ñ.
In particular, we can always assume that two frames share the same set
of restricted names.

3.2 Deduction

Given a frame φ that represents the information available to an attacker,
we may ask whether a given ground term M may be deduced from φ.

Deciding knowledge in security protocols for monoidal equational theories

67

Given a theory E over Σ, this relation is written φ `E M and is axioma-
tized by the rules:

if ∃x ∈ dom(σ) s.t. xσ = M
νñ.σ `E M

s ∈ N r ñ
νñ.σ `E s

φ `E M1 . . . φ `E M`
f ∈ Σ

φ `E f(M1, . . . ,M`)

φ `E M
M =E M

′
φ `E M

′

Intuitively, the deducible messages are the messages of φ and the names
that are not protected in φ, closed by equality in E and closed by appli-
cation of function symbols. Since the deducible messages depend on the
underlying equational theory, we write `E and simply ` when E is clear
from the context. When νñ.σ `E M , any occurrence of names from ñ inM
is bound by νñ. So νñ.σ `E M could be formally written νñ.(σ `E M). It
is easy to prove by induction the following characterization of deduction.

Lemma 1 (characterization of deduction). Let M be a ground term
and νñ.σ be a frame. Then νñ.σ `E M iff there exists ζ ∈ T (Σ,N ∪ X)
such that fn(ζ) ∩ ñ = ∅ and ζσ =E M . Such a term ζ is a recipe of the
term M .

Example 2. Consider Σ = {+, 0} and the equational theory ACUN given
in Example 1. Let φ = νn1, n2, n3.{n1+n2+n3/x1 ,

n1+n2/x2 ,
n2+n3/x3}. We

have that φ ` n2 + n4. Indeed the term x1 + x2 + x3 + n4 is a recipe of
the term n2 + n4.

Deduction problem for the equational theory E built over Σ.
Entries: A frame φ and a term M (both built over Σ)
Question: φ `E M?

3.3 Static equivalence

Deduction does not always suffice for expressing the knowledge of an at-
tacker. Sometimes, the attacker can deduce exactly the same set of terms
from two different frames but he could still be able to tell the difference
between these two frames. Static equivalence is particularly important
when defining for example the confidentiality of a vote or anonymity-like
properties.

Definition 2 (static equivalence). Let φ be a frame and M ,N be two
terms. We say that M and N are equal in φ under the theory E, and

FCS-ARSPA’07

68

write (M =E N)φ, if there exists ñ such that (fn(M) ∪ fn(N)) ∩ ñ = ∅,
φ = νñ.σ and Mσ =E Nσ. We say that two frames φ1 = νñ.σ1 and
φ2 = νñ.σ2 are statically equivalent w.r.t. E, and write φ1 ≈E φ2 when
dom(φ1) = dom(φ2), and

∀M,N ∈ T (Σ,N ∪ X) we have that (M =E N)φ1 ⇔ (M =E N)φ2.

Example 3. Consider the equational theory ACU given in Example 1 and
let φ = νn1, n2, n3.{3n1+2n2+3n3/x1 ,

n2+3n3/x2 ,
3n2+n3/x3 ,

3n1+n2+4n3/x4}
where the notation kn with k ∈ N denotes n+ · · ·+ n (k times). Let
M = 2x1 + x2 and N = x3 + 2x4. We have that (M =E N)φ.

Static equivalence problem for the theory E built over Σ.
Entries: Two frames φ1 and φ2 (both built over Σ)
Question: φ1 ≈E φ2?

In what follows, we consider decidability and complexity issues for
deduction and static equivalence for monoidal theories.

4 Monoidal theories

It has been shown that the deduction problem for ACU amounts to solv-
ing linear equations over the semiring N whereas for AGh this problem
amounts to solving linear equations over the ring Z[h], the ring of poly-
nomials in one indeterminate with coefficients over Z [9]. Some results of
this kind also exist in the case of static equivalence. For instance, static
equivalence has been shown decidable for the equational theories ACUN
and AC [1]. By using an algebraic characterization of the problem, we
will generalize these results by associating to every monoidal theory E
a semiring SE, that will be used to solve the deduction and the static
equivalence problems in E.

4.1 Monoidal theories define semirings

Monoidal theories have an algebraic structure close to rings except that
elements might not have an inverse. Such a structure is called semiring.

Definition 3 (semiring). A semiring is a set S (called the universe of
the semiring) with distinct elements 0 and 1 that is equipped with two
binary operations + and · such that (S,+, 0) is a commutative monoid,
(S, ·, 1) is a monoid, and the following identities hold for all α, β, γ ∈ S:
– (α+ β) · γ = α · γ + β · γ (right distributivity)

Deciding knowledge in security protocols for monoidal equational theories

69

– α · (β + γ) = α · β + α · γ (left distributivity)
– 0 · α = α · 0 = 0 (zero laws).

We call the binary operations + and · respectively the addition and
the multiplication of the semiring. The elements 0 and 1 are called re-
spectively zero and unit. In the sequel we will often omit the · sign and
write αβ instead of α · β. A semiring is commutative if its multiplication
is commutative. Semirings are different from rings in that they need not
be groups with respect to addition. Every ring is a semiring. In a ring,
we will denote by −α the additive inverse of α, and we write α− β as an
abbreviation of α+ (−β).

It has been shown in [15] that for any monoidal theory E there exists
a corresponding semiring SE. We can rephrase the definition of SE as fol-
lows. Let 1 be a free constant (1 6∈ Σ), the universe of SE is T (Σ, {1})/E,
that is the set of equivalence classes of terms built over Σ and 1 under
equivalence by the equational axioms E. The constant 0 and the sum + of
the semiring are defined as in the algebra T (Σ, {1})/E. The multiplication
in the semiring is defined by s · t := s[1 7→ t]. As a consequence, 1 acts as
a neutral element of multiplication in SE. This is the reason why we call
this new generator 1 instead of, say, x, as it is often done in the literature.
It can be shown [15] that SE is a ring if, and only if, E is a group theory,
and also that SE is commutative if, and only if, E has commuting homo-
morphisms, i.e. h1(h2(x)) =E h2(h1(x)) for any two homomorphisms h1

and h2. For instance, we have that

1. The semiring SACU is isomorphic to N, the semiring of natural num-
bers.

2. The semiring SACUN consists of the two elements 0 and 1 and we have
0 + 1 = 1 + 0 = 1, 0 + 0 = 1 + 1 = 0, 0 · 0 = 1 · 0 = 0 · 1 = 0,
and 1 · 1 = 1. Hence, SACUN is isomorphic to the commutative ring
(field) Z/2Z.

3. The semiring SAGh is isomorphic to Z[h] which is a commutative ring.

Let b be a free symbol (name or variable). We denote by ψb : T (Σ, {b})→ SE

the function which maps any term M ∈ T (Σ, {b}) to M [b 7→ 1] consid-
ered as an element of the semiring SE.

Example 4. Let E = ACUN and t = b+b+b. We have ψb(t) = 1+1+1 = 1.

4.2 Representation of terms and frames

A base B is a sequence [b1, . . . , bm] of free symbols (names or variables),
We say that B is a base of names when b1, . . . , bm are names.

FCS-ARSPA’07

70

Definition 4 (decomposable in a base). A term M ∈ T (Σ,N ∪X) is
decomposable in B if fn(M) ∪ fv(M) ⊆ B. Let φ = νñ.{M1/x1 , . . . ,

M`/x`
}

be a frame. We say that φ is decomposable in B if each Mi is decompos-
able in B.

Let B = [b1, . . . , bm]. We generalize the construction of the previous sec-
tion and obtain a function which assigns to any term in T (Σ,B) a tuple
in SmE , that is a tuple of m elements over SE. The function ψB of domain
T (Σ, {b1, . . . , bm}) is defined as follows: Any termM ∈ T (Σ, {b1, . . . , bm})
has a unique decomposition M1, . . . ,Mm such that M = M1 + . . .+Mm

with Mi ∈ T (Σ, {bi}) [15]. Let ψB(M) = (ψb1(M1), . . . , ψbm(Mm)) ∈ SmE .
Given a vector X ∈ SmE of size m, ψ−1

B (X) is a term M ∈ T (Σ,B) such
that ψB(M) = X. This term is uniquely defined modulo E.

Example 5. Taking into account that the semiring SAGh is (isomorphic
to) Z[h], we have ψ[b1,b2,b3](b1 + b1 + h(b3) + h(h(h(b3)))) = (2, 0, h + h3).
Indeed, we have that ψb1(b1 + b1) = 2, ψb2(0) = 0 and ψb3(h(b3) +
h(h(h(b3)))) = h + h3.

A term can be uniquely decomposed on a base B. This can be extended
to associate a (unique) matrix to a frame. Let φ = νñ.σ be a frame
and B = [b1, . . . , bm] be a base of names in which φ is decomposable. Let
σ = {M1/x1 . . .

M`/x`
}. We denote by ψB(φ) the matrix of size ` ×m (`

rows and m columns) defined by (ψB(M1); . . . ;ψB(M`)). This matrix is
the decomposition of φ in B.

Example 6. Consider the frame φ given in Example 3 and consider the
base B = [n1, n2, n3]. We have that

ψB(φ) =


3 2 3
0 1 3
0 3 1
3 1 4

 since

– ψB(3n1 + 2n2 + 3n3) = (3, 2, 3),
– ψB(n2 + 3n3) = (0, 1, 3),
– ψB(3n2 + n3) = (0, 3, 1), and
– ψB(3n1 + n2 + 4n3) = (3, 1, 4).

Applying a recipe to a frame is equivalent to multiplying the correspond-
ing matrices.

Lemma 2. Let φ = νñ.σ be a frame and ζ be a term in T (Σ, dom(φ)).
Let B be a base of names in which we can decompose φ. We have that

ψB(ζσ) = ψdom(φ)(ζ) · ψB(φ).

Deciding knowledge in security protocols for monoidal equational theories

71

Proof. Let σ = {M1/x1 , . . . ,
M`/x`

} and ζ be a term in T (Σ, dom(φ)). We
have that ζ = ζ1 + . . .+ ζ` for some ζi ∈ T (Σ, {xi}).

ψB(ζσ) = ψB(ζ1σ + . . .+ ζ`σ)
= ψB(ζ1[x1 7→M1] + . . .+ ζ`[x` 7→M`])
= ψB(ζ1[x1 7→M1]) + . . .+ ψB(ζ`[x` 7→M`])
= ψx1(ζ1) · ψB(M1) + . . .+ ψx`

(ζ`) · ψB(M`)
= ψdom(φ)(ζ) · ψB(φ) �

Note that to apply the equation stated in Lemma 2, the recipe ζ has to
be built without names. To ensure that such kind of recipes always exist,
we will work with frames saturated w.r.t. B (base of names in which the
frames are decomposable).

Definition 5 (frame saturated w.r.t. B). Let φ = νñ.σ be a frame
and B be a base of names [b1, . . . , bm] in which φ is decomposable. We say
that φ is saturated w.r.t. B if for each bi ∈ B such that bi 6∈ ñ we have
that bi = xσ for some x ∈ dom(φ).

Given a frame φ = νñ.{M1/x1 , ..,
M`/x`

} and a base of names B = [b1, .., bk]
in which φ is decomposable, we denote by φB the frame defined as follows:

φ
B = νñ.{M1/x1 , . . . ,

M`/x`
, bi1/y1 , . . . ,

bip/yp}
where bi1 , . . . , bip is a subsequence of B such that bij 6∈ ñ and bij 6=
xσ for every x ∈ dom(φ). The variables y1, . . . yp are fresh, which means
that they do not appear in dom(φ). Note that the resulting frame φB is
saturated w.r.t. B.

Example 7. Let φ be the frame given in Example 3. Let B = [n1, n2, n3].
We have that φ is decomposable on B and also that φ is saturated w.r.t. B.
However, note that φ is not saturated w.r.t. B′ = [n1, n2, n3, n4]. We have
φ
B′

= νñ.{3n1+2n2+3n3/x1 ,
n2+3n3/x2 ,

3n2+n3/x3 ,
3n1+n2+4n3/x4 ,

n4/y1} where
the sequence ñ denotes n1, n2, n3.

5 Deduction

We show that solving a deduction problem can be reduced to solving a
linear system of equations in the corresponding semiring.

Theorem 1. Let E be a monoidal theory and SE be its associated semir-
ing. Deduction in E is reducible in polynomial time to the following prob-
lem:
Entries: A matrix A over SE of size `×m and a vector b over SE of size `
Question: Does there exists X (element of S`E) such that X ·A = b?

FCS-ARSPA’07

72

Note that when SE is commutative, this problem is equivalent to the
problem of deciding whether AT · Y = bT, i.e whether bT is in the im-
age of AT where MT is the transpose of M . Before proving the reduc-
tion we need to establish that we can restrict our attention to saturated
frames. Moreover, for such frames, it is sufficient to consider recipes with-
out names, i.e. such that fn(ζ) = ∅.
Lemma 3. Let φ = νñ.σ be a frame and M be a ground term. Let B
be a base of names in which φ and M are decomposable. We have that
φ `E M if and only if φB `E M . Moreover when φ

B `E M there exists a
recipe ζ of M such that fn(ζ) = ∅.
Proof. Intuitively, the first point is due to the fact that we extend φ with
some names which are deducible from φ. Hence, in term of deducible
power φ and φB are equivalent. More formally, if φ `E M , we can assume
that there exists ζ such that fn(ζ) ⊆ B r ñ and fv(ζ) ⊆ dom(φ). From
such a ζ it is easy to compute ζ ′ by replacing any occurrence of a name
in B r ñ by the corresponding variable in dom(φB) which refers to this
name. Note that since, we can always assume that fn(ζ) ⊆ B r ñ, we
have that fn(ζ ′) = ∅. The reverse transformation, i.e. the replacement
of variables in dom(φB) r dom(φ) by names refereed by these variables
in φB, allows us to conclude for the converse. �

Reduction. Let φ = νñ.σ be a frame and M be a ground term. Let B be a
base of names in which φ and M are decomposable. We will also assume
w.l.o.g. that φ is saturated w.r.t. B. Let A = ψB(φ), matrix of size `×m
over SE, and b = ψB(M), vector of size m over SE.

Proof. (of Theorem 1) The construction described above is such that
X ·A = b has a solution over SE if and only if φ `E M .
(⇒) We know that there exists X ∈ S`E such that X ·A = b. Consider the
recipe ζ = ψ−1

dom(φ)(X). By construction, we have that fn(ζ) ∩ ñ = ∅. It re-
mains to show that ζσ =E M . For this, we establish that ψB(ζσ) = ψB(M).
Thanks to Lemma 2, we have that ψB(ζσ) = ψdom(φ)(ζ) · ψB(φ). Hence
we deduce that ψB(ζσ) = X ·A = b = ψB(M). Hence the result.
(⇐) Assume that φ `E M . Thanks to Lemma 3 and by the fact that φ is
saturated w.r.t. B, we know that there exists ζ ∈ T (Σ, dom(φ)) such that
ζσ =E M . Let Y = ψdom(φ)(ζ). It remains to establish that Y · A = b.
Since ζσ =E M , we have ψB(ζσ) = ψB(M). By Lemma 2, we have
ψdom(φ)(ζ) · ψB(φ) = ψB(M), i.e. Y · A = b witnessing the fact that
X ·A = b has a solution over SE. �

Deciding knowledge in security protocols for monoidal equational theories

73

Example 8. Consider the theory ACUNh and the term M = n1+h(h(n1)).
Let φ = νn1, n2.{n1+h(n1)+h(h(n1))/x1 ,

n2+h(h(n1))/x2 ,
h(n2)+h(h(n1))/x3}. We

have that:

A =
(

1 + h + h2 h2 h2

0 1 h

)
and b =

(
1 + h2

0

)
The equation X · A = b has a solution over Z/2Z[h] : (1 + h, h, 1). The
term M is deducible from φ by using the recipe x1 + h(x1) + h(x2) + x3.

As a consequence, decidability/complexity results for deduction can
be deduced from decidability/complexity results for solving linear system
of equations (see Section 7).

6 Static equivalence

We show that deciding whether two frames are equivalent can be reduced
to deciding whether two matrices satisfy the same set of equalities.

Theorem 2. Let E be a monoidal theory and SE be its associated semir-
ing. Static equivalence in E is reducible in polynomial time to the following
problem:

Entries: Two matrices A1 and A2 over SE of size `×m
Question: Does the following equality holds?
{(X,Y) ∈ S`E×S`E | X ·A1 = Y ·A1} = {(X,Y) ∈ S`E×S`E | X ·A2 = Y ·A2}

Similarly to deduction, we first show that we can restrict our attention
to saturated frames. Moreover, we show that it is sufficient to consider
recipes, i.e. tests (M,N), without names.

Lemma 4. Let φ1 = νñ.σ1, φ2 = νñ.σ2 and B be a base of names
in which φ1 and φ2 are decomposable. We have that φ1 ≈E φ2 if and
only if φ1

B ≈E φ2
B. Moreover, if φ1

B 6≈E φ2
B then there exist M,N ∈

T (Σ, dom(φ1
B)) such that (M =E N)φ1

B 6⇔ (M =E N)φ2
B.

Proof. (⇒) Assume that φ1 ≈E φ2. We have that φ1
B = νñ.(σ1 ∪σ0

1) and
φ2

B = νñ.(σ2 ∪ σ0
2) for some substitutions σ0

1 and σ0
2 such that σ0

1 = σ0
2.

Indeed, otherwise, we will obtain a test of the form x = ni with x ∈
dom(φ1) and ni ∈ B r ñ such that (x =E ni)φ1 6⇔ (x =E ni)φ2. Hence,
we have that dom(φ1

B) = dom(φ2
B). Now, assume that φ1

B 6≈E φ2
B, then

FCS-ARSPA’07

74

there exists a test (M,N) such that (M =E N)φ1
B whereas (M 6=E N)φ2

B

(or the converse). Let M ′ = Mσ0
1 and N ′ = Nσ0

1. We have (M ′ =E N
′)φ1

whereas (M ′ 6=E N
′)φ2. Hence contradiction.

(⇐) Assume that φ1 6≈E φ2. Let M,N be such that (M =E N)φ1 whereas
(M 6=E N)φ2 (or the converse). It is clear that φ1

B 6≈E φ2
B. Indeed, a

witness of this fact is the test (M,N).
Lastly, if we have that φ1 6≈E φ2, then there exists a witness (M,N)

such that fn(M) ∪ fn(N) ⊆ B r ñ. Hence, if we consider M ′ and N ′ the
terms obtained from M and N by replacing any occurrence of a name
in Br ñ by the corresponding variables in dom(φ1

B) which refers to this
name, we easily conclude. �

Reduction. Let φ1 = νñ.σ1 and φ2 = νñ.σ2 be two frames having the same
domain. Let B be a base of names in which the two frames are decom-
posable. We assume w.l.o.g. that φ1 and φ2 are saturated w.r.t. B. Let
m = |B|. Let A1 = ψB(φ1) and A2 = ψB(φ2), two matrices of size `×m,
over SE.

Proof. (of Theorem 2) The construction above is such that φ1 ≈E φ2 iff
{(X,Y) ∈ S`E×S`E |X ·A1 = Y ·A1} = {(X,Y) ∈ S`E×S`E |X ·A2 = Y ·A2}.
(⇒) Assume by contradiction that there exists a pair (XM , XN) such
that XM · A1 = XN · A1 and XM · A2 6= XN · A2 (or the converse). Let
M = ψ−1

dom(φ1)(XM) and N = ψ−1
dom(φ1)(XN). We have that

– (M =E N)φ1. It is sufficient to show that ψB(Mσ1) = ψB(Nσ1), i.e.
ψdom(φ1)(M)·ψB(φ1) = ψdom(φ1)(N)·ψB(φ1) thanks to Lemma 2. Now
to conclude, it is sufficient to notice that we have XM = ψdom(φ1)(M),
XN = ψdom(φ1)(N) and A1 = ψB(φ1) and to rely on the hypothesis.

– (M 6=E N)φ2 can be shown similarly.

(⇐) Assume that φ1 6≈E φ2. We have that there exists a test (M,N)
such that (M =E N)φ1 and (M 6=E N)φ2 (or the converse). Thanks to
Lemma 4 and the fact that the frames are saturated, we can assume that
M,N ∈ T (Σ, dom(φ1)). Let XM = ψdom(φ1)(M) and XN = ψdom(φ1)(N).
We have that

– XM · A1 = XN · A1. Indeed, we have that Mσ1 =E Nσ1. Hence
ψB(Mσ1) = ψB(Nσ1). By Lemma 2, we have ψdom(φ1)(M) ·ψB(φ1) =
ψdom(φ1)(M) · ψB(φ1), i.e. XM ·A1 = XN ·A1.

– X ·A2 6= Y ·A2 can be established in a similar way. �

Going further. Thanks to Theorem 2, we give a way to decide static
equivalence in monoidal equational theories provided we can decide whether

Deciding knowledge in security protocols for monoidal equational theories

75

two sets of linear equations over SE have the same set of solutions. Ac-
tually, when SE is a ring or when we can extend the semiring SE into a
ring RE, the static equivalence problem is equivalent to the problem of
deciding whether the following equality holds.

{Z ∈ R`E | Z ·A1 = 0} = {Z ∈ R`E | Z ·A2 = 0}
When RE is a commutative ring, it is equivalent to deciding whether

Ker(A1) = Ker(A2), where Ker(M) denotes the kernel of the matrices M ,
i.e. the set {X | M ·X = 0}.

The ring associated to a given monoidal theory E, denoted by RE, is
equal to SE when E is a group theory. Otherwise, it might be possible to
extend the equational theory E with a new unary symbol − and the law
x+−(x) = 0 in order to obtain a theory E′ that is consistent with E, i.e.
for all u, v ∈ SE such that u =E′ v, we have also that u =E v. In such
a case, the ring RE is the semiring SE′ associated to E′ as explained in
Section 4.1.

Example 9. We have seen that the semiring associated to AG is isomor-
phic to Z which is a commutative ring. Hence, we have that RE is iso-
morphic to Z. The associated semiring to the monoidal equational theory
ACU is isomorphic to N whereas its associated ring is Z.

Note that the transformation described above does not allow us to
associate a ring to any semiring. For instance, if we consider the theory
ACUI and the theory E′ obtained by the transformation described above,
we have that 0 =E′ (1 + 1) +−(1) =E′ 1 + (1 +−(1)) =E′ 1 whereas this
equality does not hold in ACUI.

7 Applications and Discussion

In this section we show that several interesting monoidal equational in-
duce a ring or a semiring for which solving linear systems or checking for
equalities of sets of solutions of linear systems are decidable. Note that any
of these decidability results for deduction and static equivalence can be
combined with any existing ones provided the signatures of the equational
theories are disjoint [3]. For example, let E be a monoidal equational the-
ory for which deduction and static equivalence are decidable (e.g. ACU,
ACUNh, . . .) then deduction and static equivalence are also decidable for
the theory Eenc ∪ E where Eenc is defined by the following equations:

dec(enc(x, y), y) = x, proj1(〈x, y〉) = x and proj2(〈x, y〉) = y.

FCS-ARSPA’07

76

Theory ACU. This equational theory is the simplest monoidal theory.
The semiring corresponding to this theory is N whereas its associated
ring is Z. This equational theory has been particularly studied. Since
the problem of solving linear equations over N is strongly NP-complete,
we obtain that deduction is a NP-complete problem. The problem of
static equivalence for this theory has been shown decidable in [1]. Actually
thanks to the algebraic characterization given in this paper, this problem
can be solved in polynomial time [18].

At first sight, it might seem surprising since it has been shown [1]
that deduction in a given theory E can be reduced in polynomial time to
static equivalence in E. However, this reduction required the presence of
a free function symbol and such a function symbol is not available in the
theory ACU. Hence, the polynomial reduction provided in [1] does not
apply in this setting.

Theories ACUI and ACUN (Exclusive Or). The semirings corre-
sponding to these equational theories are respectively the Boolean semir-
ing B, which is finite, and the finite field Z/2Z. The theory ACUN has
already been studied in terms of deduction [8, 7] and static equivalence [1].
Deduction and static equivalence are both decidable in polynomial time.
As far as we know the theory ACUI has only been studied in term of
deduction [10]. Actually, since its associated semiring is finite, we easily
deduce that deduction and static equivalence are decidable.

Theory AG (Abelian Groups). The semiring associated to this equa-
tional theory is in fact a ring, namely the ring Z of all integers. There exist
several algorithms to compute solutions of linear equations over Z and to
compute a base of the set of solutions (see for instance [18]). Hence, we
easily deduce that both problems are decidable in PTIME. Deduction for
this theory has already been studied in [8] and [6].

Theories ACUh, ACUNh and AGh. The semiring associated to ACUh
is N[h], the semiring of polynomial in one indeterminate over N whereas
the ring associated to ACUh is Z[h]. For the theory ACUNh (resp. AGh)
the associated semiring is Z/2Z[h] (resp. Z[h]). Deduction for these three
equational theories have already been studied in [11, 9]. However, results
obtained on static equivalence are new.

1. ACUh and AGh: Deciding static equivalence for these both theories
is reducible to the problem of deciding whether Ker(A) = Ker(B)

Deciding knowledge in security protocols for monoidal equational theories

77

where A and B are matrices built over N[h] in the case of ACUh and
Z[h] in the case of AGh. This problem has been solved by F. Baader
to obtain a unification algorithm for the theory AGh (see [4]). This
is done by the help of Gröbner Base methods in a more general set-
tings. Actually, he provides an algorithm even in the case of several
commutating homomorphisms.

2. ACUNh: Deciding static equivalence in ACUNh is reducible to the prob-
lem of deciding whether Ker(A) = Ker(B) where A and B are matrices
built over Z/2Z[h]. This is achieved in [12] by using an automata-
theoretic approach.

Theory ACUIh. The semiring associated to ACUIh is B[h]. Deduction
for this theory has never been studied but is clearly decidable. Indeed, to
find a solution to A · X = b, it is easy to see that each component of a
solution to A ·X = b has a degree smaller than the degree of b. Hence, the
question of deciding whether there exists X such that A ·X = b can be
reduced to solving a system of linear equations over B. Theorem 2 does
not help us to provide an algorithm to solve static equivalence. Note also
that we can not reduced the problem to the problem of deciding whether
Ker(A) = Ker(B) since, as for ACUI, we are not able to associate a ring
to this theory.

Theory E SE RE Deduction Static Equivalence

ACU N Z NP-complete decidable [1], PTIME (new)

ACUI B − decidable [10] decidable (new)

ACUN Z/2Z PTIME [7] decidable [1], PTIME (new)

AG Z PTIME [6] PTIME (new)

ACUh N[h] Z[h] NP-complete [11] decidable (new)

ACUIh B[h] − decidable (new) ?

ACUNh Z/2Z[h] PTIME [9] decidable (new)

AGh Z[h] PTIME [9] decidable (new)

AGh1 . . . hn Z[h1, . . . , hn] decidable (new) decidable (new)

8 Conclusion

We have proposed a general schema for deciding deduction and static
equivalence algorithms. This schema has to be filled with procedures for

FCS-ARSPA’07

78

linear equations in order to yield complete algorithms. Such algorithms
strongly depend on the structure of the semiring. In this paper, we have
mentioned and used several existing results of Algebra. But Algebra can
still provide useful techniques that allow us to deduce some new results.
Moreover, efficient existing tools for solving algebraic problems can also
be used to implement our algorithms.

Acknowledgment. We wish to thank Daniel Lazard for fruitful discus-
sions.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 387(1-2):2–32, November 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 104–115, London (UK), 2001. ACM.

3. M. Arnaud, V. Cortier, and S. Delaune. Combining algorithms for deciding knowl-
edge in security protocols. In Proc. of the 6th International Symposium on Fron-
tiers of Combining Systems (FroCoS’07), LNAI, Liverpool, UK, 2007. Springer.
To appear.

4. F. Baader. Unification in commutative theories, Hilbert’s basis theorem, and
Gröbner bases. Journal of the ACM, 40(3):477–503, 1993.

5. F. Baader and W. Nutt. Combination problems for commutative/ monoidal the-
ories or How algebra can help in equational unification. Applicable Algebra Engi-
neering Communication and Computing, 7(4):309–337, 1996.

6. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security
of protocols with Diffie-Hellman exponentiation and product in exponents. In Proc.
23rd Conference on Foundations of Software Technology and Theoretical Computer
Science (FST&TCS’03), volume 2914 of LNCS, pages 124–135, Mumbai (India),
2003. Springer-Verlag.

7. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision pro-
cedure for protocol insecurity with XOR. In Proc. 18th IEEE Symposium on Logic
in Computer Science (LICS’03), pages 261–270, Ottawa (Canada), 2003. IEEE
Comp. Soc. Press.

8. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In Proc. 18th IEEE Symposium
on Logic in Computer Science (LICS’03), pages 271–280, Ottawa (Canada), 2003.
IEEE Comp. Soc. Press.

9. S. Delaune. Easy intruder deduction problems with homomorphisms. Information
Processing Letters, 97(6):213–218, Mar. 2006.

10. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol anal-
ysis for monoidal equational theories. Research Report LSV-06-17, Laboratoire
Spécification et Vérification, ENS Cachan, France, Nov. 2006. 47 pages.

11. P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for AC-like equa-
tional theories with homomorphisms. In Proc. 16th International Conference on
Rewriting Techniques and Applications (RTA’05), volume 3467 of LNCS, pages
308–322, Nara (Japan), 2005. Springer.

Deciding knowledge in security protocols for monoidal equational theories

79

12. P. Lafourcade, D. Lugiez, and R. Treinen. ACUNh: Unification and disunification
using automata theory. In Proc. 20th Int. Workshop on Unification (UNIF’06),
pages 6–20, Seattle, Washington, USA, Aug. 2006.

13. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proc. 2nd Int. Workshop on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’96), volume 1055 of LNCS, Berlin (Germany),
1996. Springer-Verlag.

14. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. 8th ACM Conference on Computer and Communica-
tions Security (CCS’01). ACM Press, 2001.

15. W. Nutt. Unification in monoidal theories. In Proc. 10th Int. Conference on Auto-
mated Deduction, (CADE’90), volume 449 of LNCS, pages 618–632, Kaiserslautern
(Germany), 1990. Springer.

16. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6(1-2):85–128, 1998.

17. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of ses-
sions, composed keys is NP-complete. Theoretical Computer Science, 1-3(299):451–
475, 2003.

18. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

FCS-ARSPA’07

80

The Meaning of a Cryptographic Message via
Hypothetical Knowledge and Provability

Simon Kramer

Ecole Polytechnique Fédérale de Lausanne (EPFL)
simon.kramer@a3.epfl.ch

Abstract. We propose a denotational definition for the meaning of a crypto-
graphic message and, based on it, an equational definition for the context-sensiti-
vity of that meaning, both via hypothetical knowledge and provability. As a re-
sult, we obtain a formalisation of the first of Abadi and Needham’s principles for
prudent engineering practice for — and a tentative denotational semantics of —
cryptographic protocols. Further, we define the information content of a crypto-
graphic message and, based on it, the information content of a cryptographic pro-
tocol. Furthermore, we show that protocol agents can be naturally conceived as
evolving Scott information systems. Our method is applicable to arbitrary inter-
active programs (multi-agent systems), but is made concrete here on the example
of cryptographic protocols.

Keywords cryptographic protocols, denotational semantics, modal logics, multi-
agent systems

1 Introduction

Our motivation for defining the meaning of a cryptographic message comes
from Abadi and Needham’s Principle 1 for designing cryptographic protocols
[AN96]. The principle says:

Every message should say what it means: the interpretation of the mes-
sage should depend only on its contents. [. . .]

With a clin d’œil and thus for the nonce, one-eyed, we observe that the principle
is both self-denying and not self-denying and thus paradoxical, and that this fact
can be proven by applying the principle to itself. Here is an informal proof, by
contradiction:

Assume that the principle is not self-denying. Apply it to itself
by particularising it with itself. (The principle is itself a mes-
sage1 and employs universal quantification over messages.) The

1 Observe that the principle speaks about messages tout court rather than cryptographic mes-
sages. If the principle is to speak about cryptographic messages, then it must depend on a
context (which [AN96] of course constitutes) that properly frames it (which [AN96] of course
does). Yet, that very dependence the principle denies.

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability

81

message of the principle does not say what it means: the inter-
pretation of the message does not depend only on its contents.
(The principle does not say what message meaning means.) Hence,
the principle is self-denying. Contradiction.

Deduce that the principle is self-denying. Yet, by this very fact the prin-
ciple is not self-denying. (Every message, as the example of the prin-
ciple demonstrates, should really say what it means.) Conclude that the
principle is paradoxical.

This recreational proof is paradoxical in the (double) sense that it demonstrates
the paradoxical nature of Principle 1 and paradoxically the importance of the
subject matter of the principle. That is, explicitness and context-sensitivity of
meaning. Our task shall be to define, in a unique sense, the meaning2 of a cryp-
tographic message relative to an execution state and communicating agent.

We stress that our definition of message meaning is sensitive to a context
that possibly contains several concurrently-running protocols: execution states
are ordered pairs of an execution history and a process term, and process terms
possibly consist of parallel compositions of several protocols.

Related work The most relevant work (though not addressing the problem of
logical omniscience) related to ours is [PR03], where, according to the authors,
the meaning of a message is given in terms of how it affects the knowledge of the
agents involved in the communication. This idea is spiritually close to ours (and
is given a very nice philosophical treatment by the authors), but has incarnated
in a very different body (of knowledge, so to say) as will become clear in the
sequel. The authors define the denotation of a message at a state and w.r.t. an
agent as a so-called view transformer. And a view transformer is a set of ordered
pairs (α, β) of propositions α and β such that “if knowledge of α is part of the
view that [agent] i has of the global system state before the communication
event, then knowledge of β is part of its view after the communication.”

Another relevant work related to ours is [Gro92]. There, the so-called (1)
objective semantics of a message is defined to be the set of all points, states in
our terminology, where the message was sent; and (2) KS-semantics of a mes-
sage is defined to be the set of pairs of a point and an agent such that that agent
sends the message at that point. The problem with this approach is, according
to the authors, that it is not yet suitable for cryptography.

The relevant commonality between [PR03], [Gro92], and our approach is
that all approaches employ epistemic logic as a means to defining message

2 in the sense of Frege’s sense (a message makes to an agent) as opposed to reference (to a
bit-string)

FCS-ARSPA’07

82

meaning. The difference is how each approach does so, as we shall see now
with the presentation of our approach.

2 Prerequisites

We presuppose a set M of cryptographic messages (denoted M,M′) and a set
AEve ⊆ M of names (denoted a, b) for legitimate agents and for the archetyp-
ical illegitimate agent — the adversary (Eve). The exact form of cryptographic
messages is irrelevant to the present exposition (this is an advantage of our
approach). However, it is helpful to think of M as containing, among others,
encrypted messages of the form {|M|}k, i.e., plaintexts M encrypted under (sym-
metric) keys k ∈ K ⊆ M.

The adversary can be thought of as being in full control of the network, and
may, of course, also be an insider, i.e., an agent with all the rights of a legitimate
agent.

We further presuppose a set F of closed logical formulae (denoted φ, φ′),
i.e., propositions, whose truth is established on the states s = (h, P) of history
h ∈ H (of past protocol events, e.g., message sending/receiving) and code P ∈ P
of the considered protocol. The exact form of histories and protocol code is
irrelevant to the present exposition (again, this is an advantage of our approach).
The logical language we have in mind is the one of CPL [Kra06,Kraar], but
there is no need of going into full detail for the present exposition. The relevant
syntactic constructions are the following:

1. a binary relational symbol k expressing an agent’s individual knowledge (or
knowledge de re), i.e., an agent’s capability to synthesise messages from
previously analysed messages that the agent has sent and received during a
protocol history. For encrypted messages, we have (and this is about all we
need for the present exposition) |= (a k {|M|}k ∧ a k k)→ a k M.

2. a unary epistemic modality Ka(φ) expressing an agent’s a propositional knowl-
edge (or knowledge de dicto), i.e., the agent’s capability to establish the truth
of a proposition φ. Its semantics is roughly captured by the modal system
S5 [FHMV95], and is a refinement of [AT91] in the sense that epistemic
necessitation is adapted to the cryptographic setting so that if |= φ then
|= a k K → Ka(φ), where K is a tuple of the keys occurring in φ. This
adaptation is necessary and sufficient to solve the problem of logical omni-
science in a cryptographic setting (cf. [CD05] and [Kra06,Kraar] for further
discussion).

3. a binary spatial modality φ′ B φ expressing the truth of φ on the provision
of the (hypothetical) truth of φ′. Its semantics for a considered state s is
that for all s′, if s′ |= φ′ then s′ ◦ s |= φ, where s′ designates the state of

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability

83

a hypothetical protocol environment, and ◦ parallel composition (the exact
form of the composition is irrelevant to the present exposition).
Notice that this adjunction (or spatial conditional) is relevant, i.e., it is not
truth-functional [Dam89]. It is also monotonic w.r.t. positive antecedents,
e.g., |= a k M B a k M, but 6|= ¬ a k M B ¬ a k M due to the possibility for
a of learning new information from the adjunction.

4. a unary Gödel-style provability modality Pa(φ) expressing an agent’s a ca-
pability to prove that φ is true. Remarkably, this modality is syntactically
definable within CPL (cf. [Kra06,Kraar]). The modality complies with the
modal system S4, with provability necessitation adapted to the cryptographic
setting so that if |= φ then |= a k K → Pa(φ).
(We refer the interested reader to [AN05] for a related approach to provabil-
ity, and to [Kra06,Kraar] for further discussion.)

Finally, we recall logical consequence in CPL: φ⇒ φ′ :iff for all s, if s |= φ then
s |= φ′.

3 Message meaning

Definition 1 (The meaning of a cryptographic message). The (communica-
ble) meaning of a cryptographic message M ∈ M w.r.t. an agent a ∈ AEve and
a protocol state s ∈ H × P shall be the set of equivalence classes [φ] of those
propositions φ ∈ F whose truth a would know (resp., be able to prove) if a knew
M in s. (Notice the conditional mode!) Formally,

~M�sa := { [φ] | φ ∈ F and s |= a k M B Ka(φ) }, and

~M�sPa
:= { [φ] | φ ∈ F and s |= a k M B Pa(φ) } respectively.

Message meaning is defined as a set of equivalence classes of propositions
rather than as a set of propositions because we are concerned with just what
a message means rather than with the manifold how it may mean it.

Message meaning is communicable when defined in terms of provability
because provability requires the capability to produce an actual proof (i.e., a
message of a certain cryptographic form), which, by definition, is communicable
[Kra06,Kraar].

Theorem 1. Message meaning is a distributive proper filter (and thus a proper
sub-lattice and a topped

⋂
-structure) w.r.t. the Boolean lattice 〈F /≡,≤〉, i.e.,

it is (1) a non-empty proper sub-set of F /≡, (2) closed under meet and partial

FCS-ARSPA’07

84

ordering (and thus is directed), and (3) distributive. Formally, let3

[φ] := [¬φ] (complement)

[φ] ∧ [φ′] := [φ ∧ φ′] (meet) [φ] ∨ [φ′] := [φ ∨ φ′] (join)

[φ] ≤ [φ′] :iff φ⇒ φ′ and keys(φ′) ⊆ keys(φ) (partial ordering)

φ ≡ φ′ :iff [φ] ≤ [φ′] and [φ′] ≤ [φ] (congruence w.r.t. meet and join)

where keys(φ) designates the set of all key constants occurring in φ. Then,

1. ∅ , ~M�sa ⊂ F /≡
2. (a) if [φ], [φ′] ∈ ~M�sa then [φ] ∧ [φ′] ∈ ~M�sa

(b) if [φ] ∈ ~M�sa and [φ′] ∈ F /≡ and φ ≤ φ′ then [φ′] ∈ ~M�sa
3. if [φ]∨ [φ′] ∈ ~M�sa and [φ]∨ [φ′′] ∈ ~M�sa then [φ]∨ ([φ′]∧ [φ′′]) ∈ ~M�sa.

Proof. see Appendix A

Filters represent deductively closed (cf. Condition 2.(b)), consistent (i.e.,
[⊥] < ~M�sa, otherwise ~M�sa = F /≡ by Condition 2.(b), which would violate
Condition 1.), but possibly incomplete (unless they are maximal) theories.

Theorem 2. Communicable message meaning is a distributive proper filter w.r.t.
the Boolean lattice 〈F /≡,≤〉.
Proof. see Appendix A

Proposition 1. Communicable message meaning is order-embedded strictly within
message meaning. Formally, ~M�sPa

⊂ ~M�sa and ~M�sPa
↪→ ~M�sa.

Proof. see Appendix A

Definition 2 (Context-sensitivity of message meaning). A cryptographic mes-
sage M ∈ M is context-sensitive :iff there are a, b ∈AEve and s, s′ ∈ H ×P s.t.
~M�sa , ~M�

s′
b . A cryptographic message M ∈ M that is not context-sensitive

is context-free.

Note that our notion of context-sensitivity is semantic as opposed to the classical
notion of formal language theory, which is syntactic.

Formalisation 1 (Abadi and Needham’s Principle 1)

3 this is a refinement of the classical Lindenbaum-Tarski-algebra construction: the partial or-
dering is not mere logical consequence (⇒); thus the resulting equivalence (≡) is finer than
logical equivalence (⇔)

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability

85

“Every message should say what it means: the interpretation of the message
should depend only on its contents. [. . .]” [AN96]

Every cryptographic message should be context-free (cf. Definition 2). y

Examples of context-sensitive cryptographic messages abound. Perhaps the
starkest example is the one of sending a bare nonce as the opening of a crypto-
graphic protocol. See [BM03] for several different, and reportedly flawed pro-
tocols with such identical openings. Another way of creating context-sensitive
cryptographic messages is the use of indexicals (i.e., phrases in natural language
that refer to past or future messages, or to extra-protocol out-of-band communi-
cation such as personal contact and trusted couriers) in plaintexts. An advantage
of our definition of the context-sensitivity of a cryptographic message is that
the definition is, being equational, indifferent to the many ways of how context-
sensitivity is created. It4 only cares about that context-sensitivity is created.

Definition 3 (The information content of a cryptographic message). The in-
formation content (in the sense of Kolmogorov-complexity [LV97]) of a crypto-
graphic message M ∈ M to agent a ∈AEve, written Ka(M), is defined to be the
smallest5 state s ∈ H × P s.t. s |= a k M.

Note that [PR03] also define the information content of a message, but their
definition is, as opposed to ours, in the sense of Shannon.

4 Protocol meaning

Slogan 1 The purpose of a cryptographic protocol is to interactively compute,
via message passing6, knowledge of the truth of desired — and, dually, knowl-
edge of the falsehood of undesired — cryptographic states of affairs. [Kra06,Kraar]

In other words, cryptographic protocols aim at inducing propositional knowl-
edge, i.e., knowledge of cryptographic states of affairs expressed as proposi-
tions, by means of individual knowledge, i.e., knowledge of messages (values).
Values are only the means — not the ends — of cryptographic7 computation.

Slogan 2 In cryptography, individual knowledge is the key to propositional knowl-
edge.

4 “It”, the footnote marker in this line, and “this” are three examples of indexicals.
5 bear in mind that our protocol states are just finite strings of symbols, each string containing a

process term (the program) as a substring
6 rather than shared memory
7 and possibly of interactive computation [GSW06] in general

FCS-ARSPA’07

86

Definition 4 (The meaning of a cryptographic protocol). The meaning (or
denotational semantics) ~s�∗a of a cryptographic protocol s ∈ H × P w.r.t. to
an agent a ∈ AEve shall be the (directed) union of the meanings w.r.t. a of all
those messages that a comes to know during protocol execution. Formally, let
T (·) := · ∪ {∧ Min(·)} designate a template for the meet-completion of ·. Then,

~s�a := T


⋃

M ∈ M
s |= a k M

~M�sa

 ~s�na := T


⋃

s′ ∈ H × P
s −→n

s′

~s′�a

 ~s�∗a := T


⋃

s′ ∈ H × P
s −→∗ s′

~s′�a


~s� :=

⊎
a∈AEve

~s�a ~s�n :=
⊎

a∈AEve
~s�na ~s�∗ :=

⊎
a∈AEve

~s�∗a

where (non-deterministic) protocol execution is supposed to be modelled by an
appropriate relation −→ ⊆ (H × P)2 (e.g., [BKN06,BGK06]).

The meet-completion ensures that each collective meaning has again a least
element, by taking the meet of the set of minimal elements in the union of in-
dividual meanings. (The least element in each individual meaning becomes a
minimal element in the union of individual meanings.)

Note that our definition of the meaning (or denotational semantics) of a
cryptographic protocol

1. is defined in terms of
(a) the meaning of cryptographic messages
(b) the operational semantics −→ of that protocol, which is a very natural,

but nevertheless, a novel idea. It is natural to define the what (the deno-
tation) in terms of the how (the operations), rather than the other way
round or defining them independently of each other.

2. has the advantage of being syntax-independent. The denotational semantics
does not require inductive definition on the structure of cryptographic pro-
tocol terms P ∈ P (the operational typically does [BKN06,BGK06]).

Theorem 3. ~s�a = ~s′�a iff [for all φ ∈ F , s |= Ka(φ) iff s′ |= Ka(φ)]

Proof. see Appendix A

In other words, two protocol states (worlds) that make equal sense to a protocol
agent are epistemically indistinguishable (w.r.t. to language F) to that agent. In
Wittgenstein’s words: “The limits of my language mean the limits of my world.”
[Wit75, Paragraph 5.6].

Theorem 4.
1. ~s�na ↪→ ~s�n+1

a is order-continuous8

8 order-continuity guarantees the existence of fixpoints

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability

87

2. ~s�a, ~s�na, and ~s�∗a are topped algebraic
⋂

-structures (thus algebraic lat-
tices, thus complete lattices, and thus complete partial orders [DP02])

3. ~s�, ~s�n, and ~s�∗ are pre-CPOs

Proof. see Appendix A

An algebraic
⋂

-structure S can be presented as a Scott information system
IS(S) with “the idea of identifying an object with a set of propositions true of
it and adequate to define it. These propositions are to be thought of as tokens,
each bearing a finite amount of information.” [DP02]:

IS(S) := 〈
⋃
S, { Γ | there is S ∈ S s.t. Γ b S }, ` 〉

where Γ ` φ :iff φ ∈ ⋂{ S | S ∈ S and Γ b S } and b designates finitary set-
inclusion. In other words, protocol meaning induces a Scott information system
for each protocol agent at each protocol state. And protocol execution induces
the continuous (cf. Theorem 4.1) evolution of those information systems in time.

The definition of a denotational semantics for cryptographic protocols is not
only a useful exercise of conceptual clarification, but is also useful for the actual
engineering (verification, refinement) of safe cryptographic protocols:

Protocol invariant A formula φ ∈ F is a subjective protocol invariant w.r.t.
agent a ∈ AEve and initial protocol state s ∈ H × P :iff for all n ∈ N,
φ ∈ ~s�na. A formula φ ∈ F is a universal protocol invariant w.r.t. initial
protocol state s ∈ H × P :iff for all a ∈ AEve, φ is a subjective protocol
invariant w.r.t. a and s.

Protocol safety A protocol state s ∈ H × P is subjectively safe to agent a ∈
A :iff the negation of every cryptographic state of affairs undesirable to
a is a subjective protocol invariant w.r.t. a. A protocol state s ∈ H × P
is universally safe :iff the negation of every cryptographic state of affairs
undesirable to some a ∈A is a subjective protocol invariant w.r.t. a.

Protocol refinement A protocol state s′ ∈ H × P refines protocol state s ∈
H ×P, written s ≤ s′, :iff the meaning of s is included in the meaning of s′.
Formally,

s ≤ s′ :iff ~s�∗ ⊆ ~s′�∗.
It is well-known that refinement orderings on a set of specification processes

on the one side and on a set of implementation processes on the other side induce
a Galois-connection between the two sides of sets (cf. [DP02]).

Definition 5 (The information content of a cryptographic protocol). The in-
formation content (in the sense of Kolmogorov-complexity [LV97]) of a protocol
state s ∈ H × P, containing the protocol(s), to agent a ∈ AEve, written Ka(s),
is defined to be the smallest message M ∈ M s.t. ~M�sa = ~s�

∗
a.

FCS-ARSPA’07

88

5 Conclusion

We believe having made an original and intuitive proposal for the meaning and
information content of a cryptographic message and protocol, and coined and
applied a useful notion of context-sensitivity for message meaning. The result-
ing conception of protocol agents as evolving Scott information systems seems
natural, and connects two previously, not obviously related fields of knowledge.
The obvious temptation is now to attempt a result in the style of full abstraction
for our denotational semantics w.r.t. to the operational semantics. “Denotational
semantics is to programming languages what model theory is to predicate logic.”
[DP02]. In this analogy, sound and complete proof systems correspond to fully
abstract denotational semantics.

Acknowledgements I would like to thank Johannes Borgström for valuable com-
ments on a draft of this paper.

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability

89

A Proofs

We recall

– Definition: |= φ :iff for all s, s |= φ
– Lemma [Kra06,Kraar]: φ⇒ φ′ iff |= φ→ φ′

Proof of Theorem 1

1. ∅ , ~M�sa ⊂ F /≡: ∅ , ~M�sa because [>] ∈ ~M�sa due to |= Ka(>) (and also
[a k M] ∈ ~M�sa due to |= a k M B Ka(a k M)); and ~M�sa ⊂ F /≡ because
[⊥] ∈ F /≡, but [⊥] < ~M�sa due to 6|= Ka(⊥).

2. (a) if [φ], [φ′] ∈ ~M�sa then [φ] ∧ [φ′] ∈ ~M�sa:

1 [φ] ∈ ~M�sa and [φ′] ∈ ~M�sa hyp.

2 s |= a k M B Ka(φ) and s |= a k M B Ka(φ′) 1

3 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) and
for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ′) 2

4 for all s′, (if s′ |= a k M then s′ ◦ s |= Ka(φ)) and
(if s′ |= a k M then s′ ◦ s |= Ka(φ′)) 3

5 for all s′, if s′ |= a k M then
(
s′ ◦ s |= Ka(φ) and
s′ ◦ s |= Ka(φ′)

)
4

6 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) ∧ Ka(φ′) 5

7 |= (Ka(φ) ∧ Ka(φ′))→ Ka(φ ∧ φ′) property of Ka

8 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∧ φ′) 6, 7

9 s |= a k M B Ka(φ ∧ φ′) 8

10 [φ] ∧ [φ′] ∈ ~M�sa 9

(b) if [φ] ∈ ~M�sa and [φ′] ∈ F /≡ and φ ≤ φ′ then [φ′] ∈ ~M�sa:

1 [φ] ∈ ~M�sa and [φ′] ∈ F /≡ and φ ≤ φ′ hyp.

2 s |= a k M B Ka(φ) and φ⇒ φ′ and keys(φ′) ⊆ keys(φ) 1

3 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) 2

4 φ⇒ φ′ iff |= φ→ φ′ Lemma

5 |= φ→ φ′ 2, 4

6 if |= φ→ φ′ then |= a k K → Ka(φ→ φ′) where
K designates a tuple built from keys(φ→ φ′) prop. of Ka

7 |= a k K → Ka(φ→ φ′) 5, 6

8 |= Ka(φ)→ a k K′ were
K′ designates a tuple built from keys(φ) property of Ka

FCS-ARSPA’07

90

9 s′ |= a k M hyp.

10 s′ ◦ s |= Ka(φ) 3, 9

11 s′ ◦ s |= a k K′ 8, 10

12 s′ ◦ s |= a k K 2, 11(, property of k)

13 s′ ◦ s |= Ka(φ→ φ′) 7, 12

14 |= Ka(φ→ φ′)→ (Ka(φ)→ Ka(φ′)) property of Ka

15 s′ ◦ s |= Ka(φ)→ Ka(φ′) 13, 14

16 s′ ◦ s |= Ka(φ′) 10, 15

17 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ′) 9, 16

18 s |= a k M B Ka(φ′) 17

19 [φ′] ∈ ~M�sa 18
3. if [φ]∨ [φ′] ∈ ~M�sa and [φ]∨ [φ′′] ∈ ~M�sa then [φ]∨ ([φ′]∧ [φ′′]) ∈ ~M�sa:

1 [φ] ∨ [φ′] ∈ ~M�sa and [φ] ∨ [φ′′] ∈ ~M�sa hyp.

2 s |= a k M B Ka(φ ∨ φ′) and s |= a k M B Ka(φ ∨ φ′′) 1

3 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∨ φ′) and
for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∨ φ′′) 2

4 s′ |= a k M hyp.

5 s′ ◦ s |= Ka(φ ∨ φ′) and s′ ◦ s |= Ka(φ ∨ φ′′) 3, 4

6 s′ ◦ s |= Ka(φ ∨ φ′) ∧ Ka(φ ∨ φ′′) 5

7 |= (Ka(φ ∨ φ′) ∧ Ka(φ ∨ φ′′))→ Ka((φ ∨ φ′) ∧ (φ ∨ φ′′))prop. Ka

8 s′ ◦ s |= Ka((φ ∨ φ′) ∧ (φ ∨ φ′′)) 6, 7

9 s′ ◦ s |= Ka(φ ∨ (φ′ ∧ φ′′)) 8

10 for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ ∨ (φ′ ∧ φ′′)) 4, 9

11 s |= a k M B Ka(φ ∨ (φ′ ∧ φ′′)) 10

12 [φ] ∨ ([φ′] ∧ [φ′′])] ∈ ~M�sa 11

Proof of Theorem 2 Analogous to the proof of Theorem 1 because that proof
only relies on S4 (adapted to the cryptographic setting), not full S5 (adapted to
the cryptographic setting), and provability is about S4.

Proof of Proposition 1

1. ~M�sPa
⊂ ~M�sa: because |= Pa(φ) → Ka(φ) (cf. [Kra06,Kraar]), but 6|=

Ka(φ)→ Pa(φ)
2. there is an order-embedding e : ~M�sPa

↪→ ~M�sa: take e := id~M�sa〈~M�sPa
〉,

i.e., the restriction to ~M�sPa
of the identity on ~M�sa.

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability

91

Proof of Theorem 3

~s�a = ~s′�a iff

T


⋃

M ∈ M
s |= a k M

~M�sa

 = T


⋃

M ∈ M
s′ |= a k M

~M�s
′

a

 iff

⋃
M ∈ M
s |= a k M

~M�sa =
⋃

M ∈ M
s′ |= a k M

~M�s
′

a iff

⋃
M ∈ M
s |= a k M

{ [φ] | φ ∈ F ; s |= a k M B Ka(φ) } =

⋃
M ∈ M
s′ |= a k M

{ [φ] | φ ∈ F ; s′ |= a k M B Ka(φ) } iff

{ [φ] | M ∈ M ; s |= a k M ; φ ∈ F ; s |= a k M B Ka(φ) } =
{ [φ] | M ∈ M ; s′ |= a k M ; φ ∈ F ; s′ |= a k M B Ka(φ) } iff(

[for all M ∈ M, s |= a k M; for all φ ∈ F , s |= a k M B Ka(φ)] iff
[for all M ∈ M, s′ |= a k M; for all φ ∈ F , s′ |= a k M B Ka(φ)]

)
iff(

[for all M ∈ M, s |= a k M; for all φ ∈ F , s |= Ka(φ)] iff
[for all M ∈ M, s′ |= a k M; for all φ ∈ F , s′ |= Ka(φ)]

)
iff(

[for all M ∈ M, s |= Ka(a k M); for all φ ∈ F , s |= Ka(φ)] iff
[for all M ∈ M, s′ |= Ka(a k M); for all φ ∈ F , s′ |= Ka(φ)]

)
iff(

for all φ ∈ F , s |= Ka(φ) iff
for all φ ∈ F , s′ |= Ka(φ)

)
iff

[for all φ ∈ F , s |= Ka(φ) iff s′ |= Ka(φ)]

Proof of Theorem 4

1. the map φ 7→ ©− φ (a) order-embeds ~s�na in ~s�n+1
a , and (b) is order-continuous:

(a) φ ≤ φ′ iff©− φ ≤ ©− φ′ because |= Ka(φ)↔ ©+Ka(©− φ)
(b) the map φ 7→ ©− φ is order-continuous because it is order-embedding

(thus order-preserving) and ~s�na, being topped, satisfies the so-called
ascending chain condition [DP02, Page 148]

where©− designates the previous-time and©+ the next-time operator of CPL
from linear temporal logic [MP84].

FCS-ARSPA’07

92

2. ~s�a, ~s�na, and ~s�∗a are topped algebraic
⋂

-structures because being (di-
rected) unions of filters they are topped, and closed under intersection and
directed unions.

3. ~s�, ~s�n, and ~s�∗ are pre-CPOs because they are disjoint (and thus lacking
a least element) unions of CPOs.

References

[AN96] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering, 22(1), 1996.

[AN05] S. Artemov and E. Nogina. Introducing justification into epistemic logic. Journal of
Logic and Computation, 15(6), 2005.

[AT91] M. Abadi and M. R. Tuttle. A semantics for a logic of authentication. In Proceedings
of the ACM Symposium of Principles of Distributed Computing, 1991.

[BGK06] J. Borgström, O. Grinchtein, and S. Kramer. Timed Calculus of Cryptographic Com-
munication. In Proceedings of the Workshop on Formal Aspects in Security and Trust,
2006.

[BKN06] J. Borgström, S. Kramer, and U. Nestmann. Calculus of Cryptographic Communi-
cation. In Proceedings of the LICS-Affiliated Workshop on Foundations of Computer
Security and Automated Reasoning for Security Protocol Analysis, 2006.

[BM03] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer, 2003.

[CD05] M. Cohen and M. Dam. A completeness result for BAN logic. In Proceedings of the
Workshop on Methods for Modalities, 2005.

[Dam89] M. F. Dam. Relevance Logic and Concurrent Composition. PhD thesis, University
of Edinburgh, 1989.

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990 (2002).

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

[Gro92] A. J. Grove. Semantics for knowledge and communication. In Proceedings of
the Conference on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann, 1992.

[GSW06] D. Goldin, S. A. Smolka, and P. Wegner, editors. Interactive Computation: The New
Paradigm. Springer-Verlag, 2006.

[Kra06] S. Kramer. Logical concepts in cryptography. Cryptology ePrint Archive, Report
2006/262, 2006. http://eprint.iacr.org/.

[Kraar] S. Kramer. Cryptographic Protocol Logic: Satisfaction for (timed) Dolev-Yao cryp-
tography. Journal of Logic and Algebraic Programming, to appear.

[LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, second edition, 1997.

[MP84] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, 1984.

[PR03] R. Parikh and R. Ramanujam. A knowledge based semantics of messages. Journal
of Logic, Language and Information, 12, 2003.

[Wit75] L. Wittgenstein. Tractatus Logico-Philosophicus. Routledge, English edition, 1961,
1975.

The Meaning of a Cryptographic Message via Hypothetical Knowledge and Provability

93

FCS-ARSPA’07

94

Secrecy Checking of Protocols: Solution of an
Open Problem ?

Zhiyao Liang Rakesh M Verma

Computer Science Department, University of Houston,
Houston TX 77204-3010, USA

Email: zliang@cs.uh.edu, rmverma@cs.uh.edu
Telephone: (713) 743–3338 Fax: (713) 743–3335

Abstract. This paper proves the undecidability of an open problem
on the complexity of checking secrecy of cryptographic protocols due to
Durgin, Lincoln and Mitchell. The proof is by a reduction from 2-counter
machines to protocols, and we prove both directions of the reduction in
detail. The modeling and proof method are generally applicable and can
be conveniently adapted to solve other problems about the complexity
analysis of checking properties of protocols.

Key words: Cryptographic protocols, secrecy, undecidability.

1 Introduction

Analyzing the security properties of cryptographic protocols has been one of the
most important challenges nowadays when networks are ubiquitous. A signif-
icant research direction in this area is to check secrecy and authentication of
the protocols against a Dolev-Yao attacker [1] assuming that the cryptographic
algorithms cannot be broken. Since Lowe discovered an attack on the public
key Needham-Schroeder protocol [2,3] 17 years after it was published [4], many
papers have been published on this topic. To check secrecy failure or correctness
is a very hard problem. One bound on the complexity of secrecy problem is that
when the number of role instances in the protocol run is bounded, the secrecy
problem is NP-complete [5], even when composite keys are allowed [6].

Secrecy checking is undecidable assuming unbounded number of role in-
stances in a protocol run (together with other specific assumptions). Undecid-
ability of secrecy checking is mentioned by several papers [7] [8] [9] [10] [11]
[12] [13] [14], and [9] [10] [11] [13] provide proofs with details. The survey paper
[14] is partly motivated by the work of [13] and partly to clarify the sketched
proof in [10] on showing undecidability of secrecy by reduction from PCS (Post
Correspondence Problem).

In [11] and [10] the authors use MSR (multi-set rewriting) to analyze proto-
cols. In these papers the focus is on bounding the symbolic size of each message
instance that can appear in a run of the protocol, and the number of messages in
? Research supported in part by NSF grants CCF 0306475 and DUE 0313880.

Secrecy Checking of Protocols: Solution of an Open Problem

95

every role of the protocol is bounded. When the total number of distinct nonce
instances that can be generated by regular principal instances is unbounded,
and the symbolic message size of all messages instances are bounded by a num-
ber, secrecy verification is undecidable. The proof is by a two-stage reduction
from the halting problem of a Turing machine with the style of Turing machine
tableau to Horn clause theories without function symbols and then from Horn
clause theory to protocols specified as a set of roles. When the attacker can
generate unbounded number of nonces and the regular agents can record nonces
and check the uniqueness of each received nonce in a run, and a run can have
unbounded number of role instances, the complexity of checking secrecy is an
open problem [10] [11]. The open problem is stated precisely in theorem 1.

In [13] the authors show that the undecidability result of [10] can be proved
more directly by a reduction from the reachability problem of a 2-counter ma-
chine to the secrecy checking problem of a protocol as a set of roles (we call
the protocol role-oriented). In addition, by replacing unique nonces with unique
composite terms, [13] proved the undecidability of secrecy checking when the
symbolic size of message instances are unbounded, while the nonce instances
generated in the run are bounded (in fact, no nonce generation is required).

In a recently published paper [15], Froschle showed that the secrecy problem
is NEXPTIME-complete of for a setting (problem 4 of [15]) where disequality
tests are allowed and only bounded number of nonce can be used (can appear) in
role instances (called sessions in [15]) executed by regular agents. The motivation
to consider disequality tests is that the unbounded set of nonces generated by an
attacker is not necessarily reducible to a bounded set of terms trivially because
of disequality tests. Although in [15] the author mentioned that problem 4 is
pointed out by [10], it does not match the description of the open problem of
[10] (quoted in the appendix of this paper) in two ways. First, the disequality
tests in problem 4 can only apply to terms occurring in the same role instance,
while the ‘disequality test’ in the open problem are used by an agent trying
to enforce freshness of a term and should be applied to terms recorded across
different role instances. Second and more importantly, the open problem does
not assume that “the number of fresh data used in honest sessions is bounded”
as in problem 4. The notation of “bounded ∃” in [10] means bounded number of
nonces are generated by role instances, and not that the total number of nonces
in role instances is bounded. This assumption will make the open problem (also
problem 4) obviously decidable. Since the messages sizes are bounded in a run,
and assuming agent names and terms other than nonces are bounded, although
unbounded number of role instances are allowed, only bounded many distinct
role instances (with different messages) will appear in the run. So problem 4
is reduced to a setting with bounded number of role instances (note that we
only need to consider role instances executed by regular agents), independent of
whether disequality tests are allowed or not, a decidable situation. Interestingly,
the authors of [10] conjectured that the open problem is undecidable (page 71
of [11]).

FCS-ARSPA’07

96

Freshness check of [14] means that in any situation where a nonce is received
by a regular agent that should be freshly generated according to the protocol it
must indeed be fresh, that is, different from all terms appeared so far in a run.
One difference between the freshness check and the open problem disequality
test of [10] is that the authors do not explain the implementation aspects of the
freshness check, whereas the open problem considers the internal operations of
agents trying to ensure freshness. The second difference is that freshness check
is global to all terms that appeared in a run so far, whereas our uniqueness
check that implements the disequality test of [10] only ensures freshness local
to individual agents. Recording terms in the memory of individual agents seems
to be the only way to implement freshness check. The third difference is that
freshness check of [14] ensures a nonce to be different from all terms appearing in
a run so far, whereas the open problem only requires the uniqueness of a nonce
among all nonces. Our proof, which considers uniqueness check described later,
can easily be adapted to show the undecidability in the corresponding setting
where ‘freshness check’ of [14] is assumed. To prove this, the adjustment to our
proof is to design a protocol such that every message must go through a special
server s, who records every subterm appeared so far in the run. It is possible
that this setting has been considered in [16] but we are unable to verify this
since this paper is still not available to us so far upon request to the authors.

Two factors are crucial for us to solve the open problem. First, we model the
problem carefully and second, we utilize an improved and more direct reduction
scheme, from 2-counter machines to security protocols. We give a rigorous and
complete proof of correctness of the reduction. Our scheme is also applicable
beyond the open problem. Our reduction scheme using 2-counter machine is
inspired from [13]. However there are key differences. The paper [13] dealt with
different problems, not the open problem. Because of the constraints of the
open problem, we cannot use their scheme directly and need new ideas such
as stamping nonces with agent id’s. Moreover, we have found and fixed two
errors in the reduction of [13]: a counter can be negative, and zero can be used
as a positive number. Details of the errors and our fixes are included in the
appendix of [17] The proof of correctness of the reduction in [13] is sketchy and
consequently misses the two errors.

2 Notations and Modeling

We introduce our notations and modeling here. A more detailed description of
them can be found at [17]. Notations are chosen in a style that is commonly
used in the literature, e.g., [2]. The notations for asymmetric keys are new.

A term is either an atomic term or a composite term. An atomic term is a
variable (represented by a symbol with at least one upper case letter), and a
constant (a symbol without any upper case letter). A special constant is I, the
name of the attacker. Asymmetric keys are atomic terms. A pair of asymmetric
keys is represented as k1

X and k0
X . X is the unique ID (UID) of the asymmetric

key pair. When X is the name of an agent, k0
X and k1

X represent the established

Secrecy Checking of Protocols: Solution of an Open Problem

97

private key and public key of the agent X, respectively. This notation can also
be adapted to describe the asymmetric keys generated during a run. A composite
term is a list, or an asymmetric encryption, or a symmetric encryption. A list
has the form of [X,Y, · · ·], where X and Y are terms and the list contains
finite number of member terms. A list is a simpler representation of a sequence
of nested pairs. For example [W,X, Y, Z] is the same as [W, [X, [Y, Z]]]. When a
message is a list, the top level enclosing [] is omitted. An asymmetric encryption,
has the form of {T}→

ki
A
, i ∈ {0, 1}, where T is the encrypted term, and ki

A is the

atomic encryption key, and it can be decrypted using the key k1−i
A . A symmetric

encryption has the form of {T}↔Y , where T is the encrypted term and Y is
term working as the encryption key (Y could be a composite term). For both
asymmetric or symmetric encryption, when a list, say [X,Y, Z, · · ·] is encrypted,
the enclosing square brackets are removed from within “{ }”. The word ground
means variable free. A message is a term. Every message appearing in a run of
a protocol is a ground term.

The attacker model is, as usual, the Dolev-Yao model [1]. There are different
equivalent formalizations for the Dolev-Yao model, such as (not a comprehensive
list) Paulson’s [18], Multiset Rewriting (MSR) [10], Constraint Solving [19], and
Strand Space [20]. Our model is somewhat similar to Paulson’s [18] where a
run is represented as a trace which is convenient for proofs based on induction.
We will clarify the unique features of our model, which are needed for the open
problem.

A clear consensus of modeling can be described as follows. A protocol can
be described as a set of roles, each role is a sequence of actions steps of message
sending or receiving executed by an agent. A run E is a sequence of actions
steps formed by interleaving (prefixes of) role instances (called strands in [20])
executed by regular agents, where before every message Msg can be received
by a regular agent at a certain point of the run, say after E′ which is a prefix
of E, the attacker I must be able to construct Msg, or Msg ∈ knowI(E′).
Here knowI(E′) represents the knowledge of the attacker built from a set well-
known analysis and synthesis rules [18] on the messages appeared in E′ and
the attacker’s initial knowledge initI . The secrecy checking protocol is to check
if a secret term Sec can be leaked, or Sec ∈ knowI(E) after a run E of the
protocol. The formal proof of our reduction is based on the formal definitions
of a protocol run and knowI(E), and should be independent to different but
equivalent choices to define them. A reader familiar with the formal concepts of
protocol run and attacker’s knowledge can directly verify the correctness of the
proof assuming their own definitions of run and knowI(E).

In the reduction proofs of undecidability of published papers such as [9] [10]
[13] [14] and NP-hardness [5] [6], a constructed protocol is presented directly as
a set of roles, we call them role-oriented (RO) protocols. However we call these
protocols non-matching, since they do not correspond to protocols in the form
of a sequence of message exchanges, such as those in [21]. For compatibility with
other papers and especially with [11] and [10], which describe the open problem,
in this paper a protocol presented is RO and non-matching.

FCS-ARSPA’07

98

An agent is a tuple [name, init,mem], where name is its unique name, init
is its initial knowledge (a set of terms), and mem is the set of terms that it
has remembered so far in the current protocol run. The mem field is essential
to explain the open problem. The different patterns of the initial knowledge of
agents will be defined in the protocol. Regular agents means honest agents.

An action can be an internal action or an external action . Let P , A,
and B be agent names. The internal action of fresh term generation is denoted
as #P (t1, t2, · · ·), where t1, t2, · · · represent the fresh terms like nonces (they
should be different from all other terms appeared in the run so far) generated by
agent P before P sends a message that contains these fresh terms. An external
action can be a message sending or a message receiving. The action of agent
A to send a message Msg, when the intended receiver is B, A 6= B is denoted
as +(A ⇒ B) : Msg. The action of agent A to receive a message Msg from
a supposed sender B, A 6= B, is denoted as −(B ⇒ A) : Msg. Some internal
action can be implicitly described by the protocol code, such as equivalence
checking for the values of the same term. However, some other internal actions
cannot be expressed implicitly. In this paper, the only kind of internal actions
explicitly expressed in the action code are the fresh term generations. Some other
internal actions, such as uniqueness check of terms, when they are required to
be expressed, such as those required by the open problem, are described in the
conditions of a specific role of the protocol.

An action step is a sequence of actions. It has four forms. 1) #I(term1,
term2,· · ·); 2) +(A ⇒ B) : Msg; 3) −(B ⇒ A) : Msg; 4) #A(t1, t2, · · ·)
+(A ⇒ B) : Msg; 1) is executed by I, while other three can be executed by
both a regualar agent or I. 4) is the only kind of action step that is a sequence
of more than one action.

A role or role template or role type, is a tuple [RID, agent, vars, acts,
conds], where RID is the UID of the role, which is a constant, agent is the the
agent who will execute the role template, vars is the set of variables that appear
in acts or conds (the other atomic terms appearing in the role are constants),
acts is the sequence of action steps numbered sequentially starting from 1, and
conds is the internal actions that are not implicitly expressible by the acts.
The notation n.pre : (cond1, cond2, · · ·) represents the conditions that should
be checked and satisfied before the nth action step (before accepting a received
message, or before sending a message) is executed, where n is an action step
number. The statement n.post : (cond1, cond2, · · ·) describes the conditions that
are enforced to be satisfied after the nth action step is executed to update the
properties of agents. Especially, when a condition X ∈ Q is included in n.pre,
it means to check term X is in set Q before the nth action step. Q should be
defined in the context of the protocol or the role. If X ∈ Q appears in n.post it
means to insert term X into set Q after the nth action step.

A role instance is a tuple [agent, role, vmap, acts], where agent is the agent
who executes the role instance, role is the role template for this role instance,
vmap is a ground substitution, (note thatvmap(role.conds) should be satisfied),
and acts is the sequence of (ground) action steps, and acts = vmap(role.acts).

Secrecy Checking of Protocols: Solution of an Open Problem

99

A protocol Pro is a tuple [PID, roles, AN, rsts], where PID is the UID
of the protocol (a constant), roles is a set of role templates, AN is the set of
agent names (insiders) which are to be instantiated in the setting of a run, rsts
is the restrictions describing the initial knowledge and initial memory (indicated
as meminitial) of the agents, and definitions of some related sets if needed, such
as the a set of terms shared by a certain group of agents.

A Dolev-Yao attacker [1], or an attacker for short, is a tuple [name,
initI , knowI], where by convention name = I, initI is the initial knowledge
of the attacker, and knowI is a function. After a sequence E of action steps
has been executed, knowI(E) is the set of terms that the attacker can obtain.
knowI(E) is calculated as the closure of a applying a set of well-known rules of
term synthesis and analysis as showed in [18]. Details of these rules are presented
in [17].

A run is a tuple [Pro, D, R, AN, E, conds], where Pro is the protocol, D
is the initial knowledge pattern of the specific Dolev-Yao attacker, R is a set of
role instances that are executed honestly by regular agents, AN is the names of
the agents who can legally participate in a run (AN instantiates Pro.AN), E is
a sequence of actions steps, which is called a trace in Paulson’s model [18], and
conds is the set conditions required for a run of the protocol. conds includes the
conditions described below together with the definition of insider and outsider.
1) Pro.rsts should be satisfied. That is, the initial knowledge of every agent in
AN are assigned with a set of ground terms according to Pro.rsts
2) For each role instance prefix r in R, r.agent.name ∈ AN , and r.agent.name 6=
I, The action steps of r.acts are included in run.E preserving the relative order.
3) For each X ∈ E executed by some regular agent, X ∈ r.acts, for some r ∈ R.
4) Each agent with its name included in AN is called an insider . Especially, if
I ∈ AN then I is an insider attacker , then I’s initial knowledge patter should
be the same as (some) other regular agents as specified by Pro.rsts. Otherwise if
I /∈ AN , I is an outsider , and then we assume the attacker’s initial knowledge
pattern D will instantiate I.init by a set of ground terms that is a subset of the
initial knowledge of every regular agent (insiders), usually only the agent names
and public keys of the regular agents and some constants that is known to every
agent.
5) Let W � X represent a sequence formed by appending an element X to a
sequence W . For a prefix of E, call it E′ and it is a sequence of action steps,
suppose E′ = W �X, X ∈ r.acts for some r ∈ R. If X = −(A⇒ B)msg, where
B is the name of a regular agent , then msg ∈ knowI(W).
6) For a fresh term X that is generated by I, the action #I(M), where M is a
list of terms including X, is explicitly included in run.E before X can appear
in any message receiving action step by a regular agent.

We present some explanations of the above conditions to define a run. For 2),
only the behavior of regular agents are organized into role instances. Although
the attacker can execute a role instance normally as a regular agents, its behavior
are covered by the Dolev-Yao model, and we only need to care about condition
5), that is, I can obtain every message before it can be received by a regular

FCS-ARSPA’07

100

agent. For 4) we assume an outsider’s initial knowledge should be less than any
insider. Condition 6) is included for the convenience of describing knownI(E),
since the terms generated by I should be used to build the knowledge of I.
Note that we do not need to explicitly record the message sending actions of the
attacker.

We assume every run has an implicit stage to distribute keys and establish
the initial knowledge of agents.

The set of all possible runs of a protocol Pro, with a specific initial knowledge
pattern D of the attacker, is indicated as runsD:Pro. Given a protocol Pro, and
a specific D, and a set of secret terms SEC, A secrecy problem is to check the
validity of the following statement.

∃run,∃X, run ∈ runsD:Pro, X ∈ SEC : X ∈ knowI(run.E)

3 Solution of the Open Problem

In this section, we present the solution to the open problem. We are considering
the lower bound of complexity. In other words, we show that given a set of
conditions, in the worst case the problem is undecidable, and the theme is not
relevant to the special cases that secrecy problems are decidable.

The open problem is described in [10] and [11], and is precisely stated in
Theorem 1. Appendix A discusses it in more detail.

The protocols considered by [10] are bounded, which means two bounds.
First, the number of messages in a role template (and also in a role instance),
called the role length, is bounded. Second, the size of a message instance (the
number of ground atomic terms appearing in a message, which is a term) that
can appear in a run of the protocol is bounded. In other words, only the runs
with bounded size of message instances are considered.

Note that, in the scenario of the open problem, nonce generations depend
on the attacker, and the attacker can always use a composite term as a nonce.
So type flaw is not avoidable. Note that in the proof we allow Ch and C−1

h to
be instantiated by a pair, where h ∈ {1, 2}. However, if we make a stronger
requirement so that the open problem only considers runs of a protocol where
no type flaw can occur, which means every variable can only be instantiated by
an atomic term in a run considered, it is still undecidable. To prove this, we
only need to adjust the protocol code in the proof and replace Ch and C−1

h with
pairs like [A,Ch] and [B,C−1

h], and then encode 0 with a pair [A, z] instead z,
and then adjust the messages of the protocol accordingly. The rest of the proof
is the same.

We need to ensure that a 2-counter machine can reach its final state if and
only if there is a run of the corresponding protocol (constructed from the 2-
counter machine) in which the secret term is leaked.

Definition 1. A deterministic 2-counter machine [22] with empty input is
a pair (Q, δ), where Q is a set of states including the starting state q0 and the
accepting state qfinal and δ is a set of transition rules. A configuration of a

Secrecy Checking of Protocols: Solution of an Open Problem

101

2-counter machine is a tuple (q, V1, V2), where q is the current state and V1

and V2 are two non-negative integers representing the two counters. The 2-
counter machine can detect whether a counter is 0 or not. A transition rule,
(call the rule T ∈ δ) is of the form [q, i1, i2] → [q′, j1, j2], where q, q′ ∈ Q;
i1, i2 ∈ {0, 1}; j1, j2 ∈ {−1, 0,+1}. An application of T can be described as
(q, V1, V2) −→T (q′, V ′1 , V

′
2), where LHS and RHS are the configuration before

and after the transition respectively. For h ∈ 1, 2, when ih = 0, it means that
Vh = 0. When ih = 1, it means that Vh > 0. When jh = +1 (jh = 0, jh = −1),
it means that after the transition, V ′h = Vh + 1 (V ′h = Vh, V ′h = Vh − 1). Espe-
cially, when jh = −1, ih must be 1, since decrementing 0 is not allowed. The
reachability problem of such a 2-counter machine is to decide that, starting from
the initial configuration (q0, 0, 0), after applying some applicable transition rules,
whether some final configuration (qfinal, ,) can be reached, where represents
an arbitrary possible value. We assume (for convenience) that q0 6= qfinal and,
for nontriviality, that δ is not empty.

It is obvious that a 2-counter machine allowing q0 = qfinal can be equivalently
simulated by a 2-counter machine defined above, and the reachability problem
of 2-counter machines defined above is undecidable.

Theorem 1. The open problem of [10] is undecidable. Specifically, checking se-
crecy is undecidable, assuming: (i) the protocol has bounded number of messages
in a role (role length), (ii) considering only the runs where the sizes of messages
are bounded, (iii) the number of role instances in a run of the protocol is un-
bounded, (iv) regular agents can generate only bounded number of nonces, (v)
the attacker can generate unbounded many nonces, (vi) the internal action of
disequality test on two terms is allowed, (vii) considering only the runs where
the number of agents is bounded, and (viii) when a term is supposed to be freshly
generated nonce and is received by some regular agent, who records every nonce
encountered, it must be different from all other terms the agent has recorded so
far in the run, and then it is recorded by the agent.

Proof. We translate an arbitrary 2-counter machine into a protocol which fits in
the scenario of the open problem. Every role has a different scope of variables. So
a variable in role is independent of the variable with the same name in another
role.

Given a 2-counter machine M = (Q, δ), let Q = {q0, qfinal, q1, q2, · · · , qm}
and δ = {T1, T2, · · · , Tn}. The following is the description of the protocol Pro
constructed according to M .

The messages received in a role is in the format of: sender, receiver, receiver′s
role, · · · , so the receiver of the message has clear hints to understand the message
and know what he should do. The variables B, Afinal, A0, Af , for 1 ≤ f ≤ n
are agent names. We differentiate the namess of the variables representing the
executors of different roles, including Afinal, A0, Af , 1 ≤ f ≤ n, for the clarity
of the presentation, although a single variable can be used in different roles. B
represents some agent talking with the executor of every role.

FCS-ARSPA’07

102

The set of secret term SEC is defined in Pro.rsts, which is initially known
by every regular agent but the attacker. We specify the secret term Sec as a
variable, instead of constant in the messages of a role, for a practical concern, so
even though the attacker knows the protocol code, the attacker does not know
the instance of Sec unless a role instance of Rfinal can be executed in a run,
where Sec will be instantiated by a member of SEC.

In a role executed by an agent A, for the variables whose values are not
determined by the agents other than A, we can categorize these variables in
three kinds depending on A’s different treatment to them. 1) The set of terms
which A must check that they belong to the A.init, such as the agent names. 2)
The set of terms which A does not care about whether A has seen them already
or not, such as Ch and C−1

h , no matter they should be nonces or not. 3) The set
of terms which A must check its uniqueness (where the disequality 6= applies),
i.e., A has never seen it before, such as C+1

h . We will adapt the proof to show in
theorem 2 that when the variables of kind 2) are not allowed, the open problem
is still undecidable.

Pro = [PID, roles, AN, rsts]. PID is arbitrary. roles = {R0, Rfinal, R1,
R2, · · · , Rn}.
– R0 = [RID, agent, vars, acts, conds]
• RID = r0; agent = [name, init, mem]; vars ={A0, B}
• acts = 1. + (A0 ⇒ B) : A0, B, {q0, z, z}→k0

g1

• conds = { 1.pre : (q0, A0, r0, B, k
0
g1} ⊆ init, agent.name = A0, {A0, B} ⊂

AN,A0 6= B) }
– Rfinal = [RID, agent, vars, acts, conds]
• RID = rfinal; agent = [name, init, mem]; vars = {Afinal, X, Y, B,
Sec}.

• acts=1. − (B ⇒ Afinal) : B,Afinal, rfinal, {qfinal, X, Y }→k0
g1

2. + (Afinal ⇒ B) : Afinal, B, Sec

• conds =1.pre : ({qfinal, Afinal, rfinal, B, k
1
g1} ⊆ init,

agent.name = Afinal, {Afinal, B} ⊂ AN, Afinal 6= B));
2.pre : (Sec ∈ init, Sec ∈ SEC) }

– For each Tf ∈ δ, for some f , 1 ≤ f ≤ n, suppose Tf = [q, i1, i2]→ [q′, j1, j2].
Rf ∈ roles. Rf can be constructed according to Tf by the following descrip-
tion. Rf = [RID, agent, vars, acts, conds].
• RID = rf . agent = [name, init,mem]. vars = {Af , B, C1, C2, C

−1
1 ,

C+1
1 , C−1

2 , C+1
2 }.

• acts: The following is the template of acts. The exact action sequence
of each Rf will be adjusted by the specific Tf and a set of rewrite rules.
Note that q, q′, i1, i2, j1, j2 may represent different constants for different
f , according to the 2-counter machine specification. The variables C ′1
and C ′2, which represent the new counter values, will only be used in the
template and they will not appear in the actual code of the Rf , since

Secrecy Checking of Protocols: Solution of an Open Problem

103

they will be replaced by other terms after applying the rewrite rules.
1. −(B ⇒ Af) : B,Af , rf , {q, C1, C2}→k0

g1
, {C−1

1 , C1}→k0
g2
,

{C−1
2 , C2}→k0

g2
, C+1

1 , C+1
2

2. +(Af ⇒ B) : Af , B, {q′, C ′1, C ′2}→k0
g1
, {C1, [Af , C

+1
1]}→

k0
g2
,

{C2, [Af , C
+1
2]}→

k0
g2

For h ∈ {1, 2}, the following rewrite rules are applied to adjust the above role
template to make each individual transition role Rf according the corresponding
transition rule Tf of the 2-counter machine. Each rewrite rule is described as
“condition Z⇒ effects”.
1. ih = 0 Z⇒ Ch � z; {C−1

h , Ch}→k0
g2

� ε

2. ih = 1 Z⇒ {C−1
h , Ch}→k0

g2
∈Msg1

3. jh = +1 Z⇒ C ′h � [Af , C
+1
h]; C+1

h ∈Msg1; {Ch, [Af , C
+1
h]}k0

g2
∈Msg2

4. jh = 0 Z⇒ C ′h � Ch; {Ch, [Af , C
+1
h]}→

k0
g2

� ε; In Msg1 C
+1
h � ε

5. jh = −1 Z⇒ C ′h � C−1
h ; {Ch, [Af , C

+1
h]}→

k0
g2

� ε; In Msg1 C
+1
h � ε

W � V means to replace W with V in the above action code template of Rf .
W � ε means to remove W . W ∈ Msg1 means the assertion that the term
W will appear in message 1. An implicit rule is that any term in the template
of Rf .acts which is not removed or changed will still appear in the code. We
emphasize that a term will appear in a message in some rule, even without
explicitly saying so, the fact should still hold. If in Rf some variables will not
appear in the actions since they will be removed by applying the rules, then these
variables will also be removed from other fields such as Rf .vars and Rf .conds.
If a rule is only applied to Msg1, it is labeled with “in Msg1”. h ∈ {1, 2}. Here
is the explanation of the above rules.

1. Counter value 0 must be represented by z. There is no previous value for
counter value 0 so no “number connection” term {C−1

h , Ch}→k0
g2

is required
in the role.

2. When a counter is positive, we emphasize that there must be evidence that
it has a preceding nonnegative value. This rule is redundant since a default
rule is that any term that is not removed from the template will still be
there.

3. When a counter is incremented, the variable C ′h is replaced by a new pair
[Af , C

+1
h], where C+1

h is new nonce received by Af . Note that in a run C+1
h

is provided by the intruder who impersonates Bf . The history records that
the new counter value is incremented from its precedent is represented by
the term {Ch, [Af , C

+1
h]}→

k0
g2

.
4. When a counter is kept the same, neither the new nonce nor the record of

increment is needed.
5. When a counter is decremented, the variable C ′h is replaced by the preceding

counter representation. The new nonce and the record of incremented counter
are not needed. When jh = −1, ih must be 1 (and rule 2 applies) if Tf is a
valid transition rule of M .

FCS-ARSPA’07

104

The rewrite rules are applied as much as possible. For example, when ih = 0
and jh = 0, rule 4 is applied to change C ′h to Ch, and then rule 1 is applied to
change Ch to z. In the rules 4 and 5, the label “In Msg1” is to make sure that
after C+1

h � ε is applied, {Ch, [Af , C
+1
h]}→

k0
g2

� ε is still applicable to Msg2. So
the order of rule application is not relevant. Some examples are showed in the
appendix of [17] .

The conditions of Rf (Rf .cond), 1 ≤ f ≤ n, is the follows.
– conds = { 1.pre : (C+1

1 6= C+1
2 , C+1

1 /∈ mem, C+1
2 /∈ mem,

agent.name = Af {B,Af , rf , q, k
1
g1, k

1
g2} ⊂ init,

{Af , B} ⊂ AN, Af 6= B);
1.post : ({C+1

1 , C+1
2 } ⊆ mem); 2.pre : ({k0

g1, k
0
g2} ⊂ init); }

We continue to finish describing remaining fields of Pro.
* AN are to be instantiated in a run of Pro.
* rsts = { pk = Q∪AN ∪{r0, rfinal, r1, · · · , rn}∪{z, k1

g1, k
1
g2}; Let SEC

be a set of terms. SEC ∩ pk = {}; gk = {k0
g1, k

0
g2} ∪ SEC; ∀P (P ∈ CA) :

P.init = pk ∪ gk, P.meminitial = P.init }
The initial knowledge pattern D of I’s initial knowledge (as an ousider)

considered in this proof is: init.I = pk, where pk is defined in Pro.conds.
We show that the constructed protocol and the proof satisfies the bounds

imposed by the open problem, before we show further details of the reduction.
Note that no regular agent will generate any fresh nonce, so the nonces generated
from regular agents are trivially bounded. All of the nonces, which instantiate
C+1

h , h ∈ {1, 2}, in every role instance of Rf , are unbounded many, and can only
be generated from the attacker I. Every role has at most two action steps, so
the role length is bounded by two. The message size in a run is bounded by any
number equal to or greater than 15, the size of the first message of Rf , for some
f , 1 ≤ f ≤ n. And every regular agent is required to do the uniqueness check
of each term received that is supposed to be fresh nonce. The number of agents
can be bounded by three, since in the proof (direction 1) we only assume two
regular agents a and b in a run, while the intruder I is the third agent in a run.

As explained in the introduction section, the protocol is a non-matching role
oriented one. The attacker is an outsider as described by the following paragraph.

A symmetric key is used as the encryption key in [13] [10] [6], which is
known to all the regular agents (who are insiders) but unknown to the attacker
(who is an outsider). So the attacker can neither construct an encryption, nor
understand it, which could make it not practical for attacker to deploy an attack.
In the proof of this paper we also consider the attacker is an outsider and we
choose asymmetric keys k0

g1 and k0
g2 as the encryption keys, which are unknown

to the attacker, but known to all of the regular agents. g1 and g2 are the UID
of the key pairs, not agent names. The attacker I knows the decryption key
k1

g1 and k1
g2. So I cannot construct the encryptions, but can decrypt them and

understand them, and easily deploy the attack. Every role can only be executed
by some regular agent since attacker cannot construct the encryptions in the
messages.

Secrecy Checking of Protocols: Solution of an Open Problem

105

Before we prove the correctness of the reduction, we explain the intuition. If
M can reach a final configuration (qfinal, ,) starting from (q0, 0, 0), then there
is a finite sequence of configurations connected by applicable rules in δ. Call this
computation of M , Comp, which can be written as

(q0, 0, 0) −→t1 (Q1, V 1
1 , V

1
2) · · · (Qw, V w

1 , V
w
2) −→tw+1 (Qw+1, V w+1

1 , V w+1
2)

· · · −→tu (qfinal, V
u
1 , V

u
2)

where w, u > 0, t0, tw, tu ∈ δ, and u is the number of transitions in Comp.
After running a sequence of action steps E, we say a term X is the encoding

of a positive integer N , if and only if there is a sequence of terms:
{z,X1}→k0

g2
, {X1, X2}→k0

g2
, {X2, X3}→k0

g2
, · · · , {XN−2, XN−1}→k0

g2
, {XN−1, X}→k0

g2

such that for each element T of this sequence T ∈ knowI(E). Here X and Xl,
for some integer l, 1 ≤ l ≤ N − 1, are different variables that can represent any
terms (could be composite terms). We call N the i value of X (i stands for
integer), or X is the encoding of N , denoted as N = X. We say X encodes N .
The above term sequence is called the encoding sequence of X. The encoding
sequence of z is z.

The encoding of 0 is the special constant z. So 0 = z. A positive integer is
encoded by a pair [A,X], where A is an agent name and X is a nonce. The
encodings of numbers are connected in an encryption to show the consecutive
order between numbers. {X,Y }→

k0
g2

means that X = Y − 1.

For the E of a run, let E = W �X. If the last action setp X of E is to receive
a message Msg, we will show that Msg ∈ knowI(W).

Direction 1 : Suppose M can reach a final configuration (qfinal, ,) from
the initial configuration, we prove that there is a run, call it run, such that
Sec ∈ knowI(run.E) for some term Sec ∈ SEC. We prove this direction by
constructing run.

run = [Pro, D, R, AN, E, conds]. Pro: the protocol just described. R:
A role instance r will obviously be included in R when some actions of r will
be included in E when we show the proof. AN = {a, b}. Only two agents are
enough here to instantiate the sender and receiver variables in each role. E: The
action sequence is described below. conds: SEC is instantiated by {sec}. So sec
is the only secret ground term. we will justify that is every message received by
a regular agent can be constructed by the attacker.

Now we focus on describing run.E, which can be divided into three parts: the
starting, the transition, and the finishing. We build run.E by appending actions
to run.E, starting from an empty sequence.

We need to prove that the constructed run is a run, we only have to show two
things. First, given a role instance r (executed by a regular agent) of the run,
the internal actions and conditions described by r.role.conds should be satisfied.
Particularly, all the instantiation of nonce variables should pass the uniqueness
checking by the agent who executes the role instance. This is obvious since in
the run all nonce variables are instantiated by nonces freshly honestly generated
by the attacker, who can generate unbounded many fresh nonces and has no
problem to do it.

FCS-ARSPA’07

106

Second, we need to show that if a message msg is received by in a regular
role instance r, say at the end of an action sequence E′, E′ = W � X, then
msg ∈ knowI(W). We only need to explain this aspect. A regular agent will
receive a message either in a role instance of R0 or of a Rf , 1 ≤ f ≤ n, or of
Rfinal. We will show that this condition is satisfied when we add an action of
message receiving to run.E.

The starting action steps. At the beginning of run.E, we choose a role
instance of R0, call it r0, which means that r0 ∈ run.R, r0.agent.name = A0.
A0 is instantiated by a B is instantiated by b. The first action of run.E is:
+(A0 ⇒ B) : A0, B, {q0, z, z}→k0

g1
.

The transition action steps. Suppose wth step in Comp is (q, V1, V2) −→t

(q′, V ′1 , V
′
2), where 0 ≤ w ≤ u, and t ∈ δ. If according to t, j1 = +1 or j2 = +1,

which means that V1 + 1 = V ′1 or V2 + 1 = V ′2 , the following action of nonces
generation by I is appended to run.E: #I(cw1 , c

w
2), where cw1 and cw2 are two

fresh nonces. Otherwise, this action is not appended to run.E.
The transition rule t corresponds to a transition role in the protocol, say Rf ,

where 1 ≤ f ≤ n, and Rf ∈ Pro.roles. A role instance of Rf is included in the
run for the wth transition of the 2-counter machine, call it rw. Then rw ∈ run.R,
rw.role = Rf . The 2 actions of rw are appended to run.E. According to pro,
the two actions have the following general form.
−(B ⇒ Af) : B,Af , rf , {q, C1, C2}→k0

g1
,{C−1

1 , C1}→k0
g2
, {C−1

2 , C2}→k0
g2
, C+1

1 , C+1
2

+(Af ⇒ B) : Af , B, {q′, C ′1, C ′2}→k0
g1
, {C1, [Af , C

+1
1]}→

k0
g2
, {C2, [Af , C

+1
2]}→

k0
g2

We have to specify for each variable in Rf its ground instantiation term. Af

and B are instantiated by a and b respectively. I impersonates B to send the
first message to Af . C+1

h is instantiated by cwh , which is just freshly generated
by I, for h ∈ {1, 2}. Now the variables in the above message template remaining
to be instantiated in rw are Ch, and C−1

h , with h ∈ {1, 2}. We do not need to
specify C ′h, since it will be replaced by one of C−1

h , Ch, or C+1
h depending on

the specific role Rf .
Let Ew be the prefix of run.E which ends immediately before the first action

of rw. We require that the instantiation of Ch must encode Vh, denoted as
Vh = Ch, for h ∈ {1, 2}, after running Ew. q and q′ are the same as the state
names appearing in t. Intuitively speaking, we require {q, C1, C2}→k0

g1
to encode

the configuration (q, V1, V2). If C−1
h will appear in rw, we require that C−1

h

encodes Vh − 1.
Let Msgw be the message received by the first action of rw. Now we need

to show that Msgw ∈ knowI(Ew). If [Af , C
+1
h] appears in Msgw, then by the

design of the protocol, it must be true that in the transition t of the 2-counter
machine, jh = +1. Then by the construction of the run, cwh is just freshly gener-
ated by I. So C+1

h , which is instantiated by cwh is in knowI(Ew). Af is initially
known by I. So [Af , C

+1
h] ∈ knowI(Ew), for h ∈ {1, 2}. we only need to jus-

tify that the required terms {q, C1, C2}→k0
g1

, and {C−1
h , Ch}→k0

g2
(if it appears in

Msgw), are included in knowI(Ew).

Secrecy Checking of Protocols: Solution of an Open Problem

107

We prove this by showing a stronger result below. It is obvious that if Lemma
1 is proven, then Msgw ∈ knowI(Ew) is justified.

Lemma 1. For the role instance rw and the transition steps of M just described,
the following three facts are true.
1. There exists {q, C1, C2}→k0

g1
∈ knowI(Ew), such that V1 = C1 and V2 = C2.

2. For h ∈ {1, 2}, if Vh > 0, then {C−1
h , Ch}→k0

g2
∈ knowI(Ew), such that after

running Ew, Vh − 1 = C−1
h .

3. After running the two action steps of rw, we call the executed action se-
quence so far Ew′

. For Ew′
, V ′h = C ′h, for h ∈ {1, 2}. And {q′, C ′1, C ′2}→k0

g1
∈

knowI(Ew′
).

This lemma can be proven by induction on the length of the computation of
M . The details are included in [17].

The finishing action steps: A role instance of Rfinal, call it rfinal, is
included in run.R. The following two actions of rfinal are appended to run.E.
−(B ⇒ Afinal) : B,Afinal, rfinal, {qfinal, X, Y }→k0

g1

+(Afinal ⇒ B) : Afinal, B, Sec
Afinal and B are instantiated by a and b respectively. X and Y can be

instantiated by any terms. Sec is instantiated by sec. Let Efinal be the prefix of
run.E that ends immediately before the first action of rfinal. In order to show
that the first message of rfinal ∈ knowI(Efinal), we only need to show that
{qfinal, X, Y }→k0

g1
∈ knowI(Efinal), the other terms are included in initI . Since

we assume the 2-counter machine can reach a final configuration (qfinal, ,),
the last transition step must have the form (q, V1, V2) −→t (qfinal, V

′
1 , V

′
2). It is

proven by Lemma 1 that the last transition action (the uth) will produce a term
{qfinal, C

′
1, C

′
2}→k0

g1
, where V ′h = C ′h, for h ∈ {1, 2}.

It is obvious that at end of run, sec ∈ knowI(E). Direction 1 is proved.
Direction 2 : We have to show for any run, run ∈ RunsD:Pro, if sec ∈

knowI(run.E), then the 2-counter machine M can reach a final configuration
(qfinal, ,).

The following observations are easy to verify. Due to limit of space, detailed
explanation are included in [17].

Observation 1 : First, every encrypted term is constructed by a regular agent.
Second, two encrypted terms appearing in run with different format cannot be
unified and cannot be used interchangeably because of different encryption keys.

Observation 2 : A term of the form {X, z}→
k0

g2
will never be generated in the

run. If it can be generated, z must be a freshly generated nonce, impossible.
Observation 3 : Given any term X, X can appear at most once in a term of

the form {Y,X}→
k0

g2
. Assuming the contrary, we can see that X must have the

form of [A, T], where T has been accepted by the same agent A as a fresh nonce
twice, impossible.

Observation 4 : For every termX, there can be at most one encoding sequence
of X, and therefore X can only encode at most one number, especially z can

FCS-ARSPA’07

108

only encode 0. We can see this directly by Observation 3. If X is z, then by
Observation 2, there can only be one encoding sequence of z, which is z itself.
For an encoding sequence of X, if X 6= z, then there is at most one term Y can
appear in {Y,X}→

k0
g2

, and then at most one Y ′ can appear in {Y ′, Y }→
k0

g2
, and the

reasoning continues. So X has at most one encoding sequnce.
On the other hand, it is possible that there exist two different terms of the

form {X,Y1}→k0
g2

, and {X,Y2}→k0
g2

, where Y1 6= Y2. In other words, a number can
be encoded by several different terms, while each term can only encode one
number. If we connect the encoding terms together where X is the parent of
Y if there is a term {X,Y }→

k0
g2

appearing in the run, then we can form a tree,

whose top node is z. Every node (a term) of the tree, can have several children
nodes, but can only have one parent node. Each term can appear at most once
as a node in the tree.

Observation 5 : The number 0 can only be encoded by z. By Observation 2,
it is impossible for z to encode any positive number. One concern is that if X
appears in {X,Y }→

k0
g2

where Y encodes 1, and X 6= z, then X could be used as a

term encoding 0. But since 1 is the i value of Y , there must be a term {z, Y }→
k1

g2

by the definition of i value. It is impossible by Observation 3.
We prove direction 2 by proving a stronger result below.

Lemma 2. For an arbitrary run of Pro with the attacker (an outsider, as de-
scribed earlier) for every configuration term of the form {q, C1, C2}→k0

g1
generated

in run (q is any state), it encodes a reachable configuration, say (q, V1, V2), of
the two counter machine M = (Q, δ), in the sense that Vh = Ch, for h ∈ {1, 2}.

This lemma is proven by induction on the sequence of configuration terms
generated in the run. The detailed proof is included in [17].

Now we finish the proof of direction 2. We assume that sec ∈ knowI(run.E).
Then sec must have been sent by a regular agent, since sec /∈ initI . A regular
agent will generate sec only in the second message of a role instance, call if rfinal,
of Rfinal. rfinal needs to receive a term of the form {qfinal, X, Y }→k0

g1
in its first

message, where X and Y are some arbitrary terms. By Observation 1, and by
free term algebra assumption, {qfinal, X, Y }→k0

g1
must be a configuration term. By

Lemma 2, {qfinal, X, Y }→k0
g1

must encode a configuration (qfinal, V1, V2), which
is a reachable configuration to the 2-counter machine. Direction 2 is proved.

To translate a description of a 2-counter machine to the corresponding pro-
tocol Pro can always be done in finite amount of time, since Pro is always
constructed by finitely many symbols. Theorem 1 is proved. ut

The proof can be enhanced to cover a stronger consideration, which could be
a more restricted interpretation of the open problem.

In the proof of theorem 1, when an agent, say A, receives the first message in
a transition role, A does not check the uniqueness of the variables Ch and C−1

h ,
for h ∈ {1, 2}, neither does A check whether Ch and C−1

h belong to the initial
knowledge of A. Theorem 1 deals with a general consideration such that for the

Secrecy Checking of Protocols: Solution of an Open Problem

109

variables received by A which are not created by A and may not be known by
A initially, A will check the uniqueness of some of them, but will not care about
the others. In other words, uniqueness check by A is allowed but not required.
This situation should be consistent to the description of table 1 in Appendix A.

However we have noticed that in the protocols appearing in the proofs of
[10] [11] where the open problem is mentioned, there are only two types of vari-
ables appearing a protocol run: agent names, which must belong to the initial
knowledge of agents, or the nonces (created by regular agents). A stronger con-
sideration is that an agent A will treat all of the variables, which are not names,
received from other agents uniformly as fresh nonces, i.e., A will always check
their uniqueness, and the variables that A does not care about such as Ch and
C−1

h as in the general consideration of theorem 1 are not allowed. Theorem 2
solves the open problem with the this stronger consideration.

Theorem 2. Suppose for a variable, say X, appearing in a role executed by a
regular agent A, and the value of X is not determined by A (X first appears in the
role in a message received by A), A must do one of the two kinds internal actions
to X upon receiving it as follows. 1) A will make sure that X ∈ A.init, e.g., X is
an agent name.; Or 2) A will check that X /∈ A.mem, e.g., X should be treated
a nonce freshly generated by some agent other than A. With this consideration
the open problem described in theorem 1 is still undecidable.

The proof of Theorem 2 is based on the proof of Theorem 1. The detailed
proof is included in [17]. The idea is to create fresh copies of nonces which can
encode counter values already reached in the computation, and then generate
fresh copies of produced configuration terms where the terms encoding counter
values are replaced by fresh and equivalent (in terms of number encoding) nonces.
By organizing a bounded number of agents to execute role instances alternatively,
an unbounded number of fresh copies of terms can be made.

4 Summary

We solve the open problem of Durgin, Lincoln and Mitchell [10] [11] using a
direct reduction scheme from the reachability problem of 2-counter machines.
We give a rigorous proof of correctness and carefully consider the assumptions
and scenarios of the problem. This proof method is applicable beyond the above
result. For example, with extended modeling and adaptation of the above reduc-
tion, we have proved other new and important undecidability results, including
undecidability of checking secrecy for matching RO protocols with an attacker
who is an insider.

References

1. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983) 198–207

FCS-ARSPA’07

110

2. Lowe, G.: An Attack on the Needham-Schroeder Public-Key Authentication Pro-
tocol. Inf. Process. Lett. 56(3) (1995) 131–133

3. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In: TACAS. (1996) 147–166

4. Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in Large
Networks of Computers. Commun. ACM 21(12) (1978) 993–999

5. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: CSFW. (2001) 174–

6. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theor. Comput. Sci. 1-3(299) (2003) 451–475

7. Amadio, R.M., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci. 290(1) (2003) 695–740

8. Comon, H., Cortier, V.: Tree automata with one memory set constraints and
cryptographic protocols. Theor. Comput. Sci. 331(1) (2005) 143–214

9. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Undecidability of bounded
security protocols. In Heintze, N., Clarke, E., eds.: Proceedings of the Workshop
on Formal Methods and Security Protocols — FMSP, Trento, Italy. (july 1999)

10. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting and the complexity of
bounded security protocols. Journal of Computer Security 12(2) (2004) 247–311

11. Durgin, N.A.: Logical Analysis and Complexity of Security Protocols. PhD thesis,
Computer Science Department, Stanford University (March 2003)

12. Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. In:
IEEE Symposium on Foundations of Computer Science. (1983) 34–39

13. Ramanujam, R., Suresh, S.P.: Undecidability of secrecy for security protocols.
Manuscript (July 2003)

14. Ferucio L. Tiplea and C. Enea and C. V. Birjoveanu: Decidability and complex-
ity results for security protocols. In: Verification of Infinite-State Systems with
Applications to Security, IOS Press (2006) 185–211

15. Froschle, S.: The insecurity problem: Tackling unbounded data, http://

homepages.inf.ed.ac.uk/sib/publ.html To be published in 20th IEEE Com-
puter Security Foundations Symposium.

16. Ferucio L. Tiplea and C. Enea and C. V. Birjoveanu: Secrecy for bounded security
protocols with freshness check is nexptime-complete. (2007) To be published in
Journal of Computer Security.

17. Liang, Z., Verma, R.M.: Secrecy Checking of Protocols: Solution of an Open Prob-
lem. Technical report, http://www.cs.uh.edu/preprint (April 2007) Technical
Report UH-CS-07-04.

18. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2) (1998) 85–128

19. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: ACM Conference on Computer and Communications Secu-
rity. (2001) 166–175

20. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. Journal of Computer Security 7(1) (1999)

21. Clark, J., Jacob, J.: A survey of authentication protocol literature: Version 1.0.
Technical report (1997)

22. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages and Computability. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2000)

Secrecy Checking of Protocols: Solution of an Open Problem

111

Table 1. The complexity table provided by [10] of checking secrecy, with added ex-
planation by us. In this table, role length and size of message instances in a run are
assumed bounded. ∃ means nonce generation, 6= means regular agents require unique-
ness check on nonce instances, and disequality test is allowed, while = means that
uniqueness check and disequality test are not allowed.

Bounded
role instance

num.

Unbounded role instance num.
Bounded

total ∃ from
regular agents

Unbounded
total ∃ from

regular agents

I with unbounded ∃ 6= NPC ??? Undec.
= NPC DEXPC Undec.

I with no ∃ 6= NPC DEXPC Undec.
= NPC DEXPC Undec.

A Understanding the open problem

We provide some descriptions of the open problem from [10] and [11]. Further
discussion can be found in [17]

Table 1 shows the complexity results provided by [10] and [11] (Page 282 of
[10] and Page 47 of [11]), with more explanations added by us. In [10] the authors
focus on bounded security protocols, which means message numbers (role length)
in a role is bounded, and only consider runs where message sizes are bounded.

We think the bound on the role length is not essential, since without it all
the complexity results of [10] [11] are still true.

We think assuming “I with bounded ∃” instead of ”I with no ∃” may not
make the above table different, since it seems the proofs of [11] and [10] do not
distinguish the two cases. Some descriptions are quoted here.

On page 48 of [11]: “The series of ??? in the box at the top of column
two indicates an unresolved question for the upper bound in the case
of unbounded roles, bounded protocol existentials, and unbounded
intruder existentials, when disequality tests are allowed.”

On page 259 of [10]: “We do not need to add a condition to test for equality,
because it is expressible by matching the names of the variables in the terms.”

On page 282 of [10]: “These rows are further subdivided into the cases where
the roles can perform disequality tests which would allow them to determine
whether two fresh values are different from each other. The 6= row allows both
equality and disequality tests, while the = row allows only equality tests. In a
protocol, a test for disequality on a nonce would mean the protocol compares a
supposedly fresh nonce it receives against all the other nonces it has received, to
make sure it is actually fresh. If disequality is not allowed, then this test is not
performed.” We think the word “protocol” should be replaced by “principal”,
since a protocol does not receive nonces, while a principal does.

On page 290 of [10]: “Computationally, the meaning of ∃ in MSR 6= is clear -
each value generated by an ∃ is unequal to all others. We have not investigated
the correspondence between logic and MSR 6=.”

FCS-ARSPA’07

112

Authority Analysis for Least Privilege
Environments

Toby Murray and Gavin Lowe

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

{toby.murray, gavin.lowe}@comlab.ox.ac.uk

Abstract. The rise of limited-privilege environments has been accom-
panied by the emergence of vulnerabilities in which a subject is able to
maliciously wield their limited privileges to indirectly cause unwanted ef-
fects. Unfortunately, conventional safety analyses for access control sys-
tems are ill-equipped to deal with this problem because they do not
detect the indirect effects that a subject can cause, but merely the per-
missions a subject can acquire.
We present a technique that characterises a subject’s authority as all of
the effects they can cause to occur. Our technique is based on an analysis
of causation, applied to a CSP model of a system. These analyses can
be expressed as CSP refinements and, hence, automatically performed
by a refinement-checker such as FDR. We demonstrate the ability of
our technique to successfully identify excess authority by examining the
“Confused Deputy” scenario, whose vulnerability goes undetected with
conventional safety analyses.

Key words: Access control, authority, causation, least privilege, formal
definition, automatic verification, CSP, model checking, security.

1 Introduction

1.1 The Rise of Least Privilege

There appears to be a growing consensus that a failure to adhere to the principle
of least privilege [25] has led current mainstream computing systems to be far less
secure than they might have been. Executable email attachments are dangerous
because, when opened by a user on current conventional operating systems,
they are allowed to cause any effect that the user herself is allowed to cause. The
severity of a remote code-execution vulnerability in a network-facing application
is proportional to the privileges granted to that application.

Recently, many different solutions have been proposed and implemented in
an attempt to rectify this situation. Some [19, 32, 12, 27, 11, 35] have provided
startlingly clear examples of what the future might hold for secure computing
if current applications and systems were reimplemented on top of architectures
that naturally support the principle of least privilege. Other attempts [33, 3, 15,

Authority Analysis for Least Privilege Environments

113

20, 31, 26] have shown the challenges involved in trying to retrofit least privilege
to the current mainstream computing base.

A common feature of all of these systems is the means to confine the set of
permissions available to a running instance of an application. By permissions, we
mean the set of objects in the system that the instance can access, or interact
with, directly. In order to adhere to the principle of least privilege, instances
are initially given minimal sets of permissions. While an instance is running it
may acquire new permissions as its function alters. For example, when a user
opens a new document in a word processor, the word processor might be granted
the permission to read the file that contains the document. Indeed, in order to
adhere to the principle of least privilege, an instance must be able to acquire
new privileges as it is running. Otherwise, instances must be given the union of
all permissions they might ever need, completely violating the principle of least
privilege.

However, this leads to a potential problem. If instances can acquire new
permissions, how can one be sure that a running instance cannot acquire a
permission that it should not be allowed to have? For example, how can one be
sure that a word processor won’t be able to obtain the permission to write to
the kernel binary?

This is an instance of the safety problem [7] for access control systems, which
seeks to determine whether a particular subject can ever acquire a particular
permission. Many formal models and decision procedures have been proposed [7,
1, 30, 9] in order to reason about this problem. When designing and analysing a
limited-privilege system, it is imperative to be able to apply safety analyses in
order to show that a running instance cannot obtain extra privileges in excess
of the minimum required to perform its function at the current time.

1.2 Re-Enter An Old Attack

Unfortunately, as limited-privilege solutions are becoming more widely available,
we are beginning to see classes of attack emerging that had previously been
confined to the academic community [6]. These are attacks in which one subject s
is able to use their permission to access another subject t to cause t to perform
some action on s’s behalf that violates the principle of least privilege.

The prototypical example [6] of this attack carries the name “Confused
Deputy”. In this attack, one subject, Alice, has access to another subject, Carol,
a compiler. Alice has permission to invoke Carol with an output filename. Carol
has permission to write to a special purpose billing file, Bill, in which Carol main-
tains a log of her own usage. By invoking Carol with the name of Bill, Alice can
indirectly cause Bill to be overwritten, despite the fact that Alice does not have
permission to write to Bill. Here Carol’s permission is being used incorrectly on
behalf of Alice.

A real-world example of this scenario is described by Spiessens [28]. Here, a
user of a dynamic-firewall application grants network access to all instances of
the ssh program, in order to allow her to connect securely to remote machines
without having to click through a firewall dialogue each time. Unfortunately,

FCS-ARSPA’07

114

in doing so, she has turned ssh into the ultimate confused deputy. Any other
application that can execute ssh can now gain indirect access to an encrypted,
authenticated channel to any remote host on the Internet. Among other things,
this provides a useful path of egress for any piece of spyware on the system.
Here ssh’s permission is being used incorrectly on behalf of a malicious piece of
spyware.

Another example [34] of this attack involves the User Account Control [33]
(UAC) feature of Windows Vista. Under UAC, when an ordinary application
tries to perform a sensitive function that requires administrator privileges, UAC
displays a dialogue that may allow the user to grant the privileges to the appli-
cation. Applications that are part of the operating system produce a dialogue
labelled “Windows needs your permission to continue”. The executable Run-
LegacyCPLElevated allows legacy dynamic libraries to be identified by UAC as
part of the operating system. RunLegacyCPLElevated is invoked with a dynamic
library filename as its argument, which it then executes on the invoker’s behalf,
thereby allowing the executing code to be identified as part of Windows. We
argue that RunLegacyCPLElevated is a confused deputy. A subject, Dave, with
the permission to execute RunLegacyCPLElevated and to write dynamic libraries
to disk now has the indirect ability to cause arbitrary code to be executed that
will be identified by UAC as part of Windows. Here RunLegacyCPLElevated’s
permission is being used incorrectly on behalf of Dave.

Current models for the analysis of the safety problem are ill-equipped to rea-
son about the indirect effects that a subject can cause by use of its permissions.
We refer to all such indirect effects as a subject’s authority. Traditional safety
analyses are limited to reasoning about authority in terms of the direct permis-
sions a subject can acquire. As shown by the examples above, this can grossly
underestimate a subject’s total authority. As we shall demonstrate later, in the
first example a simple safety analysis fails to reveal that Alice has authority to
overwrite Bill, since Alice never has permission to overwrite Bill. Similarly, a sim-
ple safety analysis would fail to reveal the excess authority in the second and
third examples as well.

These vulnerabilities highlight the importance of the principle of least au-
thority [18, 17]. It is not enough to simply limit a subject’s permissions in order
to enforce meaningful least privilege. As we shall see later on, in the Confused
Deputy scenario, limiting Alice’s permissions to the smallest reasonable set still
provides Alice with excess authority. In order to provide meaningful security, we
require methods that can correctly analyse and detect excess authority once a
subject’s permissions have been minimised.

1.3 Contribution

In this paper, we present a technique specifically designed to reason about the
indirect effects that a subject may be able to cause, in order to give an upper
bound on the subject’s authority. We use the process algebra CSP [21], and
its stable-failures denotational semantics, to model and reason about causation
and thereby define those actions that a subject may indirectly cause to occur.

Authority Analysis for Least Privilege Environments

115

CSP has been successfully applied to reasoning about many security-relevant
systems, problems and properties including the safety problem in access control
systems [10, 2], information flow [16], cryptographic protocols [23] and real-world
security policies [22]. We begin with a brief overview of the syntax and semantics
of CSP in Section 2.

In Section 3 we define authority in terms of all the events an object can
cause to occur. Excess authority, then, is authority not allowed by the security
policy. We give a straightforward definition of causation, which we call Traces-
Causation. Unfortunately, this definition suffers from the refinement paradox:
there are processes in which a particular event e cannot be caused by some
object o, but that have refinements in which o can cause e to occur. We argue
that this is undesirable, and that we should consider a definition of causation that
holds whenever a process has a refinement for which Traces-Causation holds. We
then give an alternative, equivalent, characterisation of causation, in terms of
the traces and failures of the process.

In Section 4 we show how this property can be tested for using a model
checker such as FDR [14]. In Section 5 we model the Confused Deputy scenario;
we show how a simple safety analysis fails to detect the attack, but that our
technique accurately detects Alice’s authority to cause Bill to be overwritten. In
Section 6 we sum up, compare and contrast our technique to related work, and
consider some areas for future work.

2 A brief overview of CSP

In this section we give a brief overview of CSP. More details can be obtained
elsewhere [21].

CSP is a process algebra, with various semantics, for describing and reason-
ing about concurrent systems. A system modelled in CSP comprises a set of
concurrently executing processes. Each process usually models some particular
component of the system in question. Processes execute by performing events.
An event represents an atomic communication; this might either be between
two processes or between a process and the environment. Processes communi-
cate with each other by synchronising on common events. We write Σ for the
set of all visible events.

2.1 Syntax

The process STOP can perform no events. The process a→ P can perform the
event a, and then act like P . The process ?a : A→ Pa offers the set of events A;
if a particular event a is performed, the process then acts like Pa. (The prefixing
operator “→” binds tighter than all other operators.)

CSP allows multi-part events where each part is separated by an infix dot
“.”, such as the event up.3. The process up?a : A → Pa initially offers the
set of events {up.a | a ∈ A}. The output operator “!” is used to offer specific
events to the environment. The process move?x:X!3→ P initially offers the set

FCS-ARSPA’07

116

of events {move.x.3 | x ∈ X}. The notation {|move|} denotes the set of events
whose first part is move. The first part of a multi-part event is sometimes called
a channel.

The process P � Q represents an external choice between P and Q; the
initial events of both processes are offered to the environment; when an event is
performed, that resolves the choice. P u Q represents an internal or nondeter-
ministic choice between P and Q; the process can act like either P or Q, with
the choice being made according to some criteria that we do not model. The
process P <I b>I Q acts like P if the boolean condition b is true; otherwise it acts
like Q.

The process CHAOSA is the most nondeterministic, nondivergent process
with alphabet A; it can perform any sequence of events from A, and refuse any
events.

If c is a channel, then c.P represents the process that acts like P except every
event x is renamed to c.x.

P ‖
A

Q represents the parallel composition of P andQ, synchronising on events

from A. For a set of processes, {P1, . . . , Pn}, and a set of alphabets {A1, . . . , An}
(each a subset ofΣ), ‖

1≤i≤n
(Pi, Ai) represents the parallel composition of the Pi,

where each Pi is allowed to perform events only from the set Ai, and all pro-
cesses that share a common event must synchronise on it. P ||| Q represents the
interleaving of P and Q, i.e., parallel composition with no synchronisation.

2.2 Semantics

A trace is a sequence of visible events that a process can perform. We write
traces(P) for the set of all traces of P .

We write traces within angle brackets (〈. . .〉). sˆt denotes the concatenation
of s and t. s |̀ A denotes the trace obtained by taking s and removing all events
not in A. s\A denotes the opposite: the trace obtained by taking s and removing
all events in A: s \ A = s |̀ (Σ − A). Trace s is said to be a prefix of t, written
s ≤ t, if there exists a sequence u, where t = sˆu. Within traces, the special
event

√
represents termination, and can occur only at the end of a trace.

A stable failure is a pair (s,X), where s is some trace that P can perform,
and X is a set of events that P can stably refuse after performing s: i.e., after s,
P can reach a state where no internal activity is possible and none of the events
from X is possible. We write failures(P) for the set of all stable failures of P .

A divergence is a trace after which a process can diverge, i.e., perform an
infinite amount of internal activity. We write divergences(P) for the set of di-
vergences of P . All of the processes we consider in this paper are divergence free.
In this case the traces and stable failures are related by:

traces(P) = {s | (s,X) ∈ failures(P)}.
Within the failures-divergences semantics of CSP, a process is represented by

its failures and its divergences. The following axioms hold for the failures F and
divergences D of a process P .

Authority Analysis for Least Privilege Environments

117

F1. traces(P) = {t | (t,X) ∈ F} is non-empty and prefix closed.
F2. (v,X) ∈ F ∧ Y ⊆ X ⇒ (v, Y) ∈ F .
F3. (v,X) ∈ F ∧ vˆ〈a〉 /∈ traces(P)⇒ (v,X ∪ {a}) ∈ F .
F4. vˆ(

√
) ∈ traces(P)⇒ (v,Σ) ∈ F .

D1. s ∈ D ∩Σ∗ ∧ t ∈ Σ∗√ ⇒ sˆt ∈ D.
D2. s ∈ D ⇒ (s,X) ∈ F .
D3. sˆ〈√〉 ∈ D ⇒ s ∈ D.

We say that process Q refines process P , written P v Q, when

failures(Q) ⊆ failures(P) ∧ divergences(Q) ⊆ divergences(P).

3 Characterising Authority

In this section, we produce a semantic characterisation of causation.
The systems we model comprise a set of objects. (By object, we mean both

subjects and objects as defined in the standard access control literature: we
make no distinction between the two.) Each object has a set of events that
constitute its alphabet. These are the events that the object is able to partake
in. Intuitively, if some object can perform some events from its alphabet that
can, perhaps indirectly, cause some other event e to occur, then that object has
authority to cause e.

We assume that the system is modelled by a CSP process. For simplicity, we
restrict ourselves to divergence-free processes in this paper (i.e. those that can
never perform an infinite amount of internal activity without communicating
with their environment), and assume a finite alphabet.

3.1 Defining Causation

We base our understanding of causation on Lewis’ counterfactual definition [13]
that states that x causes y if y would be possible if x had occurred, but y
would not be possible if x had not occurred. This leads to a simple definition
for causation that can be applied to the traces of a process P . An object o with
alphabet A can cause some event e to occur if there is some trace s after which
e can follow, but when the events of A are removed from s, e cannot follow. We
define the predicate TCP (A, e) (Traces-Causation) to capture this.

TCP (A, e) =̂ ∃ s • sˆ〈e〉 ∈ traces(P) ∧ (s \A)ˆ〈e〉 /∈ traces(P).

Often, we will be interested in the negation of this predicate, i.e. when the event e
cannot be caused by any object with alphabet A. Thus, we define the predicate

NTCP (A, e) =̂ ¬TCP (A, e).

Unfortunately, this definition is too strong when applied to nondeterministic
processes. Consider the process

P = a→ b→ STOP u b→ STOP,

FCS-ARSPA’07

118

and suppose the nondeterminism is resolved to the left. In this case, a can
certainly cause b to occur; however, P doesn’t satisfy the above definition of
causation since both 〈a, b〉 and 〈b〉 are in traces(P).

The problem here is that P is refined by processes, such as Q = a → b →
STOP , in which a can cause b to occur. The refinements of P represent all of
the possible ways in which nondeterminism in P can be resolved. As argued
in [16], it is important to be able to detect when some property does not hold
for a refinement of P , despite the fact that it does hold for P itself. P will often
represent the design of a system, rather than its implementation; in this case,
nondeterminism in P might represent underspecification which is to be resolved
when the system is implemented. At other times, P might represent a model of a
system in which nondeterminism is used to abstract away from low-level details
of the real system in question. In both cases, it’s important to be sure that,
however the nondeterminism is resolved, the original property will still hold.

This realisation leads to the predicate CP (A, e) that holds precisely when P
has a refinement for which TCP (A, e) holds:

CP (A, e) =̂ ∃Q • P v Q ∧ TCQ(A, e).

The predicate
NCP (A, e) =̂ ¬CP (A, e)

captures the negation of CP (A, e). Thus, NC is the refinement-closure of NTC:

NCP (A, e) ≡ ∀Q • P v Q⇒ NTCQ(A, e).

The above property appears difficult to test, because of the quantification
over all refinements of P . In order to derive a method for testing if a process
satisfies NC, we give an alternative characterisation of causation. Here, an event
e can be caused by an object o with alphabet A if there exists some trace of the
system, in which o participates, after which e can follow; but when the events of A
are removed, it’s possible that e cannot follow, in the sense that e or an earlier
event can be refused. We define the predicate FCP (A, e) (Failures-Causation)
as follows:

FCP (A, e) =̂ ∃ s, t • sˆtˆ〈e〉 ∈ traces(P) ∧ s |̀ A 6= 〈〉 ∧
(s \A, {first(t \Aˆ〈e〉)}) ∈ failures(P).

Notice that the process P defined above does satisfy this definition of cau-
sation. We can see that FCP ({a}, b) holds by taking s = 〈a〉 and t = 〈〉, since
〈a, b〉 ∈ traces(P) and (〈〉, {b}) ∈ failures(P).

We will show, below, that CP (A, e) ≡ FCP (A, e). We begin by showing that,
under FC, non-causation is refinement-closed.

Lemma 1. If ¬FCP (A, e) and Q w P then ¬FCQ(A, e).

Proof. Suppose, for a contradiction, that ¬FCP (A, e), Q w P and FCQ(A, e).
Then for some s, t:

sˆtˆ〈e〉 ∈ traces(Q) ∧ s |̀ A 6= 〈〉 ∧ (s \A, {first(t \Aˆ〈e〉)}) ∈ failures(Q).

Authority Analysis for Least Privilege Environments

119

But traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P) so

sˆtˆ〈e〉 ∈ traces(P) ∧ s |̀ A 6= 〈〉 ∧ (s \A, {first(t \Aˆ〈e〉)}) ∈ failures(P),

contradicting ¬FCP (A, e). ut

We now show that for divergence-free processes, Traces-Causation implies
Failures-Causation.

Lemma 2. If Q is non-divergent and TCQ(A, e) then FCQ(A, e).

Proof. Consider a divergence-free process Q for which TCQ(A, e) holds. Then
there is some trace s such that

sˆ〈e〉 ∈ traces(Q) ∧ (s \A)ˆ〈e〉 /∈ traces(Q).

Thus s 6= s \A, so s |̀ A 6= 〈〉. Partition s about its first event a from A, into the
sequence tˆ〈a〉ˆu so

s = tˆ〈a〉ˆu ∧ a ∈ A ∧ t |̀ A = 〈〉.

Then

sˆ〈e〉 = tˆ〈a〉ˆuˆ〈e〉 ∈ traces(Q) ∧ (s \A)ˆ〈e〉 = tˆ(u \A)ˆ〈e〉 /∈ traces(Q).

Now, t ∈ traces(Q), so let v be the longest prefix of u such that tˆ(v \ A) ∈
traces(Q), and let w be the remainder of u:

vˆw = u ∧ tˆ(v \A) ∈ traces(Q) ∧ tˆ(v \A)ˆ〈first(w \Aˆ〈e〉)〉 /∈ traces(Q).

Now Q is divergence-free, so (tˆ(v \ A), {}) ∈ failures(Q), and hence by Ax-
iom F3 (see Section 2),

(tˆ(v \A), {first(w \Aˆ〈e〉)}) ∈ failures(Q).

Combining the above results we have

tˆ〈a〉ˆvˆwˆ〈e〉 ∈ traces(Q) ∧
((tˆ〈a〉ˆv) \A, {first(w \Aˆ〈e〉)}) ∈ failures(Q),

and hence FCQ(A, e) holds. ut

We now use these lemmas to prove that Causation and Failures-Causation
are equivalent:

Theorem 1. For any divergence-free process, P :

CP (A, e) ≡ FCP (A, e).

FCS-ARSPA’07

120

Proof. We begin by showing that CP (A, e) ⇒ FCP (A, e). So suppose that
CP (A, e), i.e., that there exists Q w P such that TCQ(A, e). Then Q must
also be divergence-free, so by Lemma 2, FCQ(A, e) holds. Hence, by Lemma 1,
FCP (A, e) holds.

Conversely, suppose FCP (A, e) holds. Then for some s and t:

sˆtˆ〈e〉 ∈ traces(P) ∧ s |̀ A 6= 〈〉 ∧ (s \A, {c}) ∈ failures(P),
where c = first(t \Aˆ〈e〉).

We construct a process Q that refines P and such that TCQ(A, e). Define Q to
be the divergence-free process that has the same failures as P , except with all
those corresponding to the trace s \Aˆ〈c〉 removed:

failures(Q) = failures(P)−
{(s \Aˆ〈c〉ˆt,X) | t ∈ Σ∗, X ⊆ Σ} −
{(s \A,X) | (s \A,X ∪ {c}) /∈ failures(P)}.

Lemma 3, which follows, shows that such a process exists.
Observe that P v Q since failures(Q) ⊆ failures(P).
Now, Q is divergence-free, so traces(Q) = {v | (v,X) ∈ failures(Q)}. Hence

sˆtˆ〈e〉 ∈ traces(Q),

since this is not one of the traces removed. Also, s\Aˆ〈c〉 ≤ (s\A)ˆ(t\A)ˆ〈e〉 =
(sˆt) \Aˆ〈e〉 so

(sˆt) \Aˆ〈e〉 /∈ traces(Q).

Hence, TCQ(A, e) holds. ut
Finally, we must show that the process Q constructed in Theorem 1 exists.

We will need the following result from [21, Section 9.3]:

Theorem 2. Assuming the alphabet Σ is finite, for any choice of (F,D) that
satisfies the axioms (see Section 2) of the failures-divergences model of CSP,
there is a CSP process Q whose failures and divergences are F and D respectively.

Hence it will be enough to show that failures(Q) and divergences(Q) satisfy
the axioms.

Lemma 3. failures(Q), as defined in Theorem 1, and divergences(Q) = {}
satisfy the axioms F1–F4 and D1–D3 of the failures-divergences model.

Proof. Observe that since divergences(Q) = {}, Axioms D1–D3 hold trivially.
We consider each of the remaining axioms in turn. Note that

traces(Q) = traces(P)− {s \Aˆ〈c〉ˆt | t ∈ Σ∗}.

Axiom F1. Clearly traces(Q) is non-empty: it contains, at least, the empty
trace. It is prefix-closed since traces(P) is, and we remove an extensions-closed
set of traces.

Authority Analysis for Least Privilege Environments

121

Axiom F2. Q satisfies F2 since P does, and whenever we remove a failure, we
remove all failures with larger refusal sets.

Axiom F3. Suppose (v,X) ∈ failures(Q) and v ˆ 〈a〉 /∈ traces(Q). Then
(v,X) ∈ failures(P). We perform a case analysis.

– Case vˆ〈a〉 6= s \ Aˆ〈c〉. Then vˆ〈a〉 /∈ traces(P), and so (v,X ∪ {a}) ∈
failures(P), since P satisfies F3. And hence (v,X ∪ {a}) ∈ failures(Q),
by construction.

– Case v = s \ A ∧ a = c. Recall that (s \ A, {c}) ∈ failures(P). Hence
(s \ A,X ∪ {c}) ∈ failures(P), by Axiom F2. And hence (v,X ∪ {a}) =
(s \A,X ∪ {c}) ∈ failures(Q), by construction.

Axiom F4. Suppose v ˆ 〈√〉 ∈ traces(Q). Then v ˆ 〈√〉 ∈ traces(P) and
s \Aˆ〈c〉 6≤ v. Then (v,Σ) ∈ failures(P) since P satisfies F4. Hence (v,Σ) ∈
failures(Q), by construction, whether or not v equals s \A. ut

4 Testing for Authority

We now construct a refinement test, which can be automatically carried out by a
model checker such as FDR [14], that checks whether NCP (A, e) holds, i.e., that
checks that an object with alphabet A cannot cause e to occur. Note that we
restrict ourselves to finite-state processes, where this question is decidable. We
generalise the test from a single event e to a set of events B, where A∩B = {}:
we define NCP (A,B) =̂ ∀ e ∈ B • NCP (A, e).

The test works as follows. We run two copies of P in parallel, in a harness,
with a controller (or scheduler). Initially, we allow only the left-hand copy of P
to perform A events, and force both copies to do the same non-A events. At some
point, after the left-hand copy has done at least one event from A, and has just
performed some event c /∈ A, we pause the right-hand copy of P . At this point,
the left-hand copy will have performed some trace sˆ〈c〉 with s |̀ A 6= 〈〉 and
the right-hand copy will have performed s \ A. Following the definition of FC,
we continue to run the left-hand copy until it has performed a trace sˆtˆ〈e〉,
for some e ∈ B and trace t; since c /∈ A we will have c = first(t \ Aˆ〈e〉). At
this point we restart the right-hand copy of P and test whether it can refuse the
event c; if so, FCP (A,B) holds.

The events of the left- and right-hand copies of P are distinguished by using
a renaming transformation that has each copy perform its events on separate
fresh channels, left and right. The harness in which the two copies of P are run
with the controller is defined as follows.

Harness(P) = (left.P ||| right.P) ‖
{|left,right|}

Ctrl1.

FCS-ARSPA’07

122

Here, left.P (right.P) denotes the process that performs the event left.x (right.x)
whenever P performs x. The controller process, Ctrl1, is defined as follows.

Ctrl1 = left?c→ (Ctrl2<I c ∈ A>I right.c→ Ctrl1),
Ctrl2 = left?c→ (Ctrl2<I c ∈ A>I (right.c→ Ctrl2 u ping→ Ctrl3(c))) ,

Ctrl3(c) = Ctrl5(c)<I c ∈ B>I Ctrl4(c),
Ctrl4(c) = left?d→ (Ctrl5(c)<I d ∈ B>I Ctrl4(c)),
Ctrl5(c) = ping→ right.c→ STOP.

The controller initially forces the right-hand copy of P to perform the same
events as the left-hand copy, until the latter performs an event from A. The
controller then (in state Ctrl2) continues to force the right-hand copy to perform
the same non-A events as the left-hand copy, except after a non-A event c it
can (nondeterministically) choose to pause the right-hand copy, signalled by the
event ping. It then continues to run the left-hand copy until it performs an event
from B; if c itself is in B, then this is immediate (states Ctrl3 and Ctrl4).
The right-hand copy is then re-awoken (in state Ctrl5), also signalled by the
event ping, in order to test whether it can refuse c.

Spec1 is the most general process that mirrors the behaviour of the harness,
except that it never refuses the final event right.c.

Spec1 = left?c→ (Spec2<I c ∈ A>I (right.c→ Spec1 u STOP)) u STOP,
Spec2 = left?c→

(Spec2<I c ∈ A>I (right.c→ Spec2 u ping→ Spec3(c) u STOP))
u STOP,

Spec3(c) = Spec5(c)<I c ∈ B>I Spec4(c),
Spec4(c) = left?d→ (Spec5(c)<I d ∈ B>I Spec4(c)) u STOP,
Spec5(c) = ping→ right.c→ STOP.

The states of the specification correspond to the states of the controller.
Notice that Spec5 cannot refuse to perform right.c. Thus, Harness(P) will refine
Spec1 if and only if the right-hand copy of P can never refuse the final c event,
i.e., if and only if NCP (A,B) holds. Thus

Spec1 v Harness(P) ≡ NCP (A,B).

The refinement can be tested using a model checker like FDR. If the refine-
ment fails, FDR will produce a counter-example; the ping events in the counter-
example mark the points at which the right-hand copy of P was paused and
restarted, and hence aid in its interpretation.

If P has N states then the size of Harness(P) is O(N2), since it runs two
copies of P . In most cases, however, the size of Harness(P) should be signif-
icantly less than O(N2). This is because for each state of the first copy of P ,
there is likely to be a fairly small number of states that the second copy of P
can be in at the same time. If this number is bounded by some constant k, then
the total number of states is O(k.N). Hence, in most cases, the time to perform
the test should grow linearly with the size of P .

Authority Analysis for Least Privilege Environments

123

5 Analysing The Confused Deputy

Having described and explained our technique, we now demonstrate its utility
for reasoning about Alice’s excess authority in the Confused Deputy scenario
described in Section 1. First, we model the system in CSP. We then show how
a simple safety analysis fails to detect Alice’s authority to overwrite Bill, before
demonstrating how to accurately detect Alice’s excess authority using a refine-
ment check of the sort described in Section 4.

5.1 Modelling the Scenario in CSP

We define a set of operations Op = {Read,Write,Append,Exec} and a set of ob-
jects Object = {Alice,Bill,Carol}1. We then define events of the form o1.o2.op
to represent object o1 performing operation op on object o2. The events asso-
ciated with an Exec operation also carry an object name, and are of the form
o1.o2.Exec.arg, representing object o1 executing object o2, passing the argu-
ment arg. Thus we use alphabet

{o1.o2.op | o1, o2 ∈ Object ∧ op ∈ {Read,Write,Append}} ∪
{o1.o2.Exec.arg | o1, o2 ∈ Object ∧ arg ∈ Object}.

An object o is involved in events that represent it operating on some other
object p, and events that represent p operating on it. Hence, the alphabet of
each o ∈ Object is defined as:

α(o) = {|o.p | p ∈ Object− {o}|} ∪ {|p.o | p ∈ Object− {o}|}.
Notice that the definition of α is such that an operation is only defined between
two distinct objects.

The configuration of permissions is defined by the acl function, which takes
an object and an operation and returns the set of objects who have permission to
perform that operation on that object: Carol has permission to write and append
to Bill; Alice has permission to execute Carol.

acl(Bill,Write) = {Carol}, acl(Bill,Append) = {Carol},
acl(Carol,Exec) = {Alice}, acl(other, other) = {}.

We define a set of parameterised CSP processes that represent the behaviour
of different types of entities within the system.

The Compiler process defines the behaviour of a compiler, with identity me,
that is able to be executed by any object with Exec permission as defined by its
access control list. Once invoked, it writes to the specified file, before appending
to its billing file, logF ile.

Compiler(me, logF ile) = ?s : acl(me,Exec)!me!Exec?file→
me.file.Write→
me.logF ile.Append→ Compiler(me, logF ile).

1 Recall that we use the term “object” to include what are termed “subjects” in some
of the access control literature.

FCS-ARSPA’07

124

The File process defines the behaviour of a file, with identity me, that can
be written, appended or read by anyone with the appropriate permission.

File(me) = ?s : acl(me,Write)!me!Write→ File(me) �
?s : acl(me,Append)!me!Append→ File(me) �
?s : acl(me,Read)!me!Read→ File(me).

The User process defines the behaviour of a user, with identity me, who tries
to execute any program they can, and to read, write and append to any file they
can. In this manner, we capture the most general behaviour of any user within
our model.

User(me) = me?prog!Exec?arg → User(me) �
me?file!Read→ User(me) �
me?file!Write→ User(me) �
me?file!Append→ User(me).

The total system, System, is then the parallel composition of User(Alice),
File(Bill) and Compiler(Carol,Bill), with the above alphabets.

5.2 A Simple Safety Analysis

We can perform a simple safety analysis [7] to determine whether Alice can
ever obtain permission to overwrite Bill. This example uses static access control
lists, so clearly it is impossible for Alice to obtain permission to overwrite Bill.
However, in more complex examples, the configuration of permissions can change
over time, and so a safety analysis of the sort presented here is necessary to
determine whether a particular subject can ever acquire a particular permission.

In our example, were Alice able to obtain any permission to Bill, then System
would be able to perform some event in {|Alice.Bill|}. We can test whether System
is ever able to perform such an event by testing if it refines the most general
process that performs no such event:

Spec = CHAOSΣ−{|Alice.Bill|}.

FDR indicates that Spec vT System. As we expect, this simple safety analysis
reveals that Alice can never gain permission to overwrite Bill.

5.3 An Authority Analysis

We now analyse whether Alice has authority to cause Bill to be overwritten,
i.e., if she can cause some event from B = {o.Bill.Write | o ∈ Object}. We can
check that Alice has no such authority by testing the following refinement (with
A = α(Alice)):

Spec1 v Harness(System)

FDR completes the test in under a second and indicates that this refinement
does not hold. It provides the failure

(〈left.Alice.Carol.Exec.Bill, left.Carol.Bill.Write, ping, ping〉, {right.Carol.Bill.Write})

Authority Analysis for Least Privilege Environments

125

as a counter-example. As expected, the refinement-check reveals that by invoking
Carol with the name Bill, Alice can cause Bill to be overwritten (in the left-hand
copy), since Carol can refuse to write to Bill if not so invoked (in the right-hand
copy).

6 Discussion

The rise of least privilege environments necessitates techniques for formal anal-
ysis that can accurately reason about a subject’s authority, beyond the set of
permissions they can acquire. In particular, the emergence of instances of the
Confused Deputy vulnerability demonstrates the need to be able to detect a sub-
ject’s excess authority in spite of their minimal privileges. Safety analyses are
ill-equipped for this task because they are limited to characterising authority
in terms of acquirable permissions. As shown, this can grossly underestimate a
subject’s total authority.

We have presented a technique based on an analysis of causation for reason-
ing about authority in the presence of least-privilege. We have demonstrated its
utility for detecting a subject’s excess authority in the Confused Deputy sce-
nario. We hope that as least privilege environments become pervasive, that such
analyses will become as important as safety and information-flow analyses are
today, in order to ensure that the principle of least authority is upheld.

In the remainder of this section we discuss some related work and prospects
for extending the work of this paper.

6.1 Analysing Authority in Capability Systems

In the Confused Deputy example, it is interesting to consider how Alice might
be prevented from having authority to overwrite Bill. One solution might be
for Carol to check the filename she is passed when invoked and to not write to
this file if it is Bill. However this raises the question: what if the subject that
executes Carol has permission to write to Bill? Should Carol then write to Bill
on that subject’s behalf? Unfortunately, as noted by Spiessens [28], Carol does
not have the information available to make this determination. Even if she can
examine the access control list for Bill, it’s possible that Alice is executing her
on behalf of some other subject who does have the relevant permission.

When the Confused Deputy was first described [6], it was noted that this
problem largely disappears when considered within the context of an access
control system that unifies designation and permission, such as those based on
capabilities [4]. If Alice can designate Bill to Carol if and only if she herself has
permission to Bill, then Carol will write to Bill if and only if Alice has permission
to write to Bill, since Carol uses Alice’s designation when attempting to write
the output. Hence, another possible remedy would be to abandon the use of
identity-based access controls, such as the access control lists modelled in the
example, in favour of a capability-based approach.

FCS-ARSPA’07

126

Capability systems are interesting not only because they elegantly solve the
Confused Deputy problem. They also naturally support the construction of sys-
tems that adhere to the principle of least authority. Further, many of the com-
mon abstractions used in capability systems are designed to provide one object
with authority to access another, but not direct permission. Hence, being able
to reason about authority is crucial for an understanding of many of these ab-
stractions. For these reasons, capability systems present an attractive target for
the application of our techniques.

6.2 Pseudo-Permissions in Safety Analyses

Previous attempts to model and reason about authority include efforts based
on models for safety-analysis in which pseudo-permissions are used to model
authority. One such case is the use of de-facto rights in Take-Grant systems [1].
For example, a subject s with read permission to subject t, where t is writable
by subject r, has de-facto read permission to subject r. Unfortunately, the use of
de-facto rights fails to take into account the influence that t’s behaviour has on
s’s authority [28]. For example, t might behave in such a way as to prevent any
information flowing from r to s, in which case s has no authority to read r. Thus,
the use of de-facto rights necessarily over-estimates a subject’s total authority.
More generally, using pseudo-permissions to model aspects of authority requires
specific knowledge about how various permissions may interact with one another
in order to give rise to authority.

In contrast, our technique does not rely on any specific knowledge of the inter-
action between permissions, but rather extracts the causal relationships between
events from the semantics of a process. Our approach also allows the restrictive
behaviour of a subject to be explicitly modelled via appropriate CSP process
definitions. For example, by altering the definition of the Compiler process, we
could redefine Carol’s behaviour in the Confused Deputy example to not write to
the file designated by Alice if that file is Bill. An authority analysis would reveal
that Carol’s restricted behaviour reduces Alice’s authority, preventing her from
being able to cause Carol to overwrite Bill.

6.3 Non-Interference as the Absence of Authority

The property of non-interference [5] and related notions of information-flow can
be viewed as characterising the absence of any causal flow from High subjects
to Low subjects [24]. We believe that there is a connection between the absence
of causal flow and the absence of authority, as defined in this paper. Intuitively,
when applying our technique, one subject, High, has no authority over another,
Low, if High can never cause some event l ∈ α(Low) to occur. However, a lack
of information flow requires not only that High is unable to cause any event in
α(Low) from occurring, but also that High is unable to cause any event in α(Low)
from not occurring.

Authority Analysis for Least Privilege Environments

127

We intend to investigate further the relationship between our work and that
on information flow; in particular, there seem to be strong similarities with the
work of [16].

6.4 Knowledge-Behaviour Models

The work of Spiessens et al. [28] on Knowledge-Behaviour Models (KBMs) and
the SCOLL language seeks to reason about authority by explicitly taking into
account the possible restrictive effects that a subject’s behaviour can have on
another’s authority. This work directly inspired our work on using causal analyses
to characterise authority.

Here a subject’s permissions and behaviours are represented by a set of pred-
icates, with rules that define how new predicates can be derived from the current
set. SCOLL has been applied to reason about indirect authority; however, many
examples [28, 8, 29] measure authority in terms of acquirable permissions. As
noted in Section 1 and demonstrated by the analysis of the Confused Deputy
example in Section 5, this can greatly underestimate a subject’s total authority.

Despite this limitation, KBMs have been used to accurately model the Con-
fused Deputy scenario [28]. In order to model the scenario, a behaviour predicate
useForClient is introduced to describe Carol’s intent to use some designation on
Alice’s behalf. Testing whether useForClient(Bob) is derivable accurately detects
whether Carol is able to use the designation Bob on Alice’s behalf.

In this sense, the useForClient predicate can be viewed as a means to char-
acterise part of Alice’s authority, independently of the permissions Alice can ac-
quire. Unfortunately, this approach requires the incorporation of predicates, like
useForClient, that explicitly capture the notion of on whose behalf a subject
might be acting, in order to reason about authority. In contrast, our approach
requires no extra work to be undertaken, since it automatically determines on
whose behalf a subject might be acting.

References

1. Matt Bishop and Lawrence Snyder. The transfer of information and authority in
a protection system. In Proceedings of the Seventh ACM Symposium on Operating
Systems Principles, pages 45–54. ACM Press, 1979.

2. Jeremy Bryans. Reasoning about XACML policies using CSP. In SWS ’05: Pro-
ceedings of the 2005 workshop on Secure web services, pages 28–35. ACM Press,
2005.

3. Bruno Castro da Silva and Raul Fernando Weber. TuxGuardian: Um firrewall de
host voltado para o usuário final. In 5 Fórum Internacional de Software Livre,
2004. Available at: http://tuxguardian.sourceforge.net/tg-sbrc.pdf.

4. Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-
grammed computations. Communications of the ACM, 9(3):143–154, March 1966.

5. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy 1982, pages 11–20, 1982.

6. Norm Hardy. The confused deputy (or why capabilities might have been invented).
Operating Systems Review, 22(4):36–38, October 1988.

FCS-ARSPA’07

128

7. Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in op-
erating systems. Communications of the ACM, 1976.

8. Yves Jaradin, Fred Spiessens, and Peter Van Roy. SCOLL: A language for safe
capability based collaboration. Technical Report Research Report INFO-2005-10,
Université catholique de Louvain, 2005.

9. Eldar Kleiner and Tom Newcomb. On the decidability of the safety problem for
access control policies. In Sixth International Workshop on Automatic Verification
of Critical Systems (AVoCS 2006), pages 91–103, 2006.

10. Eldar Kleiner and Tom Newcomb. Using CSP to decide safety problems for access
control policies. Technical Report Research Report RR-06-04, Oxford University
Computing Laboratory, University of Oxford, January 2006.

11. Ivan Kristić. System security on the One Laptop per Child’s XO laptop: The
Bitfrost security platform, 2007. Available at: http://wiki.laptop.org/go/

Bitfrost.
12. Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler,

David Mazières, Robert Morris, Michelle Osborne, Steve VanDeBogart, and David
Ziegler. Make least privilege a right (not a privilege). In Proceedings of the 10th
Workshop on Hot Topics in Operating Systems, June 2005.

13. David Lewis. Causation. Journal of Philosophy, 70(17):556–567, 1973.
14. Formal Systems (Europe) Limited. Failures divergences refinement: FDR2

user manual, 2005. Available at: http://www.fsel.com/documentation/fdr2/

fdr2manual.ps.
15. Peter Loscocco and Stephen Smalley. Integrating flexible support for security

policies into the Linux operating system. In Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference (FREENIX ’01), 2001.

16. Gavin Lowe. On information flow and refinement-closure. In Proceedings of the
Workshop on Issues in the Theory of Security (WITS ’07), 2007.

17. Mark S. Miller and Jonathan S. Shapiro. Paradigm regained: Abstraction mech-
anisms for access control. In Proceedings of the 8th Asian Computing Science
Conference (ASIAN03), pages 224–242, December 2003.

18. Mark S. Miller, Bill Tulloh, and Jonathan S. Shapiro. The structure of author-
ity: Why security is not a separable concern. In Multiparadigm Programming in
Mozart/Oz, Second International Conference, MOZ 2004, Revised Selected and In-
vited Papers, LNCS 3389, pages 2–20. Springer, 2005.

19. Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. PhD thesis, Johns Hopkins University, Balti-
more, Maryland, USA, May 2006.

20. David S. Peterson, Matt Bishop, and Raju Pandey. A flexible containment mech-
anism for executing untrusted code. In Proceedings of the 11th USENIX Security
Symposium, 2002.

21. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River, NJ, USA, 1997.

22. Peter Ryan and Ragni Ryvold Arnesen. A process algebraic approach to security
policies. In DBSec, pages 301–312, 2002.

23. Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe.
Modelling and Analysis of Security Protocols: the CSP Approach. Addison Wesley,
2000.

24. Peter Y. A. Ryan. Mathematical models of computer security. In R. Gorrieri,
editor, Proceedings of the 2000 FOSAD Summer School, LNCS 2171. Springer,
2000.

Authority Analysis for Least Privilege Environments

129

25. Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1208–1308, September 1975.

26. Mark Seaborn. Plash: tools for practical least privilege, 2007. Available at: http:
//plash.beasts.org.

27. Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast
capability system. In SOSP ’99: Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, pages 170–185, 1999.

28. Alfred Spiessens. Patterns of Safe Collaboration. PhD thesis, Université catholique
de Louvain, Louvain-la-Neuve, Belgium, February 2007.

29. Fred Spiessens, Yves Jaradin, and Peter Van Roy. SCOLL and SCOLLAR: Safe
collaboration based on partial trust. Technical Report Research Report INFO-
2005-12, Université catholique de Louvain, 2005.

30. Fred Spiessens and Peter Van Roy. A practical formal model for safety analysis in
capability-based systems. In Trustworthy Global Computing, International Sympo-
sium, TGC 2005, Revised Selected Papers, LNCS 3705, pages 248–278. Springer,
2005.

31. Marc Stiegler, Alan H. Karp, Ka-Ping Yee, Tyler Close, and Mark S. Miller. Polaris:
Virus safe computing for Windows XP. Communications of the ACM, 49(9):83–
88, September 2006. Available at: http://www.hpl.hp.com/techreports/2004/
HPL-2004-221.html.

32. Marc Stiegler and Mark S. Miller. A capability based client: The DarpaBrowser.
Technical Report Focused Research Topic 5 / BAA-00-06- SNK, Combex, Inc.,
June 2002. Available at: http://www.combex.com/papers/darpa-report/index.
html.

33. Microsoft TechNet. User Account Control. Microsoft Corporation, 2007. Available
at: http://technet.microsoft.com/en-us/windowsvista/aa905113.aspx.

34. Ollie Whitehouse. An example of why UAC prompts in Vista can’t always be
trusted. posted to Symantec Security Risks Weblog, February 20, 2007 05:00 AM,
2007. Available at: http://www.symantec.com/enterprise/security_response/
weblog/2007/02/an_%example_of_why_uac_prompts.html.

35. Ka-Ping Yee. Aligning security and usability. IEEE Security and Privacy, 2(5):48–
55, September/October 2004.

FCS-ARSPA’07

130

A Security Analysis on Diffie-Hellman Key
Exchange against Adaptive Adversaries using

Task-Structured PIOA

Kazuki Yoneyama, Yuichi Kokubun, and Kazuo Ohta

The University of Electro-Communications,
1-5-1, Chofugaoka, Chofu-shi, Tokyo, Japan.

yoneyama@ice.uec.ac.jp

Abstract. The task-structured probabilistic I/O automata (task-PIOA)
framework allows formal analysis of cryptographic primitives in a com-
putational model, and considering probabilistic and non-deterministic
behaviors. However, case study of analysis on cryptographic primitives
is only an oblivious transfer protocol. Moreover, the way to formulate
adversaries which carry out adaptive corruption is not known since the
adversary model is restricted to static model in previous analysis. In this
paper, we analyze the security of Diffie-Hellman key exchange against
adaptive adversaries in task-PIOA framework. Firstly, we reformulate
the definition of DDH assumption in the task-PIOA framework and prove
the equivalence between the original definition and our reformulated one.
Then, we define the key exchange functionality in the task-PIOA frame-
work, which is based on the definition in Universal Composability frame-
work. Finally, we construct real and ideal Diffie-Hellman key exchange
systems, and prove that real system realizes the key exchange function-
ality against passive and adaptive adversaries.

keywords: formal method, task-PIOA, Diffie-Hellman key exchange,
DDH assumption, adaptive adversary

1 Introduction

An analysis on cryptographic protocols is typically complex, and thus in
many cases it is error-prone. As a solution for this, the technique of for-
mal method is effective as it has some advantages over the handwritten
analysis, the most remarkable one is that we are able to analyze protocols
automatically. The most famous approach is Dolev-Yao’s symbolic model
[1]. This approach is mainly interested in authentication and confiden-
tiality properties, and has been used in the analysis of several practical
protocols, e.g., SSH, TLS, Kerberos. However, the basic symbolic analysis
does not a priori carry any cryptographic soundness guarantees.

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

131

Thus, recently, formal analysis frameworks that can grasp soundness
property are increasingly paid attention to. Canetti and Herzog proposed
combining the symbolic model and the universally composable (UC) se-
curity framework [2] in order to create a unified framework for proving se-
curity of protocols, they named universally composable symbolic analysis
(UCSA) [3]. This framework enables a security analysis that is completely
symbolic, and at the same time cryptographically sound with strong com-
posability property. However, it is uncleared whether this framework en-
ables to realize several cryptographic protocols without dealing with cryp-
tographic primitives, e.g., public-key encryption, as symbolic operations.
Also, though participants in the protocol are modeled by Interactive Tur-
ing Machines (ITMs), a complete analysis of protocols modeled by ITMs
is impractical because it includes too many low-level machine details.

Based on this result, the task-structured Probabilistic I/O Automata
(task-PIOA) framework was proposed by Canetti et al. [4–6]. It models
the participants in a protocol by slight variant of PIOAs that enable to
carry out a proof on protocols formally, at a high level of abstraction.
Indeed, in the computational cryptography community, since protocols
are typically described using an informal high-level language, and proof
sketches are given in terms of the informal protocol descriptions, using
PIOA is suitable. However, since the concrete example of analysis is made
only on an oblivious transfer protocol [6] against passive and static ad-
versary, then there are unknown parts about the analysis capacity of the
task-PIOA framework. As a first step for estimating the analysis capac-
ity, we will apply the task-PIOA framework to analyze a protocol on a
different primitive and show the way for the formulation of the adaptive
adversary model.

Our Contribution. We choose Diffie-Hellman(DH) key exchange [7]
(in passive and adaptive adversary model) by following two reasons:
– DH protocol is based on the hardness of a computational problem,

i.e., DDH problem. Since the basic symbolic approach cannot deal
with this type of protocols, it is easy to see the deference between the
task-PIOA framework and other previous approaches.

– It is desirable that the analyzed protocol is simple since we are able to
concentrate on the difference with the analysis of an oblivious transfer
protocol in the previous study. From the same reason, we will consider
the case against only passive adversaries.

Our contributions are (1). reformulating DDH assumption in task-PIOA
framework and proving the equivalence between the original DDH as-
sumption and our reformulated one, (2). formulating adaptive adversary

FCS-ARSPA’07

132

model by representing halfway corruption on codes for task-PIOAs in the
real and ideal system, and (3). showing that task-PIOA framework has an
adequate capacity by proving the security of DH protocol in the frame-
work.

Related Works. As well as task-PIOA framework, there are some ap-
proaches that directly capture “computational security” with the formal
model.

Mitchell et al. introduced a Probabilistic Polynomial-time Calculus
[8–12] to prove authentication properties of security protocols.

Backes, Pfitzmann, and Waidner designed Reactive Simulatability frame-
work [13–15] that is an abstract cryptographic library including various
cryptographic primitives. They shown soundness with respect to various
computational cryptographic primitives under active attacks.

Blanchet developed a computationally sound mechanized proofs [16]
by sequences of games that are usual tools for cryptographic communities.
He gave analyses of public-key encryption and signature schemes, and
successfully tested on examples with the tool “CryptoVerif”.

Corin and den Hartog used a probabilistic Hoare-style logic [17] for
formalizing game-based cryptographic proofs.

Küsters applied Inexhaustible Interactive Turing Machine [18] for proofs
of simulation-based paradigm.

2 Task-PIOA framework

In this section, we overview the PIOA and task-PIOA framework. We
can’t show all needed definitions or notations here. So, please refer to [6]
for them.

First, we describe the definition of PIOA.
A PIOA is defined as a tuple P = (Q, q, I,O,H,D), where each pa-

rameter represents a set of states, a start state, a set of input actions, a
set of output actions, a set of internal (hidden) actions and a transition
relation which is included (Q× (I ∪O ∪H)× Disc(Q)) where Disc(Q) is
the set of discrete probability measures on Q. Especially, I ∪ O ∪ H is
called actions of P and I ∪O is called the external actions of P.

The execution of some protocol in PIOA is expressed by sequences
like α = q0a1q1a2 · · · , where each qi ∈ Q and ai ∈ A. Here, trace of α
denoted by trace(α) is defined as {ai | ai ∈ αand ai ∈ E}, i.e. the set of
external actions in α.

PIOA can deal with probabilistic protocol execution, which is de-
scribed using probability measures on execution fragments of PIOA P.

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

133

Applying this to trace, trace distribution of a probabilistic protocol exe-
cution tdist(ε) is defined and a set of tdist of probabilistic protocol exe-
cutions is also defined and denoted by tdists(P), which is used to define
indistinguishability in task-PIOA framework.

Other property for PIOA is, for example, its composability. If two
PIOAs P1 and P2 satisfy certain restriction (if they are “compatible”),
then the composed PIOA is denoted by P1||P2. And when PIOAs are
composed, it is usually necessary to turn some output actions of one
composed PIOA into internal tasks. For this purpose, there is a hiding
operation in PIOA framework. It turns some output actions of certain
PIOA into internal actions.

Now, based on the PIOA framework, task-PIOA framework is defined
as follows.
Definition 1. A task-PIOA is a pair T = (P, R), where
– P = (Q, q, I,O,H,G) is a PIOA.
– R is an equivalence relation on the locally-controlled actions (O∪H).

The equivalence classes of R are called tasks.
In task-PIOA framework, there is a notion of a task scheduler, which
chooses the next task to perform. The scheduler is simply a sequence of
tasks.

As a task-PIOA is defined as a pair of PIOA and R, composition and
hiding can be defined as in PIOA framework. That is, composition of
task-PIOAs T1 = (P1, R1) and T2 = (P2, R2) is defined to be P1||P2 as
in PIOA framework, and R1 ∪R2 for the relation part. Hiding is also the
same as for PIOA part, and relation part receives no effect by hiding.

Now, we describe how indistinguishability of external behavior for a
task-PIOA is formulated. It is formulated by the relation ≤0, which is
defined as follows.

Definition 2. Suppose T1 and T2 are task-PIOAs having the same I/O.
Then, T1 ≤0 T2 if, for every environment E for both T1 and T2, tdists(T1||E) ⊆
tdists(T2||E). ≤0 is called implementation relation.

This definition means that implementation relation holds if the trace dis-
tribution set made in T1||E is also made in T2||E . So, E can’t distinguish
the two protocols. Therefore, to prove the security of a protocol, it is
needed to construct a real protocol using task-PIOAs, and then construct
an ideal protocol that is indistinguishable from the real protocol for any
environment E .

For proving the implementation relation, there is another relation
called simulation relation which shows the sufficient conditions for prov-
ing the implementation relation. Simulation relation is the equivalence

FCS-ARSPA’07

134

relation on probabilistic executions, which makes it possible to verify
whether states in PIOAs are equivalent or not task by task. Proof in this
way is favorable to automate a proof. In the security proof, we estab-
lish a relation and prove that it is a simulation relation, and apply the
next lemma, where comparable means to have the same I/O and closed
action-deterministic is some restriction and assumption on task-PIOAs.

Lemma 1. Let T1 and T2 are two comparable closed action-deterministic
task-PIOAs. If there exists a simulation relation from T1 to T2, then
tdists(T1||E) ⊆ tdists(T2||E).

Task-PIOA framework has the ability to deal with computational is-
sues. This is made possible by considering that each task-PIOA is polynomial-
time-bounded. For time-bounded PIOAs, the implementation relation is
defined as the following definition.

Definition 3. Let T1 and T2 be comparable task-PIOAs, ε, b ∈ R≥0, and
b1, b2 ∈ N. Then T1 ≤ε,b,b1,b2 T2 provided that, for every b-time-bounded
environment E for both T1 and T2, and for every b1-time-bounded task
scheduler ρ1 for T1||E, there is a b2-time-bounded task scheduler ρ2 for
T2||E such that

|Paccept(T1||E , ρ1)− Paccept(T2||E , ρ2)| ≤ ε
where Paccept is the probability that the environment outputs accept.

Usually, ≤ε,b,b1,b2 is denoted by ≤neg,pt for short. A useful property of
this relation is that it is transitive; if T1 ≤neg,pt T2 and T2 ≤neg,pt T3 then
T1 ≤neg,pt T3. So, a security proof can be done like this; first divide the
proof into some parts, then prove each part, and finally compose them.
In this way, the task-PIOA framework enables to carry out a proof on
protocols at a high level of abstraction. Other properties such as compo-
sition, hiding and simulation relation hold for time-bounded PIOA, too.

3 Reformulation of DDH assumption

To prove the security of Diffie-Hellman key exchange against passive ad-
versary, we need to use DDH assumption. So, in this section, we refor-
mulate the original DDH assumption definition in task-PIOA framework.
First, we show the original DDH assumption.

Definition 4. Let G = {Gk}k∈N be a group family having a generator
set GG = {(GG)k}k∈N and a exponent set GE = {(GE)k}k∈N. For every
PPT algorithm family A = {Ak}k∈N, there is a negligible function ε such
that, for all k,

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

135

∣∣∣∣∣∣∣∣∣∣
Pr


g ← (GG)k;
a← (GE)k;
b← (GE)k;
c← a · b;

Ak(g, ga, gb, gc) = 1

− Pr


g ← (GG)k;
a← (GE)k;
b← (GE)k;
R← Gk;

Ak(g, ga, gb, R) = 1


∣∣∣∣∣∣∣∣∣∣
≤ ε(k).

Then, we describe this reformulated definition using task-PIOAs. Prior
to this, we define a task-PIOA Src(D) which is used to define DDH
assumption.

Definition 5. A task-PIOA Src(D) chooses a random value uniformly
from the designated domain D and outputs the value.

Src(D) realizes this functionality with two tasks: {choose-rand} and
{rand(∗)}, where {choose-rand} chooses a value (this is an internal task)
and {rand(∗)} outputs the value (this is an output task).

Using this task-PIOA, we define two task-PIOA families SDDH and
SDDHR defined as follows.

Definition 6 (SDDH). The task-PIOA family SDDH is defiled as (Srcgval
|| Srcaval || Srcbval || Cal), where

– Srcgval = {(Srcgval)k}k∈N, where each (Srcgval)k is isomorphic to
Src(GG),

– Srcaval = {(Srcaval)k}k∈N, Srcbval = {(Srcbval)k}k∈N, where each
(Srcaval)k and (Srcbval)k are isomorphic to Src(GE),

– Cal = {Calk}k∈N, where each Calk receives the elements a, b ∈ GE
from (Srcaval)k and (Srcbval)k, and outputs the values A = ga, B =
gb and C = gab. Each Calk is defined as Cal(Gk, GEk

, GGk
), where

Cal(G,GE , GG) is defined in figure 1.
Definition 7 (SDDHR). The task-PIOA family SDDHR is defined as
hide(Srcgval||Srcaval||Srcbval||SrcCval||Cal′, rand(C)Cval), where

– Srcgval = {(Srcgval)k}k∈N, where each (Srcgval)k is isomorphic to
Src(GG),

– Srcaval = {(Srcaval)k}k∈N, Srcbval = {(Srcbval)k}k∈N, where each
(Srcaval)k and (Srcbval)k are isomorphic to Src(GE),

– SrcCval = {(SrcCval)k}k∈N, where each (SrcCval)k is isomorphic to
Src(G),

– Cal′ = {Cal′k}k∈N, where each Cal′k receives the elements a, b ∈ GE
from (Srcaval)k, (Srcbval)k and the elements C ∈ G from (SrcCval)k,
then outputs the values A = ga, B = gb and C. Each Cal′k is defined
as Cal′(Gk, GEk

, GGk
), where Cal′(G,GE , GG) is defined by replacing

the internal action fix − Cval in the code of Cal(G,GE , GG) to the
input action rand(C)Cval.

FCS-ARSPA’07

136

Cal(G,GE , GG) :
Signature:

Input:
rand(g)gval, g ∈ GG

rand(a)aval, a ∈ GE

rand(b)bval, b ∈ GE

Output:
out1(A), A ∈ G
out2(B), B ∈ G
out3(C), C ∈ G

Internal:
fix−Aval
fix−Bval
fix− Cval

State:
gval ∈ GG ∪ {⊥}, initially ⊥
aval, bval ∈ GE ∪ {⊥}, initially ⊥
Aval, Bval, Cval ∈ G ∪ {⊥}, initially ⊥

Transitions:

rand(g)gval

Effect:
if gval = ⊥ then gval := g

rand(a)aval

Effect:
if aval = ⊥ then aval := a

rand(b)bval

Effect:
if bval = ⊥ then bval := b

fix−Aval
Precondition:
gval, aval 6= ⊥
Effect:
Aval := gvalaval

fix−Bval
Precondition:
gval, bval 6= ⊥
Effect:
Bval := gvalbval

fix− Cval
Precondition:
gval, aval, bval 6= ⊥
Effect:
Cval := gvalaval·bval

out(A)Aval

Precondition:
A = Aval 6= ⊥
Effect:
none

out(B)Bval

Precondition:
B = Bval 6= ⊥
Effect:
none

out(C)Cval

Precondition:
C = Cval 6= ⊥
Effect:
none

Tasks: {fix−Aval}, {fix−Bval}, {fix− Cval}, {out1(∗)}, {out2(∗)}, {out3(∗)}

Fig. 1. DDH automaton, Cal(G,GE , GG)

Now, we define DDH assumption in task-PIOA framework.

Definition 8. DDH assumption in task-PIOA framework is to assume
the following: for a group family G = {Gk}k∈N, SDDH ≤neg,pt SDDHR
holds, where SDDH and SDDHR are defined in Definition 6 and Defi-
nition 7 respectively.

Using this definition, the following two theorems hold.

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

137

Theorem 1. If DDH assumption in Definition 4 holds for a group family
G = {Gk}k∈N, then DDH assumption in Definition 8 also holds for the
same G.

Proof. (Sketch) This proof suffices to show the existence of a negligible
function ε for every k ∈ N and for every polynomial-time-bounded envi-
ronment E for both SDDHk and SDDHRk, and for every polynomial-
time-bounded task scheduler ρ1 for SDDHk || Env, there exist polynomial-
time-bounded task scheduler ρ2 for SDDHRk || Env such that∣∣∣Paccept(SDDHk||E , ρ1)− Paccept(SDDHRk||E , ρ2)

∣∣∣ ≤ ε(k)
where Paccept is the probability that an environment outputs accept.

To show this, define a probabilistic polynomial-time algorithm A and
then apply Definition 4. This proof is similar to the proof of Theorem 6.5
of [6].

Theorem 2. If DDH assumption in Definition 8 holds for a group family
G = {Gk}k∈N, then DDH assumption in Definition 4 also holds for the
same G.

Proof. (Sketch) This proof needs to show that for any probabilistic polynomial-
time algorithm A, the inequality in Definition 4 holds. This can be shown
by defining an appropriate polynomial-time environment family E and
a polynomial-time-bounded task scheduler family ρ1 for SDDH || E ,
then there exists a polynomial-time-bounded task scheduler family ρ2

for SDDHR || E such that the inequality appeared in the previous proof
holds. Then, it can be shown that the two equalities state the same thing,
which implies that the goal is shown.

4 Diffie-Hellman Key Exchange

In this section, we show the construction of a real system and an ideal
system of Diffie-Hellman key exchange in the task-PIOA framework.

4.1 Ideal System IS

An ideal system IS is defined as the specification for the correctness and
secrecy properties which have to be guaranteed by Key Exchange.

We parameterize IS by a finite domain G with sets of generators GG
and exponents GE .

IS consists of two interacting task-PIOAs: the key exchange func-
tionality Funct and a simulator Sim. We describe the details of these
task-PIOAs.

FCS-ARSPA’07

138

Key Exchange Functionality Funct We define key exchange func-
tionality in task-PIOA framework as a task-PIOA Funct. It receives in
message from the environment, then it chooses a random value Kval ∈ G
and outputs it. This definition is based on the functionality FKE [19] in
UC framework. The code for Funct(G) is defined in Figure 2. Note that
ψ ⊆ {Init, Resp} is the corrupted endpoints.

Funct(G) :

Signature:

Input:
rand(K),K ∈ G
corrupt(Cparty), Cparty ∈ {Init, Resp}

Output:
out(K)Init, K ∈ G
out(K)Resp, K ∈ G
out′(K)Init, K ∈ G
out′(K)Resp, K ∈ G

State:
Kval ∈ G ∪ {⊥}, initially ⊥
ψ ⊆ {Init, Resp}, initially ∅

Transitions:

rand(K)
Effect:
if Kval = ⊥ then Kval := K
corrupt(Cparty)
Effect:
if Cparty 6∈ ψ then ψ := ψ ∪ Cparty
out(K)Init

Precondition:
K = Kval 6= ⊥, Init 6∈ ψ
Effect:
none

out(K)Resp

Precondition:
K = Kval 6= ⊥, Init 6∈ ψ
Effect:
none
out′(K)Init

Precondition:
K = Kval 6= ⊥, Init ∈ ψ
Effect:
none
out′(K)Resp

Precondition:
K = Kval 6= ⊥, Init ∈ ψ
Effect:
none

Tasks: {out(∗)Init}, {out(∗)Resp}, {out′(∗)Init}, {out′(∗)Resp}.

Fig. 2. Code for Funct(G)

Simulator Sim The simulator Sim is an arbitrary task-PIOA, but
there are some constraints to fix the interface. Constraints on Sim is
given in Figure 3.
Complete ideal System IS Complete ideal system IS is the com-
position of Funct(G) and Sim(G,GE , GG). After occurring Init ∈ ψ,
{out′(∗)Init} tasks are hidden. Also, after occurringResp ∈ ψ, {out′(∗)Resp}
tasks are hidden.

A ideal system family IS for group family G is a family {ISk}k∈N,
where for each k, ISk is a ideal system. So, ISk is the composition of
Funct, Sim and (SrcKval)k with hiding rand(K)Kval actions.

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

139

Signature:

Input:
in(g)Init, g ∈ GG

in(g)Resp, g ∈ GG

out(K)Init, K ∈ G
out(K)Resp, K ∈ G
out′(K)Init, K ∈ G
out′(K)Resp, K ∈ G
Arbitrary other input actions

Output:
out(K)Init,K ∈ G
out(K)Resp,K ∈ G
Arbitrary other output actions

Internal:
Arbitrary other internal actions

Tasks: {out(∗)Init}, {out(∗)Resp}.

Fig. 3. Constraints on Sim(G,GE , GG)

4.2 Real System RS

A real system RS is also parameterized by a finite domain G with sets of
generators GG and exponents GE . Based on these parameters, we define
a derived set of the message alphabet M equal to {(1, A) : A ∈ G} ∪
{(2, B) : B ∈ G}.

RS consists of three interacting task-PIOAs: The Initiator Init, the
Responder Resp and the Adversary Adv. We show the construction of
these task-PIOAs.

The Initiator Init Init receives a random value gval and aval from
Srcaval, calculates Aval = gvalaval, and sends it. When Bval is sent
from Resp, Init calculates Kval = Bvalaval and outputs Kval for the
environment. We show the code for Init in Figure 4.

The Responder Resp Resp acts in a similar way to Init. So, the code
for Resp can be obtained by simply replacing each “a” or “A” with “b”
or “B”. For space limitations, we omit the code for Resp.

Adversary Adv The adversary can read messages which Init and
Resp send to each other. This can be captured that Adv receives send
inputs from and provides receive outputs to Init and Resp. In addition, if
ψ 6= ∅(this means at least one endpoint is corrupted), Adv receives inputs
from the environment or Src automatons of the corrupted endpoints.
It also acts as an intermediary for outputs of endpoints in ψ. Adv may
communicate with the environment using arbitrary inputs and outputs
(called “new” inputs and outputs) which are disjoint from all the other
actions that appear in any of explicitly-defined components.
We abbreviate the code for Adv as the fact described here it the essence
for Adv. The code for Adv is defined in Figure 5.

Complete real system A complete real system RS is the compo-
sition of the following five task-PIOAs: Init, Resp, Adv, Src(GG)gval,

FCS-ARSPA’07

140

Init(G,GE , GG) :

Signature:

Input:
rand(g)Init, g ∈ GG

rand(a)aval, a ∈ GE

receive(2, B)Init, B ∈ G
corrupt(Cparty)Init, Cparty ∈ {Init, Resp}

Output:
send(1, A)Init, A ∈ G
out(K)Init, K ∈ G
out′(K)Init, K ∈ G
Internal:
fix−AvalInit

fix−KvalInit

State:
received ∈ {⊥,>}, initially ⊥
aval ∈ GE ∪ {⊥}, initially ⊥
Aval, Bval,KvalInit ∈ G ∪ {⊥}, initially ⊥
ψ ⊆ {Init, Resp}, initially ∅

Transitions:

rand(g)Init

Effect:
if gval = ⊥ then gval := g

rand(a)Init

Effect:
if aval = ⊥ then aval := a

receive(2, B)Init

Effect:
if Bval = ⊥ then Bval := B

corrupt(Cparty)Init

Effect:
if Cparty 6∈ ψ then ψ := ψ ∪ c
fix−AvalInit

Precondition:
gval, aval 6= ⊥, Aval = ⊥
Effect:
Aval := gvalaval

send(1, A)Init

Precondition:
A = Aval 6= ⊥
Effect:
none

fix−KvalInit

Precondition:
aval, Bval 6= ⊥,
KvalInit = ⊥
Effect:
KvalInit := Bvalaval

out(K)Init

Precondition:
K = Kval 6= ⊥, Init 6∈ ψ
Effect:
none

out′(K)Init

Precondition:
K = Kval 6= ⊥, Init ∈ ψ
Effect:
none

Tasks: {send(1, ∗)Init}, {fix−AvalInit}, {fix−KvalInit}, {out′(k)Init}, {out(k)Init}.

Fig. 4. Code for Init(G,GE , GG)

Src(GE)aval and Src(GE)bval, with all the rand, send and receive ac-
tions are hidden. If Init ∈ ψ, hide it’s out′ outputs, and If Resp ∈ ψ, hide
it’s out′ outputs too.

A real system family RS for group family G is a family {RSk}k∈N,
where for each k, RSk is a real system. So, RSk is the composition
of Init(G,GE , GG), Resp(G,GE , GG), Adv(G,GE , GG), Src((GG)k)gval,
Src((GE)k)aval and Src((GE)k)bval, with all the rand, send and receive
actions are hidden.

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

141

Adv(G,GE , GG) :

Signature:
Input:
send(1, A)Init, A ∈ G
send(2, B)Resp, B ∈ G
rand(g)Init, g ∈ GG

rand(g)Resp, g ∈ GG

rand(a)aval, a ∈ GE

out′(K)Init, K ∈ G
rand(b)bval, b ∈ GE

out′(K)Resp, K ∈ G
Arbitrary other input actions
(called “new” input actions)

Output:
receive(1, A)Resp, A ∈ G
receive(2, B)Init, B ∈ G
out(K)Init, K ∈ G
out(K)Resp, K ∈ G
corrupt(Cparty)Init, Cparty ∈ {Init, Resp}
corrupt(Cparty)Resp, Cparty ∈ {Init, Resp}
Arbitrary other output actions
(called “new” output actions)

Internal:
Arbitrary internal actions
(called “new” internal actions)

State:
messages, a set of pairs in M × {Init, Resp}, initially ∅
Kval(Init) ∈ G ∪ {⊥}, initially ⊥
Kval(Resp) ∈ G ∪ {⊥}, initially ⊥
ψ ⊆ {Init, Resp}, initially ∅

Transitions:

send(m)Init

Effect:
messages := messages ∪ {(m,Resp)}
send(m)Resp

Effect:
messages := messages ∪ {(m, Init)}
receive(m)Init

Precondition:
(m, Init) ∈ messages
Effect:
none

receive(m)Resp

Precondition:
(m,Resp) ∈ messages
Effect:
none

corrupt(Cparty)Init

Effect:
if Cparty 6∈ ψ then ψ := ψ ∪ Cparty
corrupt(Cparty)Resp

Effect:
if Cparty 6∈ ψ then ψ := ψ ∪ Cparty
out′(K)Init

Precondition:
Init ∈ ψ
Effect:
If Kval(Init) = ⊥, Kval(Init) = K

out′(K)Resp

Precondition:
Resp ∈ ψ
Effect:
If Kval(Init) = ⊥, Kval(Resp) = K

out(K)Init

Precondition:
K = Kval(Init) 6= ⊥, Init ∈ ψ
Effect:
none

out(K)Resp

Precondition:
K = Kval(Resp) 6= ⊥, Resp ∈ ψ
Effect:
none

in(m)Init, rand(a)aval

Precondition:
Init ∈ ψ
Effect:
Arbitrary changes to new state variables

rand(b)bval

Precondition:
Resp ∈ ψ
Effect:
Arbitrary changes to new state variables

New input action
Effect:
Arbitrary changes to new state variables

New output or internal action
Precondition:
Arbitrary
Effect:
Arbitrary changes to new state variables

Tasks: {receive(1, ∗)Resp}, {receive(2, ∗)Init}, {corrupt(∗)Init}, {corrupt(∗)Resp}, {out(∗)Init},
{out(∗)Resp}.
Arbitrary tasks for new actions.

Fig. 5. Code for Adv(G,GE , GG)

FCS-ARSPA’07

142

5 Main Theorem

Here, we show the main theorem we need to prove.

5.1 Families of sets
We use the family of sets G which is a family {Gk}k∈N with {GEk

}k∈N

and {GGk
}k∈N. Also, we define the derived family of sets of the message

alphabet M , where Mk = {(1, A) : A ∈ Gk} ∪ {(2, B) : B ∈ Gk}.
Theorem 3. Let RS be a real-system family for G, in which the adver-
sary family Adv is polynomial-time-bounded. Then, there exists an ideal-
system family IS for G, in which the simulator family Sim is polynomial-
time-bounded, and such that RS ≤neg,pt IS.

6 Correctness Proof

In this section, we prove RS ≤neg,pt IS. For this purpose, we introduce
an intermediate system family Int and divide the proof into two parts:
showing RS ≤neg,pt Int and Int ≤neg,pt SIS, where SIS is a family of
a structured ideal system. This makes the proof clear. We give a sketch
proof for each of them.

6.1 Simulator structure

For each k, we define a simulator SSimk as the composition of the follow-
ing four task-PIOAs, with all send, receive, rand and out′ tasks hidden.
– IR, an abstract combination of Init and Resp.
– Src((GG)k)gval, Src((GE)k)aval, Src((GE)k)bval, isomorphic to Src(Dk).
– Adv′k, identical to the adversaryAdvk inRSk except that its out′(K)Init

input actions are renamed to Iout(K) and out′(K)Resp input actions
are renamed to Rout(K).

The code for IR is defined in Figure 6 .
We define the structured ideal system SIS to be the composition

Functk||SSimk||Src((GE)k)Kval, where all the rand, send, receive ac-
tions hidden. After occurring Init ∈ ψ, then hide Iout′ outputs in IR,
and also after occurring Resp ∈ ψ, then hide Rout′ outputs in IR.

6.2 Proof for RS ≤neg,pt Int

Int To begin with, we define the intermediate task-PIOA Int.

Definition 9. A task-PIOA family Int = {Intk}k∈N is defined to be the
same as IS except that IR is replaced by IR′.

IR′ is basically just combining Init and Resp in RS together, so most
of the tasks and states are the same as them. Some exceptions are that IR′

have input action out(K) from Funct and the effects of receive actions
are changed.

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

143

IR(G,GE , GG):

Signature:
Input:
out′(K), K ∈ G
rand(g)gval, g ∈ GG

rand(a)aval, a ∈ GE

rand(b)bval, b ∈ GE

receive(1, A)Resp, A ∈ G
receive(2, B)Init, B ∈ G
corrupt(Cparty), Cparty ∈ {Init, Resp}

Output:
send(1, A)Init, A ∈ G
send(2, B)Resp, B ∈ G
Iout,Rout(K), K ∈ G
Internal:
fix−AvalInit

fix−BvalResp

State:
gval ∈ GG ∪ ⊥, initially ⊥
aval, bval ∈ GE ∪ ⊥, initially ⊥
Aval, Bval,Kval ∈ G ∪ {⊥}, initially ⊥
receivedInit, receivedResp ∈ {⊥,>}, initially ⊥
ψ ⊆ {Init, Resp}, initially ∅

Transitions:

out′(K)
Effect:
if Kval = ⊥ then Kval := K

rand(g)gval

Effect:
if gval = ⊥ then gval := g

rand(a)aval

Effect:
if aval = ⊥ then aval := a

rand(b)bval

Effect:
if bval = ⊥ then bval := b

receive(1, A)Resp

Effect:
if receivedResp = ⊥ then
receivedResp := >
receive(2, B)Init

Effect:
if receivedInit = ⊥ then
receivedInit := >
fix−AvalInit

Precondition:
gval, aval 6= ⊥, Aval = ⊥
Effect:
Aval := gvalaval

corrupt(Cparty)
Effect:
if Cparty 6∈ ψ then ψ := ψ ∪ Cparty
fix−BvalResp

Precondition:
gval, bval 6= ⊥, Bval = ⊥
Effect:
Bval := gvalbval

send(1, A)Init

Precondition:
A = Aval 6= ⊥, Kval′ 6= ⊥
Effect:
none

send(2, B)Resp

Precondition:
B = Bval 6= ⊥
Effect:
none

Iout(K), Rout(K)
Precondition:
K = Kval 6= ⊥,
receivedInit 6= ⊥
Effect:
none

Tasks: {send(1, ∗)Init}, {send(2, ∗)Resp}, {fix − AvalInit}, {fix − BvalResp}, {Iout(∗)},
{Rout(∗)}.

Fig. 6. Code for IR(G,GE , GG)

Proof sketch What we need to show is for every k, RSk ≤0 Intk. We
fix some k and remove its description below. To prove the relation, it
is sufficient to define a equivalence relation R between the two systems

FCS-ARSPA’07

144

(i.e. establishing a simulation relation). We describe how to define the
equivalence relation below.

In this case, R can be defined for most parts by simply relating the
tasks or states having the same name. This is because we defined Int
almost the same as RS, and this makes the proof very simple. But there
are an exception like receive inputs. receive tasks have different effects
between two systems. However, related tasks or states for them are easily
found by comparing the code for Init, Resp and IR′.

The established relation R can be proven to be a simulation relation.
Thus, for every k, RSk ≤0 Intk holds and so, we have RS ≤neg,pt Int as
we needed.

6.3 Int ≤neg,pt IS

We use DDH assumption in Definition 8 to prove the relation. To do this,
we first define the subsystems of Int and IS.

SubInt and SubIS Subsystems for Int and IS are denoted by SubInt
and SubIS respectively, and defined as follows.

Definition 10. Task-PIOA families SubInt and SubIS are defined as
follows:
Let U = {{rand(∗)gval}, {rand(∗)aval}, {rand(∗)bval}} and U ′ = {{rand(∗)gval},
{rand(∗)aval}, {rand(∗)bval}, {rand(∗)Kval}} then
– SubInt = hide(IR′||Srcgval||Srcaval||Srcbval, U)
– SubIS = hide(IR||Srcgval||Srcaval||Srcbval || SrcKval, U ′)

The only difference between these two subsystems is the way Kval state
variable is computed: Kval = gvalaval·bval in SubInt and it is replaced
by a random value R in SubIS. This is exactly the difference between
SDDH and SDDHR which are defined previously, and proven that
SDDH ≤neg,pt SDDHR holds.

So, in order to use this relation, we define a new polynomial-time-
bounded task-PIOA family Ifc (Ifc means interface) and we compose it
to SDDH and SDDHR in order to mimic SubInt and SubIS respec-
tively. The code for Ifc is shown in Figure 7.

6.4 DH1 ≤neg,pt DH2

Using Ifc, we define task-PIOA families SDDHDH and SDDHRDH.

Definition 11. A task-PIOA family DH1 is defined as

hide(SDDH || Ifc ||, {{out1(∗)} {out2(∗)}, {out3(∗)}})

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

145

where SDDH is the same as in DDH assumption, and Ifc is defined in
Figure 7.

Definition 12. A task-PIOA family DH2 is defined as

hide(SDDHR || Ifc ||, {{out1(∗)} {out2(∗)}, {out3(∗)}})

where SDDHR is the same as in DDH assumption, and Ifc is as in
Definition 11.

We call SDDHDH DH1 and SDDHRDH DH2 for short, respec-
tively. For these two task-PIOA families, the following Lemma holds:

Lemma 2. DH1 ≤neg,pt DH2

Proof. This is straightforward using the definitions of DH1 and DH2,
and SDDH ≤neg,pt SDDHR.

6.5 SubInt ≤0 DH1

To prove this, we again establish an equivalence relation R between the
two systems, and show it is a simulation relation. In this case too, many
of the states or tasks of SubInt correspond to the same states or tasks of
DH1.

The exceptions in this case are each fix tasks. This is because inDH1,
all the calculations of Aval, Bval and Cval are done by SDDH, the value
is transmitted to Ifc by out(∗) tasks. So, fix tasks in SubInt corresponds
to the pair of fix and out tasks in DH1. The same consideration can be
done on the state equivalence. These consideration concludes that the
relation R is a simulation relation we needed. So, SubInt ≤neg,pt DH1
holds.

6.6 DH2 implements SubIS

In this case, similar discussion is possible as in the previous subsection.
That is, if DH1 is replaced by DH2 and SubInt by SubIS, it can be seen
that this case is similar to the previous case. So, in the similar way, the
existence of a simulation relation can be proven.

Therefore, theorem 3 is proven. ut

FCS-ARSPA’07

146

Ifc :
Signature:

Input:
out(K), K ∈ G
out(1, A), A ∈ G
out(2, B), B ∈ G
out(3, C), C ∈ G
receive(1, A)Resp, A ∈ G
receive(2, B)Init, B ∈ G
corrupt(Cparty)Init, Cparty ∈ {Init, Resp}
corrupt(Cparty)Resp, Cparty ∈ {Init, Resp}

Output:
send(1, A)Init, A ∈ G
send(2, B)Resp, B ∈ G
Iout(C), C ∈ G
Rout(C), C ∈ G
Iout′(C), C ∈ G
Rout′(C), C ∈ G

State:
Kval ∈ G ∪ {⊥}, initially ⊥
Aval,Bval, Cval ∈ G ∪ {⊥}, initially ⊥
receivedInit, receivedResp ∈ {⊥,>}, initially ⊥
ψ ⊆ {Init, Resp}, initially ∅

Transitions:

out(K)
Effect:
if Kval = ⊥ then Kval := K

out(1, A)
Effect:
if Aval = ⊥ then Aval := A

out(2, B)
Effect:
if Bval = ⊥ then Bval := B

out(3, C)
Effect:
if Cval = ⊥ then Cval := C

receive(1, A)Resp

Effect:
if receivedResp = ⊥ then receivedResp := >
receive(2, B)Init

Effect:
if receivedInit = ⊥ then receivedInit := >
corrupt(Cparty)Init

Effect:
if Cparty 6∈ ψ then ψ := ψ ∪ Cparty
corrupt(Cparty)Resp

Effect:
if Cparty 6∈ ψ then ψ := ψ ∪ Cparty

send(1, A)Init

Precondition:
A = Aval 6= ⊥
Effect:
none

send(2, B)Resp

Precondition:
receivedResp 6= ⊥, B = Bval 6= ⊥
Effect:
none

Iout(C)
Precondition:
Kval 6= ⊥, receivedInit 6= ⊥, C = Cval 6= ⊥,
Init 6∈ ψ
Effect:
none

Rout(C)
Precondition:
Kval 6= ⊥, receivedInit 6= ⊥, C = Cval 6= ⊥,
Resp 6∈ ψ
Effect:
none

Iout′(C)
Precondition:
Kval 6= ⊥, receivedInit 6= ⊥, C = Cval 6= ⊥,
Init ∈ ψ
Effect:
none

Rout′(C)
Precondition:
Kval 6= ⊥, receivedInit 6= ⊥, C = Cval 6= ⊥,
Resp ∈ ψ
Effect:
none

Tasks: {send(1, ∗)Init}, {send(2, ∗)Resp}, {Iout(∗)}, {Rout(∗)}, {Iout′(∗)}, {Rout′(∗)}

Fig. 7. Code for Ifc

A Security Analysis on Diffie-Hellman Key Exchange against Adaptive Adversaries

147

References

1. Dolev, D., Yao, A.C.C.: On the Security of Public Key Protocols. In: FOCS 1981.
(1981) 350–357

2. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: FOCS 2001. (2001) 136–145 http://eprint.iacr.org/2000/067/.

3. Canetti, R., Herzog, J.: Universally Composable Symbolic Analysis of Mutual
Authentication and Key-Exchange Protocols. In: TCC 2006. (2006) 380–403

4. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Time-Bounded Task-PIOAs: A Framework for Analyzing Security Pro-
tocols. In: DISC 2006. (2006) 238–253

5. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Task-Structured Probabilistic I/O Automata. In: WODES 2006. (2006)

6. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Using Task-Structured Probabilistic I/O Automata to Analyze an
Oblivious Transfer Protocol. Technical report, MIT CSAIL-TR-2007-011 (2007)

7. Diffie, W., Hellman, M.E.: New Directions in Cryptography. In: IEEE Trans. on
Info. Theory, vol.IT-22, No.6. (1976) 644–654

8. Lincoln, P., Mitchell, J.C., Mitchell, M., Scedrov, A.: A Probabilistic Poly-Time
Framework for Protocol Analysis. In: ACM Conference on Computer and Com-
munications Security 1998. (1998) 112–121

9. Lincoln, P., Mitchell, J.C., Mitchell, M., Scedrov, A.: Probabilistic Polynomial-
Time Equivalence and Security Analysis. In: World Congress on Formal Methods
1999. (1999) 776–793

10. Mateus, P., Mitchell, J.C., Scedrov, A.: Composition of Cryptographic Protocols
in a Probabilistic Polynomial-Time Process Calculus. In: CONCUR 2003. (2003)
323–345

11. Ramanathan, A., Mitchell, J.C., Scedrov, A., Teague, V.: Probabilistic Bisimu-
lation and Equivalence for Security Analysis of Network Protocols. In: FoSSaCS
2004. (2004) 468–483

12. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols. In:
Theor. Comput. Sci. 353. (2006) 118–164

13. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure
reactive systems. In: ACM Conference on Computer and Communications Security
2000. (2000) 245–254

14. Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its
Application to Secure Message Transmission. In: IEEE Symposium on Security
and Privacy 2001. (2001) 184–

15. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library
with nested operations. In: ACM Conference on Computer and Communications
Security 2003. (2003) 220–230

16. Blanchet, B., Pointcheval, D.: Automated Security Proofs with Sequences of
Games. In: Advances in Cryptology-CRYPTO 2006. (2006) 537–554

17. Corin, R., den Hartog, J.: A Probabilistic Hoare-style logic for Game-based Cryp-
tographic Proofs. In: ICALP 2006. (2006) 252–263

18. Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Ma-
chines. In: CSFW 2006. (2006) 309–320

19. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Advances in Cryptology-EUROCRYPT 2002. (2002) 337–351

FCS-ARSPA’07

148

A Secure Simplification of the PKMv2 Protocol
in IEEE 802.16e-2005

Ender Yüksel1, Hanne Riis Nielson2, Christoffer Rosenkilde Nielsen2, and
Mehmet Bülent Örencik1

1 Department of Computer Engineering, Istanbul Technical University, 34469
Istanbul, Turkey

2 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark

yuksele@itu.edu.tr riis@imm.dtu.dk crn@imm.dtu.dk

bulent.orencik@bte.mam.gov.tr

Abstract. Static analysis is successfully used for automatically validat-
ing security properties of classical cryptographic protocols. In this pa-
per, we shall employ the same technique to a modern security protocol
for wireless networks, namely the latest version of the Privacy and Key
Management protocol for IEEE 802.16e, PKMv2. This protocol seems
to have an exaggerated mixture of security features. Thus, we iteratively
investigate which components are necessary for upholding the security
properties and which can be omitted safely. This approach is based on
the LySa process calculus and employs the corresponding automated
analysis tool, the LySaTool.

Keywords: Protocol Validation, Process Calculi, Static Analysis, Authenti-
cation, IEEE 802.16e

1 Introduction

Security in wireless networks is of great concern as the wireless medium faces
different threats from wired networks. Thus, in order to provide secure com-
munication, these threats must be taken into account in the design of security
protocols for wireless networks. However the standard for wireless metropoli-
tan area networks, IEEE 802.16, incorporated a pre-existing standard called
Data Over Cable Service Interface Specifications, designed for wired networks.
Therefore the standard failed to protect the IEEE 802.16 link [1] and significant
changes in its Privacy and Key Management protocol (PKMv1) were required.

The latest standard, IEEE 802.16e-2005 [2], includes a new version (PKMv2)
of the protocol that caters for the shortcomings of the first version. Derivation
of the authorization key is now derived by the contribution of both parties using
well known standards such as RSA and EAP, where it initially was done only by
the base station (BS). Additionally, BS is extended with a certificate, allowing
for mutual authentication with the mobile station (MS), which was missing in

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

149

PKMv1. Finally, nonces are incorporated in order to avoid replay attacks. These
corrections, though thought to benefit the security of the protocol, have also
intensively complicated it. This motivates an investigation of which extensions
that are really necessary and which that can be omitted without compromising
the protocol.

Formal analysis of cryptographic protocols is normally concerned with whether
a given protocol satisfies a number of security criteria such as correct establish-
ment of a secret shared key or authentication the principals involved. This has
been a very active area of research over the last decades, and the tools, that
have been constructed based on the theoretical development, have successfully
located many hitherto unknown flaws. One of the most well-known example
is the Lowe’s attack [3, 4] of the Needham Schroeder public key protocol [5]
using the process algebra Communicating Sequential Processes (CSP) and the
Failures-Divergences Refinement which is the model checker for CSP [6]. Similar
examples are obtained by Shmatikov and Stern [7] using Murphi, and Corin et
al. [8] using symbolic traces and Pure-past Security - Linear Temporal Logic
successfully.

This paper builds on this development, but with a different focus of interest.
Relying on a well-established verification tool, the LySaTool, we shall itera-
tively attempt to remove components of the PKMv2 protocol and investigate
the influence it has on the security properties. Our analysis shows that not only
is the PKMv2 SA-TEK 3-Way Handshake secure, but that it can even be sim-
plified by removal of some redundant fields without compromising the overall
security protocol.

2 PKMv2 in IEEE 802.16e-2005

The second version of the Privacy and Key Management (PKMv2) protocol of
IEEE 802.16 is described in IEEE 802.16e-2005 and aims to fix the bugs in the
former version. In the first part of the protocol, an Authorization Key (AK)
is generated using RSA or EAP or both. After that, each party generates a
Key Encryption Key (KEK) using their AKs. KEKs are used in encrypting and
distributing Traffic Encryption Keys (TEK), TEKs can be taken as session keys,
while AK/KEK are long term keys. Then comes the second part, SA-TEK 3-
Way Handshake, which lets MS to gather TEKs from BS. In the handshake,
TEKs are encrypted by KEKs. The process can be seen in Fig. 1.

The important part of PKMv2 is the SA-TEK 3-Way Handshake. It is based
on the second part of the former protocol, but now it has more security features.
The original specification has three messages with H-MACs and in total twenty-
one fields. The main fields are described in Table 1.

The PKMv2 SA-TEK 3-Way handshake sequence proceeds as shown in Table
2.

We had simplified the protocol, making use of the work of John Mitchell [14]
(that was used in his security review together with IETF EAP Work Group),
made the necessary changes that are necessary for LySa and obtained the follow-

FCS-ARSPA’07

150

Fig. 1. The PKMv2 Process

Table 1. The PKMv2 SA-TEK 3-Way Handshake Protocol Fields

Attribute Content
MS Random Random number received from MS
BS Random Random number included in SA-TEK-Challenge or SA-Challenge
KeySeqNo AK Sequence Number
AKID Id of the AK that was used for protecting this message
SA-TEK-Update TEKs encrypted by KEKs, optionalonhandoveretc.
FrameNo The frame number that old PMKs and AKs should be discarded
SA Descriptors Descriptors of the SA, only for initial entry
SecNegParam Confirms messages security capabilities
HMAC/CMAC Message Authentication Codes

Table 2. The PKMv2 SA-TEK 3-Way Handshake Protocol Narration

1. SA-TEK-Challenge
BS → MS: BS Random,KeySeqNo,AKID, [KeyLifeT ime], H − C/MAC
2. SA-TEK-Request
MS → BS: MS Random,BS Random,KeySeqNo,AKID, SecurityCapabilities,

SecNegParam,PKMConfSettings,H − C/MAC
3. SA-TEK-Response
BS → MS: MS Random,BS Random,KeySeqNo,AKID, [SA− TEKUpdate],

F rameNo, [SADescriptors], SecNegParam,H − C/MAC

ing protocol narration in Table 3. A, B, id, na, nb, S, T , K stands for BS, MS,
AKID, BS Random, MS Random, SecurityCapabilities + SecNegParam +PKM-
ConfSettings, SA-TEKUpdate and AK, respectively.

The first message, named as PKMv2 SA-TEK-Challenge, includes a random
number generated by A (na) and the id of the authorization key (id) and pro-
tected by the message authentication code (MAC).

The second message is the PKMv2 SA-TEK-Request which includes na and
id received in the first message in addition to the random number generated by
B, nb, security configuration details S and the message authentication code for
the remaining fields.

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

151

Table 3. PKMv2 SA-TEK 3-Way Handshake Simplified Protocol Narration

1. A → B: id, na,MAC{id, na}K
2. B → A: na, id, nb, S,MAC{na, id, nb, S}K
3. A → B: na, nb, id, T,MAC{na, nb, id, T}K

Upon reception A checks the id, MAC and the na of and if any of these
values are invalid, it discards the message. Otherwise, it checks the security
capabilities provided by the B and if the properties does not match it reports
this inconsistency to the higher layers.

If the second message is successfully validated by A then message 3 which
is named as the PKMv2 SATEK-Response is sent to B. This message has the
TEKs T .

If the last message is successfully verified by B using the MAC, the received
TEKs and associated parameters will be installed by the B. The security ne-
gotiation parameters of A should also be verified by B but the failure of this
verification may not cause halt of the protocol since B may continue by adopting
the security negotiation parameters encoded in SA-TEK Response message.

This simplification of the protocol is verified using Murphi model checker in
[14].

3 LySa Calculus

To analyze the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol we
need to formalize it in LySa calculus. LySa [10] is a process calculus based on
the π-calculus [16] and incorporates cryptographic operations using ideas from
the Spi-calculus [13]. However, there are two main differences between LySa and
spi/pi calculus. First difference is that, LySa does not have channels but one
global ether. That is because in usual implementations like ethernet-based or
wireless, anyone can eavesdrop or act as an active attacker and that is definitely
not the channel based communication. The second difference is about the usage
of pattern matching in the expression of the tests associated with input and
decryption.

LySa consists of terms and processes; terms consist of names (keys, nonces,
messages, etc.), variables, public/private keys and the compositions of them
using symmetric/asymmetric encryptions. The syntax of terms E is shown in
Table 4.

The tuples of terms E1, . . . , Ek are encrypted under a term E0 represent-
ing a key in the cases of symmetric or asymmetric encryption. An assumption
of perfect cryptography is adopted, meaning that the only inverse function of
encryption is to use decryptions with the correct key.

The syntax of processes P which is mostly familiar to the polyadic Spi-
calculus [13] is shown in Table 5.

FCS-ARSPA’07

152

Table 4. LySa Terms

E ::= x variable
n name
k+/k− public and private keys

{E1, . . . , Ek}`E0 [destL] symmetric encryption

{|E1, . . . , Ek|}`E0
[destL] asymmetric encryption

Table 5. LySa Processes

P ::= 0 nil
P1 | P2 parallel
!P replication
(ν n)P restriction (name)
(ν± m)P restriction (key pair)
〈E1, . . . , Ek〉P output
(E1, . . . , Ej ;xj+1, . . . , xk).P input

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}`E0 [origL] inP symmetric decrypt.

decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}`E0
[origL] inP asymmetric decrypt.

The input operation with pattern matching will only succeed if the prefix of
the message matches the terms specified before semi-colon in the input operation.
The input process (E1, . . . , Ej ; xj+1, . . . , xk).P means that a k-tuple of values
(E′1, . . . , E

′
k) is taken as the input and if the first 1 ≤ i ≤ j values E′i are

pairwise matched to the values Ei, the remaining k-j values of the input will be
bound to the variables xj+1, . . . , xk. In other words, the values before the semi-
colon are to matched to the beginning part of the input and if the matching
is successful the remaining part of the input will be assigned to variables after
the semi-colon. This pattern matching is also used in decryptions as shown in
Table 5. If no matching will be performed, then nothing is written before the
semi-colon. Similarly, if no binding will be performed, then nothing is written
after the semi-colon. For example,

P = decrypt {y}K as {x; }KP ′

means that the decryption in P succeeds only if x = y whereas

Q = decrypt {y}K as {; x}KQ′

means that the decryption in Q always succeeds, binding x to y. In both ex-
amples, the remainder processes P ′ and Q′ are only executed if the decryptions
succeed and of course P and Q have the implicit check that the length of the
tuples are the same.

LySa syntax also have annotations for origin and destination in order to de-
scribe the intentions of the protocols. Encryptions can be annotated with fixed

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

153

labels, called crypto-points defining its position in the process, and with asser-
tions specifying the origin and destination of encrypted messages. Crypto-points
` are from some enumerable set C and added to state where the encryptions and
decryptions occur. The LySa term for encryption:

{E1, . . . , Ek}`E0
[destL]

means that the encryption is created at crypto-points ` and specifies the intended
crypto-points L ⊆ C for decryption of the encrypted value in the assertion [dest
L]. Similarly, in the LySa term for decryption:

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}`E0
[origL] inP

[orig L] specifies the crypto-points L ⊆ C that E is allowed to have been en-
crypted.

The actual semantics have been omitted for lack of space, but are present in
[10].

A LySa process may generate a large number of names which would cause
infinite sets of names to be recorded. These sets are partitioned into finitely
many equivalence classes for the efficiency of the analysis. A canonical value is
a representative for each of these equivalence classes. For each name n, there is
a canonical representative bnc and extended homomorphically to terms, bEc is
the term where all names and variables are replaced by their canonical versions.
Since it allows us to analyze an infinite number of principals, canonical value is
an important analysis element [15].

3.1 LySa Model of IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake

We are now ready to model the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake
protocol in LySa. We have the protocol narration in Table 3. We extend the
narration to distinguish between inputs and corresponding outputs and also
make clear which checks must be performed [10]. Then we translate the narration
into LySa by dividing the narration into two processes, one for each principal.
Notice that the checks to be performed are represented by the pattern matchings
on input and decryption. In the LySa specification we add annotations to all
cryptographic operations as described before in this section. The LySa model
of the PKMv2 SA-TEK 3-Way Handshake is given in Table 6.

In PKMv2, a keyed MAC is used to verify the integrity of messages. The
message is hashed along with the key and then encrypted with the MAC key.
Since the hash functions are one way functions, they can be modelled by using a
public name for the encryption key and with no corresponding key for decryption.
Therefore, the message is encrypted by asymmetric encryption first. After that
symmetric encryption is applied. More details about LySa implementation can
be found on [17] and [18].

FCS-ARSPA’07

154

Table 6. PKMv2 LySa Model

(ν K) (ν id) (
! (ν na) 〈id ,na, {{|id ,na|}Hash}K [at a1 dest {b1}]〉.

(na, id ; xnb, xS , xmac).
decrypt xmac as {{|na, id , xnb, xS |}Hash ; }K [at a2 orig {b2}] in
(ν T) 〈na,nb, id , T, {{|na,nb, id , T |}Hash}K [at a3 dest {b3}]〉.0
|
! (id ; yna, ymac).

decrypt ymac as {{|id , yna|}Hash ; }K [at b1 orig {a1}] in
(ν nb) (ν S) 〈yna, id ,nb, S, {{|yna, id ,nb, S|}Hash}K [at b2 dest {a2}]〉.
(na,nb, id ; yT , ymac).
decrypt ymac as {{|na,nb, id , yT |}Hash ; }K [at b3 orig {a3}] in 0

)

4 Static Analysis

Static Analysis is a formal method which enables the security analysis of LySa
processes. The analysis is based on tracking messages communicated on the net-
work along with the possible values of the variables in the protocol and recording
the potential violations of the destination/origin annotations.

A LySa process describes a set of possible operations, the analysis uses an
over-approximation of this set, therefore the analysis could investigate a trace
which is impossible at all. But this is needed to do a safe approximation because
under-approximation could miss some traces.

The main components of the analysis are:

The variable environment ρ, an over-approximation of the potential values of
each variable that may be bound to.

The network component κ, an over-approximation of the set of messages that
can be communicated over the network

The error component ψ, the set of error messages of the form (`, `′) indicating
that something encrypted at ` was unexpectedly decrypted at `′.

The details of the analysis and the proofs of the soundness of the analysis
can be found in [11, 12].

In practice, the protocols - especially the ones in wireless networks - are
executed in medium with malicious attackers. In this study, LySa processes are
analyzed in parallel with Dolev-Yao attacker [9] which can perform operations
like sending/receiving messages and encryption/decryption same as a legitimate
principal.

We have new canonical name and variables (see section 3 on page 6) for the
attacker: all the canonical names of the attacker are mapped to n• and all the
canonical variables of the attacker are mapped to z•. We also have `• which is

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

155

a crypto-point in the attacker, and we have the set C which is the set of crypto-
points in the original process P in parallel with the attacker. Finally, there exists
a public/private key-pair belonging to the attacker m+

• , m−• .
The descriptions of the Dolev-Yao conditions are:

– The attacker initially has the knowledge of the canonical name n• and all free
names of the process P but he can improve his knowledge by eavesdropping
all messages sent on the network.

– The attacker can improve his knowledge by decrypting messages with the
keys he already knows. Unless the intended recipient of the message was
attacker, an error (`,`•) should be added to the error component ψ which
means that something encrypted at ` was actually decrypted by the attacker
at `•.

– The attacker can construct new encryptions using the keys he already knows.
If this message is received and decrypted by a principal, then an error (`•,`)
should be added to the error component ψ which means that something
encrypted at the attacker was decrypted by the attacker by a process P at
`.

– The attacker can send messages on the network using his knowledge and
thus forge new communications.

This conditions enable the attacker to establish the attack scenarios including
eavesdropping, modification and replay. The soundness of Dolev-Yao condition
is proved in [10].

The flow of the analysis is shown in the Fig.2. First of all, we have a protocol
narration as we had in section 2. Then we extend the narration and convert into
LySa model, as we did in section 3. We also have our attacker model which is
covered in this section. The LySa model is analyzed in parallel with the attacker
model and is processed by the LySa-tool which implements the analysis. The
results of the analysis are used to validate destination/origin authentication and
confidentiality properties of the protocols. If no violation is detected, namely
the error component ψ is empty, than it is guaranteed that the protocol satisfies
the destination/origin authentication properties. Besides, the potential values
that are learned by the attacker (ρ(z•)) helps us in validating the confidentiality
properties. Since the analysis is an over-approximation there may occur false
positives.

Fig. 2. The flow of the analysis

FCS-ARSPA’07

156

4.1 Scenarios

We shall analyze the PKMv2 SA-TEK 3-Way Handshake in scenarios with a
number n of As, A1, . . . , An, and Bs, B1, . . . , Bn. As mentioned previously, A is
the abbreviation for the base station and B for the mobile station.

We use the pair (i, j)) to refer to the instance of the protocol where Ai is
communicating with the Bj . Thus we add the two indices i, j to all variables,
constants and crypto-points of the model of the protocol in Table 6 and obtain
the LySa code that allows the analysis to distinguish between the various in-
stances. We then introduce the index 0 to refer to the attacker and the resulting
analysis scenario takes the form

|ni=1||nj=0PAi,j
| |ni=0|nj=1PBi,j

Here we use PAi,j
and PBi,j

to denote the processes needed at the Ai and the
Bj principals, respectively, in order to perform a mutual handshake. Notice that
the scenario describes that not only are all principals ready to interact with all
other honest principals, but the attacker is also allowed to act as a legitimate
principal. The analysis is carried out for n = 2 which models two groups of As
and Bs.

4.2 Validating the Protocol

In order to improve the PKMv2 SA-TEK 3-Way Handshake, first we have to
verify the base protocol which is given in Table 3. The result of our static analysis
is: no violations possible. This means that the protocol is secure and the attacker
could not violate the authentication properties. This result is similar to the work
in [14] which is established using model checking using Murphi. Now, we can
make our modifications convenient with our experiment logic.

5 Simplifying the Protocol

Our approach is based on checking the limits of robustness in IEEE 802.16
PKMv2 by removing enhancements in PKMv2 one by one, and in different com-
binations. Thus, we can see if some improvements are unnecessary and the result
may lead us to a simplified by still strong and secure protocol. Our experiments
are accomplished using the LySa-tool which runs with our LySa code.

We based our model on the simplified version of the IEEE 802.16 PKMv2 SA-
TEK 3-Way Handshake . After that we developed our LySa model in section 3.1.
We start with our base protocol model and try to simplify the model by removing
components and analyzing with attacker to find flaws.

We made the experiments systematically, and the road map of the experiment
can be seen in Fig. 3. First, we start with the base protocol and show that it has
no flaws. After that, we have three major paths: Removing the Nonces, Removing
the Ids and Removing both Nonces and Ids. The shaded nodes in the figure shows
the experiments with violations.

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

157

Fig. 3. Experiment Road Map

In the first path, we start by removing the outermost nonces, namely the
nonces in the last message. We remove one nonce at a time, and both nonces
also. Therefore, we have three experiments about the nonces in the last message.
In the second path, we remove the key ids. We start with the key id in the last
message. Then we remove another key id which is actually in the second message.

In the last path, we join the successful experiments, in other words the mod-
ification of the base model where no flaws could be found. There are two suc-
cessful experiments in the first path and one in the second, therefore we have
two experiments in the last path.

5.1 Experiment 1.1

This experiment is the first part of the first path, removing the nonces. We re-
move nb in the last message. The protocol narration of this modification is given
in Table 7 in the appendix section. The result of the analysis is: no violations
possible. This means that the protocol is still secure and the attacker still could
not violate the authentication properties even though we did not use the nonce
of principal B in the last message. This is an interesting result because now the
na in message two seems to be meaningless because there is no response for it.
MAC’s seem to save the protocol to verify the security properties. In addition,
this is also an important result because it supports our assertion But we have
to try the other combinations to conclude about the analysis.

FCS-ARSPA’07

158

5.2 Experiment 1.2

In this experiment, we remove the other nonce, na from the base protocol. The
protocol narration of this modification is given in Table 8 in the appendix section.
The result of the analysis is: no violations possible. This means that the protocol
is still secure and the attacker still could not violate the authentication properties
even though we did not use the nonce of principal A in the last message. Actually,
this result supports our assertion and this is an optimized alternative to the
protocol.

5.3 Experiment 1.3

In the last part of the first path, we remove both nonces from the last message of
the base protocol. The protocol narration of this modification is given in Table 9
in the appendix section. This time we find violation of authentication properties.
The result is given as:
ψ = (a111, b311), (a311, b111), (a121, b321), (a321, b121), (a112, b312),
(a312, b112), (a122, b322), (a322, b122)
Sample trace for (a111, b311) can be shown as:

1. A1 → B1 : id11, na11, MAC{ id11, na11}K11

1’. A1 → M(B1) : id11, na11, MAC{ id11, na11}K11

2. B1 → A1 : na11, id11, nb11, S11, MAC{ na11, id11, nb11, S11}K11

3. M(A1) → B1 : id11, T0, MAC{ id11, T0}K11

The results show that some encrypted values are decrypted in wrong places
and some decrypted values were actually encrypted in the wrong places. The
crypto-points are all from legitimate principals so there can be a replay attack.
A possible trace of this error can be summarized as: the attacker eavesdropped
the first message and he used the encrypted value in the first message, which is
actually the MAC of the message, that he could not decrypt in a reply attack. In
the third message, he replayed the MAC’s, namely he used the MAC of message
one in message-3. This is a flaw so we found a level that the protocol lost its
robustness property.

This results show that in the implementation, the length of the fields are
important. If somehow the lengths of the na value and the T value are the same,
then there exists the security flaw.

5.4 Experiment 2.1

This experiment is the first part of the second path, removing the key ids. We
start with removing the id only in the last message. The protocol narration of
this modification is given in Table 10 in the appendix section. The result of the
analysis is: no violations possible. This means that the protocol is still secure and
the attacker still could not violate the authentication properties even though we
did not use the key id in the last message.

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

159

5.5 Experiment 2.2

In this experiment we remove the id fields in both the last and the second
message. The protocol narration of this modification is given in Table 11 in the
appendix section. Now we have found violation of authentication properties. The
result is given as:
ψ = (b211, b311), (a311, a211), (b221, b321), (a321, a221), (b212, b312), (a312, a212),
(b222, b322), (a322, a222), (a310, a210), (a320, a220), (b202, b302), (b201, b301)
We found traces for specific types of violation. Sample trace for (b211, b311) can
be shown as:

1. A1 → B1 : id11, na11, MAC{ id11, na11}K11

2. B1 → A1 : na11, nb11, S11, MAC{ na11, nb11, S11}K11

2’. B1 → M(A1) : na11, nb11, S11, MAC{ na11, nb11, S11}K11

3. M(A1) → B1 : na11, nb11, S11, MAC{ na11, nb11, S11}K11

This result shows that we cannot remove both ids in the protocol.

5.6 Experiment 3.1

Now we construct the third path of the experiments by taking the successfully
validated experiments of the first two path. Therefore, this path is called remov-
ing the nonces and the key ids. In this first experiment of this path, we combine
the experiment 1.1 and 2.1 so we remove the key id and nb in the last message.
The protocol narration of this modification is given in Table 12 in the appendix
section. The result of the analysis is: no violations possible. This means that the
protocol is still secure and the attacker still could not violate the authentication
properties even though we did not use the key id and nb in the last message.
Definitely, this is a better result and better optimization. But now nb in the
second message is useless, therefore this result is not practical.

5.7 Experiment 3.2

In this experiment of this path, we combine the experiment 1.2 and 2.1 so we
remove the key id and nb in the last message. The protocol narration of this
modification is given in Table 13 in the appendix section. The result of the
analysis is: no violations possible. This means that the protocol is still secure and
the attacker still could not violate the authentication properties even though we
did not use neither the key id nor nb in the last message.

Finally, this point is the best point of optimization since it is still secure
and also practical. Namely, this version makes use of both nonces of A and B
(actually BS and MS), and also key ids. Now we have seen the limits of the
protocol and removed the redundant fields.

FCS-ARSPA’07

160

5.8 Further Experiments

The experiments above present enough evidence to support our proposal but
we went further to see if we could fix the flaws that appeared when we removed
fields from the base protocol. The problems occur in the MAC part, and we claim
that this can be fixed by adding sequence numbers inside the MACs. Therefore,
we applied sequence number revision to the experiments with erroneous results
which can be seen as shaded in Fig. 3. The results have empty error components
which mean that we have fixed the flaws. After that we took another way and
decided to test the affect of the order of the fields in the messages. As can be seen
in Fig. 4, we just swapped the appropriate fields in the last message in order to
get the same order with the second message. The result is very interesting, now
we have violations in the base code. Besides, we can easily find traces for those
violations which means that the results are not false positive, but real flaws. We
fixed this situation with the sequence numbers and had no violations afterwards.

Fig. 4. Further Experiments

6 Conclusion

The contribution of this paper is two-fold. First, we establish the security of
the Privacy and Key Management protocol PKMv2 of the latest version of the
WiMAX standard, the IEEE 802.16e-2005. Second, we show how the protocol
can be simplified without violating the security properties.

The PKMv2 SA-TEK 3-Way Handshake protocol was developed as a re-
sponse to the identification of various flaws in the earlier version. Several secu-
rity elements were added, not only to fix known flaws, but also to cater for other

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

161

possible flaws. Our analysis shows that the resulting protocol is indeed secure,
but also that it was over-secured by introducing redundant fields.

Our approach is based on the LySa calculus and the corresponding analysis
tool, the LySaTool. The LySa framework provides an intuitive protocol de-
scription and an automated verification of the security properties authentication
and confidentiality. Therefore LySa is a suitable choice for investigating proto-
cols such as the classical security protocols [15], large-scale systems [18] and even
voting protocols [12].

As we mentioned in the static analysis section, an error found by analysis
does not always imply that the protocol actually has a flaw. A successful run
on the analysis on the other hand, guarantees that the protocol does not violate
the security properties. Thus, our experiments that yielded no violations are
versions of the protocol that are guaranteed secure, whereas the experiments
that returned violations would require further investigation to determine if these
actually corresponded to an attack.

The success of our approach shows that is a viable method for iteratively
simplifying a secure protocol. Only alterations that does not introduce possible
attacks are kept and tested in combinations with other safe alterations. During
development, we carried out many experiments, but only the ones we found
of most interest were included in the paper. The result is a simplified version
of PKMv2 SA-TEK 3-Way Handshake protocol, guaranteed to be secure, but
without various redundant fields.

References

1. Johnston, D., Walker, J.: Overview of IEEE 802.16 Security. IEEE Security &
Privacy Magazine Vol. 2, Issue: 3, (2004) 40–48

2. IEEE Std 802.16e-2005, 2006. Standard for Local and metropolitan area networks
Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems
Amendment 2: Physical and Medium Access Control Layers for Combined Fixed
and Mobile Operation in Licensed Bands and Corrigendum 1

3. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
CSP and FDR. International Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Springer-Verlag (1996) 147–166

4. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Information Processing Letters 56(3) (1995) 131–133

5. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM. 21(12) (1978) 993–999

6. Mitchell, J. C., Mitchell, M., Stern, U.: Automated Analysis of Cryptographic
Protocols Using Murphi. IEEE Symposium on Security and Privacy. (1997) 141–
151

7. Shmatikov, V., Stern, U.: Efficient finite-state analysis for large security protocols.
Communications of the ACM. (1998) 106–115

8. Corin, R., Saptawijaya, A., Etalle, S.: A logic for constraint-based security protocol
analysis. IEEE Symposium on Security and Privacy. (2006) 155–168

9. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory. 29(12) (1983) 198–208

FCS-ARSPA’07

162

10. Bodei, C., Buchholtz, M., Degano, P., Nielson, H.R., Nielson, F.: Static Validation
of Security Protocols. Journal of Computer Security. (2004) 347–390

11. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Automatic valida-
tion of protocol narration. Proceedings of the 16th Computer Security Foundations
Workshop. (2003) 126–140

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag

13. Abadi, M., Gordon, A. D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation. 148(1) (1999) 1–70

14. Datta, A., He, C., Mitchell, J. C., Roy, A., Sundararajan, M.: 802.16e Notes. IETF
Liasons. (2005)

15. Buchholtz, M., Nielson, H.R., Nielson, F.: A calculus for control flow analysis of
security protocols. International Journal on Information Security. 2(3-4) (2004)
145–167

16. Milner, R.: Communicating and mobile systems: the pi-calculus. Cambridge Uni-
versity Press, fifth edition.

17. Nielsen, C.R., Andersen, E.H., Nielson, H.R.: Static Validation of a Voting Proto-
col. Nordic Journal of Computing . (2006) 98–116

18. Hansen, S.M., Skriver, J., Nielson, H.R.: Using Static Analysis to Validate the
SAML Single Sign-On Protocol. Proceedings of the 2005 Workshop on Issues in
the theory of Security . (2005) 27–40

A Protocol Narrations

Table 7. PKMv2 without nb in message 3

1. A → B: id, na,MAC{id, na}K
2. B → A: na, id, nb, S,MAC{na, id, nb, S}K
3. A → B: na, id, T,MAC{na, id, T}K

Table 8. PKMv2 without na in message 3

1. A → B: id, na,MAC{id, na}K
2. B → A: na, id, nb, S,MAC{na, id, nb, S}K
3. A → B: nb, id, T,MAC{nb, id, T}K

A Secure Simplification of the PKMv2 Protocol in IEEE 802.16e-2005

163

Table 9. PKMv2 without na and nb in message 3

1. A → B: id, na,MAC{id, na}K
2. B → A: na, id, nb, S,MAC{na, id, nb, S}K
3. A → B: id, T,MAC{id, T}K

Table 10. PKMv2 without id in message 3

1. A → B: id, na,MAC{id, na}K
2. B → A: na, id, nb, S,MAC{na, id, nb, S}K
3. A → B: na, nb, T,MAC{na, nb, T}K

Table 11. PKMv2 without ids in message 2 and 3

1. A → B: id, na,MAC{id, na}K
2. B → A: na, nb, S,MAC{na, nb, S}K
3. A → B: na, nb, T,MAC{na, nb, T}K

Table 12. PKMv2 without id and nb in message 3

1. A → B: id, na,MAC{id, na}K
2. B → A: na, id, nb, S,MAC{na, id, nb, S}K
3. A → B: na, T,MAC{na, T}K

Table 13. PKMv2 without id and na in message 3

1. A → B: id, na,MAC{id, na}K
2. B → A: na, id, nb, S,MAC{na, id, nb, S}K
3. A → B: nb, T,MAC{nb, T}K

FCS-ARSPA’07

164

