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Objectives
Clustering of sequential or temporal data with an Hidden
Markov Model (HMM)-based technique.

Main aspects:

• use of HMM to derive new proximity distances, in the
likelihood sense, between sequences;

• partitional clustering algorithm which alleviates
computational burden characterizing traditional
hierarchical agglomerative approaches.

The method is demonstrated on real world data
sequences, i.e. the EEG signals:

• temporal complexity;

• growing interest in the emerging field of Brain
Computer Interfaces.

Hidden Markov Models
A discrete HMM is formally defined by the following
elements :

•A set S = {S1, S2, · · · , SN} of (hidden) states.

•A state transition probability distribution, also called
transition matrix A = {aij}, representing the
probability to go from state Si to state Sj.

aij = P [qt+1 = Sj|qt = Si]

1 ≤ i, j ≤ N aij ≥ 0,
N

∑

j=1

aij = 1

•A set V = {v1, v2, · · · , vM} of observation symbols.

•An observation symbol probability distribution, also
called emission matrix B = {bj(k)}, indicating the
probability of emission of symbol vk when system
state is Sj.

bj(k) = P [vk at time t |qt = Sj]

1 ≤ j ≤ N, 1 ≤ k ≤ M

with bi(k) ≥ 0 and
∑M

j=1 bj(k) = 1.

•An initial state probability distribution π = {πi},
representing probabilities of initial states.

πi = P [q1 = Si] 1 ≤ i ≤ N,

πi ≥ 0,
N

∑

i=1

πi = 1

For convenience, we denote an HMM as a triplet
λ = (A, B, π).
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Hidden Markov AR Models
A very interesting class of HMMs that seems to be
particularly suitable for EEG signals are the
autoregressive HMMs. In this case, the observation
vectors {y1...yT} are drawn from an autoregressive
process and thus B is defined as

bj(yt) = P (yt|qt = Si) = N(yt − Ftâi, σ
2
i ) (1)

where

•Ft = −[yt−1, yt−2, · · · , yt−p];

• âi is the (column) vector of AR coefficients for the ith
state;

• σ2
i is the estimated observation noise for the i-th state,

estimated using Jazwinski method.

The prediction for the ith state is ŷi
t = Ftâi. The order of

AR model is p.

HMM for EEG signal modeling
EEGs are an useful tool used for understanding several
aspects of the brain, from diseases detection to sleep
analysis and evocated potential analysis.

The system used to model the EEG signal is based on
[Penny and Roberts 1998] paper:

• train an autoregressive HMM directly on the EEG
signal, rather than use an intermediate AR
representation;

• a Kalman filter approach is used to preliminary
segment the signal in different dynamic regimes of the
signal;

• assign each HMM state with a different dynamic
regime.

Initialization of training procedure
Problem: The HMM training procedure (Baum-Welch
re-estimation procedure) is sensitive to initial parameters
estimate.

Solution:
Initialization of Emission Matrix B:

• pass a Kalman filter AR model over the data, obtaining
a sequence of AR coefficients;

• coefficients corresponding to low evidence are
discarded;

• clusterize the remaining with Gaussian Mixture
Models;

• the center of each Gaussian cluster is then used to
initialize the AR coefficients in each state of the
HMM-AR model.

Initialization of Transition Matrix A:

•The prior knowledge from the problem domain about
average state duration densities is used to initialize the
matrix.

• each diagonal element is set to aii = 1 − 1
d

to let HMM
remain in state i for d samples;

• d is computed knowing that EEG data is stationary for
a period of the order of half a second.

The proposed method for sequence
clustering

The proposed approach, inspired by [Smyth 95], can be
depicted by the following algorithm:

1. Train an m−states HMM for each sequence
Si, (1 ≤ i ≤ N) of the dataset D, initializing the
training as former explained. The obtained N HMM
are identified by λi, (1 ≤ i ≤ N);

2. for each model λi, evaluate its probability to generate
all sequences Sj, 1 ≤ j ≤ N , obtaining a likelihood
matrix L where

Lij = P (Sj|λi), 1 ≤ i, j ≤ N (2)

3. derive a sequences distance matrix from (2);

4. apply a suitable clustering algorithm to the distance
matrix obtaining K clusters on the data set D.

Remarks:

•This method exploits the measure defined by (2) which
naturally expresses the similarity between two
observation sequences.

•Hidden Markov Models are able to model similarity
between sequences, allowing to recover the difficult
task of clustering sequences to standard clustering.

Derivation of Distance
Three different differences derived from (2) were
investigated:

1. Distance “SM”: obtained by simply symmetrizing (2):

L
ij
S =

1

2
[Lij + Lji] (3)

2. Distance “KL”: similar to the Kullback-Leibler
information number:

L
ij
KL = Lii

[

ln
Lii

Lji

]

+ Lij

[

ln
Lij

Ljj

]

(4)

3. Distance “BP”: proposed in this paper:

L
ij
BP =

1

2

{

Lij − Lii

Lii

+
Lji − Ljj

Ljj

}

(5)

Motivations for distance “BP”:

•The measure (2), defines a similarity measure between
two sequences Si and Sj as the likelihood of the
sequence Si with respect to the model λj, trained on
Sj, without really taking into account the sequence Sj.

•This kind of measure assumes that all sequences are
modelled with the same quality without considering
how well sequence Sj is modelled by the HMM λj:
this could not always be true.

•Our proposed distance also considers the modelling
goodness by evaluating the relative normalized
difference between the sequence and the training
likelihoods.

Clustering Algorithm
About step 4 we introduce a new partitional clustering
algorithm, called DPAM:

• this methods obtains a single partition of the data;

•we compare it with Complete Link Agglomerative
Hierarchical Clustering, a standard class of algorithms
that, instead of single partition, produces a sequence of
clustering of decreasing number of clusters at each
step;

• partitional method have advantages in application
involving large data sets for which the construction of
a dendogram is computationally prohibitive.
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DPAM Partitional Clustering
The standard partitional clustering schemes, as K-means,
work as follows:

• at each iteration evaluate the distance between each
item and each cluster descriptor

• assign the item to the nearest cluster.

• after re-assignment, the descriptor of each cluster will
be reevaluated by averaging its cluster items;

•A simple variation of the method, called “Partition
Around Medoid (PAM)”, determines each cluster
representative by choosing the point nearest to the
centroid.

Problem: in our context we cannot evaluate centroid of
each cluster because we only have item distances and not
values.

Proposed approach: features

• a novel partitional method is proposed, able to
determine cluster descriptors in a PAM paradigm,
using item distances instead of their values;

•Moreover, the choice of the initial descriptors could
affect algorithm performances. Our approach propose
to adopt a multiple initialization procedure, where the
best resulting partition is determined by a sort of
Davies-Bouldin criterion.

The Algorithm
Fixed η as the number of tested initializations, N the
number of sequences, k the number of clusters and L the
proximity matrix characterized by previously defined
distances (3), (4), and (5), the resulting algorithm is the
following:

• for t=1 to η

– Initial cluster representatives θj are randomly
chosen (j = 1, . . . , k, θj ∈ {1, . . . , N}).

– Repeat:
∗Partition evaluation step:

Compute the cluster which each sequence
Si, i = 1, . . . , N belongs to; Si lies in the j

cluster for which the distance
L(Si, θj), i = 1, . . . , N, j = 1, . . . k is
minimum.

∗Parameters upgrade:
·Compute the sum of the distance of each
element of cluster Cj from each other element
of the jth cluster
·Determine the index of the element in Cj for
which this sum is minimal
·Use that index as new descriptor for cluster Cj

– Until the representatives θj values between two
successive iterations don’t change.

–Rt = {C1, C2, . . . , Ck}

– Compute the Davies–Bouldin–like index defined
as:

DBL(t) =
1

k

k
∑

r=1

max
s6=r

{

SL
c (Cr, θr) + SL

c (Cs, θs)

L(θr, θs)

}

where Sc is an intra–cluster measure defined by:

SL
c (Cr, θr) =

∑

i∈Cr
L(i, θr)

|Cr|

• endfor t
•Final solution: The best clustering Rp has the

minimum Davies–Bouldin–like index, viz.:
p = arg mint=1,...,η{DBL(t)}

Results
Data set
EEG data recorded by Zak Keirn at Purdue University;
the dataset contains EEGs signal recorded from different
subjects which were asked to perform five mental tasks:

• baseline task, for which the subjects were asked to
relax as much as possible;

•math task, for which the subjects were given nontrivial
multiplications problems, such as 27*36, and were
asked to solve them without vocalizing or making any
other physical movements;

• letter task, for which the subjects were instructed to
mentally compose a letter to a friend without
vocalizing;

• geometric figure rotation, for which the subjects were
asked to visualize a particular 3D block figure being
rotated about an axis;

• visual counting task, for which the subjects were asked
to image a blackboard and to visualize numbers being
written on the board sequentially.

Preprocessing and Segmentation
We applied the method on a segment-by-segment basis,
1s signals sampled at 250Hz and drawn from a dataset of
cardinality varying from 190 (two mental states) to 473
sequences (five mental states) where we removed
segments biased by signal spikes arising human artifact
(e.g. ocular blinks).

Experimental
•The proposed HMM clustering algorithm has been first

applied to two mental states: baseline and math task,
then we extend trials to all available data;

• accuracies are computed by comparing the clustering
results with real segment labels; the percentage is
merely the ratio of correct assigned label with respect
to the total number of segments;

• first we applied the hierarchical complete link
technique, varying the proximity measure: results are
shown in the following Table, with number of mental
states growing from two to five.

Hierarchical Complete Link
BP KL SM

2 natural clusters 97.37% 97.89% 97.37%
3 natural clusters 71.23% 79.30% 81.40%
4 natural clusters 62.63% 57.36% 65.81%
5 natural clusters 46.74% 54.10% 49.69%

•Accuracies are quite satisfactory. None of the method
experimented can be considered the best one;

• nevertheless, measures (3) and (4) seem to be more
effective.

•Therefore we applied the partitional algorithm to the
same datasets setting the number of initializations
η = 5 during all the experiments. Results are presented
in the following Table:

Partitional DPAM Clustering
BP KL SM

2 natural clusters 95.79% 96.32% 95.79%
3 natural clusters 75.44% 72.98% 65.61%
4 natural clusters 64.21% 62.04% 50.52%
5 natural clusters 57.04% 46.74% 44.80%

• in this last case the BP distance is overall slightly
better than the others experimented measures.

Final comments:

• a final comparison of partitional and agglomerative
hierarchical algorithms underlines that there are no
remarkable differences between the proposed
approaches. Clearly, partitional approaches alleviates
computational burden, thus they should be preferred
when dealing with complex signals clustering (e.g.
EEG);

• the comparison of clustering and classification results
(obtained in earlier works) shown that the latter are
just slightly better. This strengthen the quality of the
proposed method, considering that unsupervised
classification is inherently a more difficult task.

Conclusions

•We addressed the problem of unsupervised
classification of sequences using an HMM approach.

•These models, very suitable in modelling sequential
data, are used to characterize the similarity between
sequences in different ways.

•We extend the Smyth’s ideas by defining a new metric
in likelihood sense between data sequences and by
applying to these distance matrices two clustering
algorithms: the traditional hierarchical agglomerative
method and a novel partitional technique.

• Partitional algorithms are generally less computational
demanding than hierarchical, but could not be applied
in this context without some proper adaptations,
proposed in this paper.

• Finally we tested our approach on real data, using
complex temporal signals, the EEG, that are increasing
in importance due to recent interest in Brain Computer
Interface.

•Results shown that the proposed method is able to
infer the natural partitions with patterns characterizing
a complex and noisy signal like the EEG ones.
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