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Abstract. We give a brief overview of operational models for concurrent
systems that exhibit probabilistic behavior, focussing on the interplay
between probability and nondeterminism. Our survey is carried out from
the perspective of probabilistic automata, a model originally developed
for the analysis of randomized distributed algorithms.

1 Introduction

The study of randomization in concurrency theory started almost two decades
ago, leading to the proposal of several formalisms. In this paper we focus on
operational nondeterministic models with discrete probabilities, and we analyze
them from the perspective of Probabilistic Automata.

After giving the formal definition of probabilistic automata, we describe other
existing proposals as extensions or restrictions of probabilistic automata, thus
surveying the existing literature from a uniform point of view. We then turn to
the definition of simulation and bisimulation relations. These relations are stud-
ied extensively for their mathematical simplicity; yet, several existing definitions
appear incomparable. We show how to view the existing definitions based on the
definitional style of probabilistic automata. We give several references along the
way, including references to other relevant topics that we do not cover explicitly.

2 Preliminaries on Measure Theory

We start with some preliminary notions from measure theory. Although we define
all the necessary concepts, some familiarity is useful. We refer the reader to any
textbook on measure theory in case the use of some concepts is hard to grasp.

A σ-field over a set Ω is a subset F of 2Ω that includes the empty set and
is closed under complement and countable union. We call the pair (Ω,F) a
measurable space. A special σ-field is the set 2Ω , which we call the discrete σ-
field over Ω. Given a subset C of 2Ω , we denote by σ(C) the smallest σ-field that
includes C, and we call it the σ-field generated by C.

A measure over a measurable space (Ω,F) is a function µ : F → R≥0 such
that µ(∅) = 0 and, for each countable family {Xi}I of pairwise disjoint elements
of F , µ(∪IXi) =

∑
I µ(Xi). If µ(Ω) ≤ 1, then we say that µ is a sub-probability
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measure, and if µ(Ω) = 1, then we say that µ is a probability measure. If F is
the discrete σ-field over Ω, then we say that µ is a discrete measure over Ω. In
such case, for each set X ⊆ Ω, µ(X) =

∑
x∈X µ({x}). We drop brackets from

singletons whenever this does not cause any confusion. We denote by Disc(Ω)
the set of discrete probability measures over Ω and by SubDisc(Ω) the set of
discrete sub-probability measures over Ω. We say that a set X ⊆ Ω is a support
of a measure µ if µ(Ω − X) = 0. If µ is a discrete measure, then there is a
minimum support of µ consisting of those elements x ∈ Ω such that µ(x) > 0.

A function f : Ω1 → Ω2 is said to be a measurable function from (Ω1,F1) to
(Ω2,F2) if the inverse image under f of any element of F2 is an element of F1.
In this case, given a measure µ on (Ω1,F1) it is possible to define a measure on
(Ω2,F2) via f , called the image measure of µ under f and denoted by f(µ), as
follows: for each X ∈ F2, f(µ)(X) = µ(f−1(X)). In other words, the measure
of X in F2 is the measure in F1 of those elements whose f -image is in X. The
measurability of f ensures that f(µ) is indeed a well defined measure.

3 Probabilistic Automata

In this section we define probabilistic automata and we relate them to several
other existing models.

3.1 Probabilistic Automata

The main idea behind probabilistic automata is that the target of a transition
is not just a single state, but rather is determined by a probability measure.
Thus, if a transition describes the act of flipping a fair coin, then the target
state corresponds to head with probability 1/2 and tail with probability 1/2.
However, in contraposition to ordinary Markov processes, for each state there
may be several possible transitions.

A probabilistic automaton (PA) is a tuple (Q, q̄, A,D), where Q is a countable
set of states, q̄ ∈ Q is a start state, A is a countable set of actions, and D ⊆
Q×A×Disc(Q) is a transition relation. The set of actions A is further partitioned
into two sets E,H of external and internal (hidden) actions, respectively.

The only difference with respect to ordinary automata is in the third element
of the transition relation D, which is not a single state but rather a discrete
probability measures over states. Indeed, an ordinary automaton can be seen as
a special case of a probabilistic automaton where all transitions lead to Dirac
measures, i.e., measures that assign probability 1 to a single state.

In the sequel we use A to denote a probabilistic automaton and we refer to
the elements of A by Q, q̄, A,D, propagating indices and primes as well. Thus,
e.g., H ′

i is the set of internal actions of a PA A′
i.

Remark 1. The definition of probabilistic automaton given here includes a single
start state; however, nothing prevents us from defining PAs with multiple start
states or where start states are replaced by start probability measures. Such
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Fig. 1. A probabilistic automaton that flips a coin.

extensions do not provide much additional insight; however, they impose simple
cosmetic adjustments in several definitions that we prefer to avoid in favor of
clarity. Similar reasons motivated the restrictions on the cardinality of Q and A.

Example 1. Figure 1 gives a graphical representation of a PA that performs
an action flip and then beeps if the result of the coin flip is head and buzzes
otherwise. The PA is nondeterministic since the coin to be flipped can be either
fair or unfair, leading to head with probability 2/3 in the unfair case.

An execution fragment of a PA A is a sequence of alternating states and
actions, α = q0a1q1 · · ·, starting with a state and, if the sequence is finite, ending
with a state, such that, for each non final index i, there exists a transition
(qi, ai+1, µi+1) in D with µi+1(qi+1) > 0. We denote by fstate(α) the first state
q0 of α, and, if the sequence is finite, we denote by lstate(α) the last state of α.
An execution of a PA A is an execution fragment of A whose first state if q̄. We
denote by Frags∗(A) the set of finite execution fragments of a PA A.

An execution fragment is the result of resolving nondeterminism and fixing
the outcomes of the probabilistic experiments. However, resolving nondetermin-
istic choices only leads to more complex structures that should be studied.

Example 2. Consider the coin flipper of Example 1 and suppose we want to
compute the probability that it beeps. We should note first that such proba-
bility depends on the coin that is flipped. Indeed, the coin flipper beeps with
probability 1/2 if the fair coin is flipped, and with probability 2/3 if the unfair
coin is flipped. Therefore, in order to answer our question, we should first fix the
coin to be flipped, and then study probabilities on the structure that we get.

We can think of resolving nondeterminism by unfolding the transition relation
of a PA and then choosing only one transition at each point. From the formal
point of view it is more convenient to define a function, which we call scheduler,
that chooses transitions based on the past history (i.e., the current position in
the unfolding of the transition relation).

A scheduler for a PA A is a function σ : Frags∗(A) → SubDisc(D) such that,
for each finite execution fragment α and each transition tr with σ(α)(tr) > 0,
the source state of tr is lstate(α). A scheduler σ is deterministic if, for each finite
execution fragment α, either σ(α) assigns probability 1 to a single transition or
assigns probability 0 to all transitions. A scheduler σ is memoryless if it depends
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Fig. 2. Probabilistic executions

only on the last state of its argument, i.e., for each pair α1, α2 of finite execution
fragments, if lstate(α1) = lstate(α2), then σ(α1) = σ(α2).

Informally, σ(α) describes the rule for choosing a transition after α has oc-
curred. The rule itself may be randomized. Since σ(α) is a sub-probability mea-
sure, it is possible that with some non-zero probability no transition is chosen,
which corresponds to terminating the computation (what in the purely nondeter-
ministic case is called a finite execution fragment). Deterministic schedulers are
not allowed to use randomization in their choices, while memoryless schedulers
are not allowed to look at the past history in their choices. Deterministic and
memoryless schedulers are easier to analyze compared to general schedulers, and
several properties (e.g., reachability) can be studied by referring to deterministic
memoryless schedulers only.

Remark 2. Terminology may be confusing at this point. In the original definition
of PAs [35] a scheduler is called adversary since it is seen as a hostile entity that
degrades performance as much as possible. In the field of Markov Decision Pro-
cesses [15], a scheduler is called policy since it is seen as an entity that optimizes
some cost function. In practice the three terms may be used interchangeably.

Example 3. Figure 2 gives two examples of probabilistic executions of the coin
flipper of Example 1. In the left case the unfair coin is flipped, while in the
right case each coin is flipped with probability 1/2 and the buzz transition is
never scheduled. In general, considering that a scheduler may also terminate
executions, we can say that the coin flipper beeps with probability at most 2/3.
Furthermore, if we assume that transitions are scheduled whenever possible, then
we can say that the coin flipper beeps with a probability between 1/2 and 2/3.

We now describe formally how to associate a probability measure to execution
fragments once nondeterminism is resolved. Interestingly, we do not need to build
explicitly the structures depicted in Figure 2. First we need to define the set of
measurable events (when we talk about probabilities an element of the σ-field is
called an event); then we associate probabilities to events. As basic measurable
events we consider the set of cones of finite execution fragments, where the
cone of a finite execution fragment α consists of all possible extensions of α and
denotes the occurrence of α possibly followed by some other behavior. Formally,
the cone of α, denoted by Cα, is the set {α′ ∈ Frags(A) | α ≤ α′}, where ≤ is
the standard prefix preorder on sequences. Informally, referring to Figure 2, the
probability of a cone Cα is the product of the probabilities of all the edges of
the path α. Formally, we give a recursive definition. Fixed a scheduler σ and a



state s, we define a measure εσ,s on cones as follows.

εσ,s(Cα) =


0 if α = q for some state q 6= s,
1 if α = s,
εσ,s(Cα′)

∑
tr∈D(a) σ(α)(tr)µtr(q) if α = α′aq,

where D(a) denotes the set of transitions of D with label a. Standard measure
theoretical arguments ensure that εσ,s extends uniquely to the σ-field generated
by cones. We call the measure εσ,s a probabilistic execution fragment of A and
we say that it is generated by σ from s. If s is the start state of A, then we say
that εσ,s is a probabilistic execution.

The cone-based definition of σ-field is quite general, and indeed typical prop-
erties of interest are measurable. The occurrence of an action a (of a state s) is a
union of cones, and thus measurable since there are countably many cones. Sim-
ilarly, we retain measurability if we require n occurrences of an action or state.
Also infinitely many occurrences of an action are measurable, since they can be
expressed as the countable intersection, over all naturals n, of n occurrences.
It is also known that any ω-regular language is measurable [39] and that the
properties expressed by existing probabilistic temporal logics are measurable.

We conclude this section with the definition of a parallel composition opera-
tor. In our definition we synchronize two probabilistic automata on their common
actions; however, many other synchronization styles are possible.

Two probabilistic automata A1,A2 are compatible if H1∩A2 = A1∩H2 = ∅.
The composition of two compatible probabilistic automata A1,A2, denoted by
A1‖A2, is a probabilistic automaton A where Q = Q1 × Q2, q̄ = (q̄1, q̄2), E =
E1 ∪E2, H = H1 ∪H2, and D is defined as follows: ((q1, q2), a, µ1 × µ2) ∈ D iff,
for each i ∈ {1, 2}, either a ∈ Ai and (qi, a, µi) ∈ Di, or a /∈ Ai and µi = δ(qi),
where δ(qi) denotes the probability measure that assigns probability 1 to qi and
µ1 × µ2((q′1, q

′
2)) is defined to be µ1(q′1)µ2(q′2).

3.2 Reactive, Generative, and Stratified Models

In [19] probabilistic models are classified into reactive, generative, and stratified.
The paper was first written in 1990 in the context of concurrency theory, where
the trend was to replace nondeterministic choices with probabilistic choices.
The main driving idea was that the presence of probabilities does not hide the
underlying nondeterminism, but rather gives more information.

A reactive system is a labeled transition system whose arcs are equipped
with probabilities. Furthermore, for each state q and each action a, either there
is no transition labeled by a from q, or the probabilities of all transition labeled
by a from q add to 1. In other words, a reactive system does not provide any
information about the way an action is chosen, but provides information about
the way a transition is chosen once the action is fixed. The information about the
underlying nondeterminism for an action a can be retrieved via an appropriate
projection operation that removes all probabilities from the arcs.



A generative system is similar to a reactive system; however, this time the
requirement is that for each state q either there is no transition from q, or
the probabilities of all transition from q add to 1. In other words a generative
system adds information about the way actions are chosen. The information
about the actions available (i.e., the underlying reactive system) can be retrieved
by an appropriate projection operation that renormalizes the probabilities of the
transitions labeled by the same action.

A stratified system adds more information to a generative system in the sense
that a measure over visible transitions is obtained via several non-visible tran-
sitions that reveal some hierarchy. This model has not received much attention
in the literature and therefore we refer the interested reader to [19].

The view of [19] is that stratified is more general than generative and that
generative is more general than stratified with the justification that the pro-
jection operators preserve bisimilarity. Our definition of probabilistic automata
departs considerably from such view. Indeed, there is no way to encode the non-
determinism of the probabilistic automaton of Example 1 within a reactive or
generative system. In contraposition to the underlying idea of [19], probabilistic
automata keep explicitly both nondeterministic and probabilistic choices.

Observe that a reactive system can be seen also as a deterministic PA, i.e., a
PA that from each state enables at most one transition for each action. However,
this implies abandoning the idea of [19] that the underlying nondeterminism can
be retrieved by removing probabilities.

3.3 Markov Decision Processes

Another well known model of probabilistic and nondeterministic systems is
Markov Decision Processes (MDPs) [15], which in practice correspond to de-
terministic probabilistic automata. MDPs were studied originally within oper-
ational research: a process evolves probabilistically according to measures that
depend only on the current states (Markovian property); however, from each
state there are several possible actions available, each one leading to different
evolutions. The objective is to choose actions from each state (choose a policy)
so that some cost function is optimized. States may be associated with rewards
that are used to compute the cost function. MDPs are deterministic in the sense
that from each state each action identifies a unique evolution.

Another related model which is worth mentioning here are the probabilistic
automata of Rabin [34]. Again, these correspond to deterministic probabilistic
automata. They were studied originally in the context of language theory to
show that finite-state probabilistic automata accept a class of languages which
is strictly larger than regular languages.

3.4 Alternating Models

In [39] Vardi studies model checking algorithms for Markov processes in the pres-
ence of nondeterminism. For the purpose he distinguishes probabilistic states,
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Fig. 3. An alternating representation of the coin flipper of Figure 1.

where the next state is determined by a probability measure, from nondeter-
ministic states, where several ordinary transitions may occur. The same idea
is followed in [22] for the definition of Labeled Concurrent Markov Chains. The
objective of [22] was to give a semantics to a probabilistic process algebra, where
probability measures are expressed by appropriate expressions. Thus, a distinc-
tion between nondeterministic and probabilistic states follows naturally.

The models of [39, 22] are currently referred to as alternating models, in
contraposition to probabilistic automata which are non-alternating. The model
of [22] is further called strictly alternating since it imposes a strict alternation
between nondeterministic and probabilistic states, whereas the model of [39]
permits transitions between nondeterministic states.

Since an ordinary transition is a special case of a probabilistic transition,
the alternating models can be seen as special cases of probabilistic automata,
where restrictions are imposed on the transition relations. This idea is formalized
in [37] via appropriate embedding functions. The interesting aspect of viewing
the alternating models as special cases of probabilistic automata is that several
concepts that in the literature are defined on the models in very different styles
turn out to be equivalent [37]. This is reassuring since it means that we can
grasp the whole theory by understanding fewer concepts.

Example 4. Figure 3 represents the coin flipper of Figure 1 as an alternating
probabilistic automaton. The main difference is that the transitions labeled by
flip are split into two transitions, one from a nondeterministic state to a proba-
bilistic state, and one from the probabilistic state to a probability measure over
nondeterministic states. There is indeed a folklore idea, formalized in [37], on
how to transform a non-alternating model into an alternating model by splitting
transitions and vice-versa how to transform an alternating model into a non-
alternating model by collapsing transitions. Observe also that the coin flipper of
Figure 3 is a PA as well if we add dummy internal labels to the unlabeled arcs.
This is the main idea behind the embedding functions of [37].

3.5 Generative Probabilistic Automata

The original definition of probabilistic automaton [35] was based on a more
general notion of transition where not only the target state is determined by a
probability measure, but also the action to be performed. In addition, it is also



possible for a transition to deadlock with some probability. Although several
concepts can be adapted to this general definition of probabilistic automaton,
the main problem is that we are not aware yet of any meaningful definitions
of composition that are conservative extensions of existing definitions in non
probabilistic models. It is shown in [35] that several natural attempts break
associativity of composition. A successful attempt is reported in [12] with the
introduction of the bundle model. In this model a transition leads to a probabil-
ity measure over sets of ordinary transitions and thus parallel composition can
be defined easily. However, it is arguable whether this is really a conservative ex-
tension of ordinary automata or a faithful representation of generative systems.
For example, in [5] it is argued that the bundle model is more expressive than
generative probabilistic automata according to a classification that we describe
in Section 5; however, we may also see a bundle system just as a special case of
a probabilistic automaton in a similar way as we see the alternating models as
special cases of probabilistic automata via embedding. This point of view is not
investigated yet.

For the above reasons, as we do in this paper, it is now typical to use the term
probabilistic automaton to refer to what in [35] is called a simple probabilistic
automaton. Following the classification of [19] we could call the probabilistic
automata of [35] probabilistic automata with generative transitions or genera-
tive probabilistic automata and the probabilistic automata of this paper, i.e.,
the simple probabilistic automata of [35], probabilistic automata with reactive
transitions or reactive probabilistic automata.

3.6 Probabilistic I/O Automata

Following the style of [27], where the external actions of ordinary automata
are partitioned into input and output actions, it is possible to introduce the
input/output distinction on probabilistic automata as well. The advantage of
this approach is that we can recover all the techniques used within I/O automata,
including the task mechanisms used to describe fairness properties and the ability
to use language inclusion to preserve fairness properties as well.

A probabilistic I/O automaton (PIOA) [10] is a probabilistic automaton
whose external actions are partitioned into input and output actions such that
for each state q and each input action a there is at least one transition labeled
by a enabled from q (input enabling property). Output and internal actions are
called locally controlled actions. Two PIOAs can be composed only if their locally
controlled actions are disjoint. As a consequence, the external environment can
never block any locally controlled action of a PIOA (the other automata may
have the same action only as an input, which is always enabled), or, in other
words, every PIOA is in full control of its locally controlled actions. We can say
alternatively that each action is under the control of at most one component.

Another advantage of the input/output distinction is that it is possible to
consider PIOAs with generative locally controlled transitions, and yet define a
meaningful composition operator [40, 35]. Indeed, the transitions of a composi-
tion can be obtained either by synchronizing input transitions, or by synchro-



nizing a locally controlled transition of one component with appropriate input
transitions of the other component.

The definition of PIOA of [40] does not include nondeterminism: each state
enables exactly one reactive transition for each input action and possibly one
generative transition with locally controlled actions. The nondeterminism that
arises in a composition is resolved by assigning weights to each component and
using relative weights as probabilities to solve conflicts determined by locally
controlled transitions. It was observed later that this amounts to assuming that
the locally controlled transitions of a component PIOA are performed with time
delays governed by an exponential distribution whose delay parameter is the
weight of the component. Thus, the PIOAs of [40] are special instances of the
pure probabilistic models described later in Section 3.8.

3.7 Unlabeled Models

Probabilistic automata include labels; however, especially in the context of model
checking, it is typical to consider unlabeled models and add structure to the
states to define properties. For example, we could easily define probabilistic
Kripke structures by removing labels from the transition relation of a PA and
adding a labeling function that associates propositional symbols with states.

If we consider composition with synchronization between components, then
synchronization occurs typically via shared variables. However, problems similar
to those encountered with generative probabilistic automata arise if we do not
impose any control structure on the values of the shared variables (e.g., the values
of some variables are under the control of a single component). A successful
attempt to solve the synchronization problem in unlabeled models appears in
[13], where a probabilistic extension of reactive modules [1] is studied.

Example 5. Consider two unlabeled probabilistic automata A1,A2 whose states
include a variable X. Suppose that A1 from its initial state flips a fair coin to
set X either to 0 or 1, while A2 from its initial state flips a fair coin to set X
either to 0 or 2. What transition should appear from the initial state of A1‖A2?
We have at least two choices: either we deadlock whenever the two automata set
X in an incompatible way, and thus X is set to 0 with probability 1/4 and the
system deadlocks with probability 3/4, or we consider only compatible choices
and renormalize probabilities, and thus X is set to 0 with probability 1.

3.8 Pure Probabilistic Models

If we remove all nondeterminism and keep only probabilistic choices, then in
the unlabeled case we obtain Markov processes, while in the labeled generative
case we obtain Markov processes with actions. These models are used mainly
for performance evaluation and are studied in the context of stochastic process
algebras [20, 24, 6]. The underlying idea is that actions describe resources that are
available with exponentially distributed delays, which means that there is a close
correspondence between the delay parameter of the actions and their probability



to occur. Each model manages actions in a slightly different way, but overall
actions are partitioned into two sets. Actions from the first set occur according
to some probability measures and describe the resources available, while actions
from the second set are passive, and simply synchronize with actions from the
first set. Passive actions describe the consumers of the resources. Thus some
input/output distinction is present. Composition amounts to adding resources
and users. If a resource cannot be used, then probabilities are renormalized.

A complete description of stochastic process algebras goes beyond the scope
of this paper. Here we observe that composition of stochastic process algebras
is not a conservative extensions of composition of ordinary automata and is not
comparable with composition of probabilistic automata. A good understanding
of the relationship between these models is still open.

We mention also the interesting approach to performance evaluation of In-
teractive Markov Chains [23]. In this case actions are immediate and time is
described by explicit transitions with exponential delays. The advantage of this
approach is that it is possible to keep nondeterminism in the model.

3.9 Models with Time

There is a vast literature on timed extension of probabilistic models. We have
described before some ways to associate delays with actions and we refer the
interested reader to a survey that appears in [7]. In the context of probabilistic
automata one possibility to deal with time is by adding explicit time-passage
transitions to the model and keep the underlying theory unchanged. This is
done already in the work of Hansson and Jonsson [22] by discretizing time and
representing the passage of a quantum of time via a “tick” action. Segala [35]
considers a dense time domain and adds to probabilistic automata time-passage
transitions labeled by the amount of time elapsed. However, in order to reuse
the theory of probabilistic automata, schedulers can only be discrete.

A treatment of real-time with non-discrete measures poses non-trivial mea-
surability problems that go beyond the scope of this paper. We refer the reader
to [30, 18] for an understanding of the problem on deterministic models and to
[9] for an understanding of the problem in the presence of nondeterminism.

4 Simulations and Bisimulations

Simulation and bisimulation relations are attractive for their mathematical sim-
plicity. They have been studied extensively in the context of probabilistic sys-
tems, including reactive systems [26], alternating models [21, 32, 2], and non al-
ternating models [36, 4]. The existing definitions are very different in style; how-
ever, as shown in [37], all the proposals end up being equivalent once we see the
alternating models as special instances of probabilistic automata.



4.1 Lifting Relations

We start by lifting a relation on a set X to a relation on probability measures over
X. This is useful since the target of a transition in a PA is a probability measure.
Let R be a relation on a set X. The lifting of R, denoted by L(R), is a relation
on Disc(X) such that, µ1 L(R) µ2 iff for each upper closed set C ⊂ X, µ1(C) ≤
µ2(C), where the upper closure of a set C is the set {x ∈ X | ∃c∈C , c R x}.
This definition of lifting was first proposed in [16] in the context of non-discrete
systems and is equivalent to an earlier proposal of [25, 36] for discrete systems
stating that µ1 L(R) µ′1 iff there exists a weighting function w : Q×Q → [0, 1]
such that (1) w(x1, x2) > 0 implies x1 R x2, (2)

∑
x1

w(x1, x2) = µ2(x2), and
(3)

∑
x2

w(x1, x2) = µ1(x1). Informally, w redistributes probabilities between µ1

and µ2 respecting R. An important observation is that if R is an equivalence
relation, then µ1 L(R) µ2 iff, for each equivalence class C of R, µ1(C) = µ2(C).

4.2 Strong Simulations and Bisimulations

A strong simulation on a PA A is a relation R on Q such that, for each pair of
states (q1, q2) ∈R and each transition (q1, a, µ1) of A there exists a transition
(q2, a, µ2) of A such that µ1 L(R) µ2. If R is an equivalence relation, then we
say that R is a strong bisimulation.

Sometimes it is more convenient to talk about simulation and bisimulation
relations between two PAs A1 and A2. These definitions can be recovered from
the definition above by considering the disjoint union of the states Q1 ]Q2, the
union of the transition relations D1, D2, and requiring start states to be related.

If we apply the definition above to deterministic PAs, then we obtain the
definition of bisimulation of [26], and similarly we obtain the definition of bisim-
ulation of [21] if we consider strictly alternating PAs. There is also a definition of
bisimulation for alternating PAs proposed in [32]. This definition, however, co-
incides with our definition above only if we transform an alternating automaton
into a PA according to the construction of Example 4. Indeed, the definition of
[32] was given by viewing alternation just as a formal artifact to describe PAs.

4.3 Strong Probabilistic Simulations and Bisimulations

Consider the two PAs of Figure 4. The two PAs are not bisimilar since the
middle transition of A2 cannot be simulated by A1. On the other hand, the
middle transition of A2 is just a convex combination of the other two transitions.
If we are just interest in bounds to the probabilities of satisfying a property
(say performing action beep), there should be no reason to distinguish A1 from
A2. In [36] it is shown that A1 and A2 satisfy the same formulas of PCTL, a
probabilistic temporal logic which indeed observes only bounds on probabilities,
and thus it is argued that A1 and A2 should not be distinguished. This lead to
the formulation of a probabilistic version of simulation and bisimulation relations,
where transitions can be simulated by convex combinations of other transitions.
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Fig. 4. Two PAs that are not strongly bisimilar.

LetA be a probabilistic automaton, and let {(q, a, µi)}I be a countable family
of transitions of A. Let {pi}I be a family of probabilities such that

∑
i∈I pi = 1.

Then the triplet (q, a,
∑

i∈I piµi) is called a combined transition of A.
A strong probabilistic simulation on a PA A is a relation R on Q such that, for

each pair of states (q1, q2) ∈R and each transition (q1, a, µ1) of A there exists a
combined transition (q2, a, µ2) of A such that µ1 L(R) µ2. If R is an equivalence
relation, then we say that R is a strong probabilistic bisimulation.

It turns out that in the alternating models strong bisimulation and strong
probabilistic bisimulation coincide [37]. Thus, the distinction between the two
kinds of bisimulation is relevant only for PAs.

Example 6. Observe that the ability to simulate a transition by convex com-
binations of transitions is lost in the alternating model, which is why strong
and strong probabilistic bisimulation coincide. Indeed, if we transform the prob-
abilistic automata of Figure 4 by splitting transitions, then they would not be
bisimilar any more since the intermediate probabilistic state reached by the mid-
dle transition of A2 cannot be related to any state of the transformation of A1.

4.4 Weak Probabilistic Simulations and Bisimulations

The next step is to abstract from internal computation and extend weak simu-
lations and bisimulations to PAs. The only interesting aspect is how to define a
weak transition in the probabilistic case. On ordinary automata a weak transition
is represented by a finite execution fragment whose trace consists of at most one
external action. Here the trace of an execution fragment α, denoted by trace(α),
is the subsequence of external actions that occur in α. In the probabilistic case
a weak transition is represented by a probabilistic execution fragment.

Let A be a probabilistic automaton, and let εσ,q be a probabilistic execution
fragment ofA generated by σ from state q. If εσ,q(Frags∗(A)) = 1 and there exists
an action a such that trace(εσ,q) = trace(a), then we say that (q, a, lstate(εσ,q))
is a weak combined transition of A. Here we have used implicitly the fact that
functions trace and lstate are measurable.

A weak probabilistic simulation on a PA A is a relation R on Q such that,
for each pair of states (q1, q2) ∈R and each transition (q1, a, µ1) of A there exists



a weak combined transition (q2, a, µ2) of A such that µ1 L(R) µ2. If R is an
equivalence relation, then we say that R is a weak probabilistic bisimulation.

Since we have imposed no restrictions on the schedulers that generate weak
transitions, we have defined directly the probabilistic versions of the weak re-
lations. Indeed, it turns out that the non-probabilistic versions of the weak re-
lations are not transitive [14]. A definition of weak bisimulation is proposed
also for the alternating model [33] using deterministic schedulers. The definition
uses conditional probability measures and is given in a very different style com-
pared to this paper; however, our definition of weak probabilistic bisimulation
restricted to the alternating model coincides with the definition of [32].

4.5 Other kinds of Bisimulations

Bisimulation relations are studied extensively also in pure probabilistic models.
The definitional style is very similar to ours and we refer the reader to [3] for
an extensive comparative study. In particular in the absence of nondeterminism
several relations coincide. There are also several variations of simulation and
bisimulation relations in the literature, often proposed with specific applications
in mind. Here we cite two important proposals.

In [36] there is a proposal for a probabilistic version of branching bisimulation,
which is shown to preserve a weak version of PCTL. This definition is given in the
same style of the previous subsections, except that some restrictions are imposed
on the intermediate states of a weak transition, exactly as in the definition of
branching bisimulation. A definition of branching bisimulation is also proposed
in [2] for the alternating model. Once again, the definition of [36] coincides with
the definition of [2] once restricted to the alternating model.

In [4] there is a proposal for a probabilistic version of normed bisimulation
which has the advantage of being decidable efficiently. Indeed, strong bisimu-
lations are decidable in polynomial time [8], while weak bisimulations are de-
cidable in exponential time on probabilistic automata [8]. Interestingly, though,
weak bisimulations are decidable in polynomial time in the alternating model
[32] since the alternating structure ensures that two states are bisimilar iff for
each action and each equivalence class the maximum probabilities of reaching
the given class with the given action coincide. See [8] for more details.

5 Concluding Remarks

In this paper we have given an overview of the main operational models for
probabilistic and nondeterministic systems. In doing so we have been forced to
leave out other important approaches that the reader may want to investigate
further. Within the field of domain theory and denotational semantics, several
models have been proposed that combine probability and nondeterminism. The
interested reader may start from [38, 11] for more details. There has been also
extensive research on probabilistic extensions of guarded command languages
and their applications. The interested reader is referred to [28].



Our overview is given by taking probabilistic automata as reference model
and viewing the others as special cases or generalizations. There are also other
ways to classify models. In particular [5] proposes a hierarchy where a model
is more expressive than another one if it is possible to transform objects of
the least expressive model into objects of the other model so that bisimilarity
is preserved and reflected. The transformations should preserve states; thus,
for example, the transformations of [37] are not acceptable since they add or
remove probabilistic states. Indeed, the alternating and non-alternating models
are incomparable according to [5].

We have omitted here any reference to process algebras, axiomatizations and
logical characterizations for probabilistic models. For process algebras the reader
may look at [31] and references therein, while for logical characterizations the
reader may look at [26, 17]. The work in [17] is carried out in the context of
alternating non-discrete systems and improves the results of [26].
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