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Summary. The Probabilistic I/O Automaton model of [31]
is used as the basis for a formal presentation and proof of the
randomized consensus algorithm of Aspnes and Herlihy. The
algorithm guarantees termination within expected polynomial
time. The Aspnes-Herlihy algorithm is a rather complex algo-
rithm. Processes move through a succession of asynchronous
rounds, attempting to agree at each round. At each round, the
agreement attempt involves a distributed random walk. The
algorithm is hard to analyze because of its use of nontrivial
results of probability theory (specifically, random walk the-
ory which is based on infinitely many coin flips rather than
on finitely many coin flips), because of its complex setting,
including asynchrony and both nondeterministic and proba-
bilistic choice, and because of the interplay among several
different sub-protocols. We formalize the Aspnes-Herlihy al-
gorithm using probabilistic I/O automata. In doing so, we de-
compose it formally into three subprotocols: one to carry out
the agreement attempts, one to conduct the random walks,
and one to implement a shared counter needed by the random
walks. Properties of all three subprotocols are proved sepa-
rately, and combined using general results about automaton
composition. It turns out that most of the work involves prov-
ing non-probabilistic properties (invariants, simulation map-
pings, non-probabilistic progress properties, etc.). The prob-
abilistic reasoning is isolated to a few small sections of the
proof. The task of carrying out this proof has led us to de-
velop several general proof techniques for probabilistic I/O
automata. These includeways to combineexpectations for dif-
ferent complexity measures, to compose expected complex-
ity properties, to convert probabilistic claims to determinis-
tic claims, to use abstraction mappings to prove probabilistic
properties, and to apply random walk theory in a distributed
computational setting. We apply all of these techniques to an-
alyze the expected complexity of the algorithm.
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1 Introduction

With the increasing complexity of distributed algorithms there
is an increasing need for mathematical tools for analysis. Al-
though there are several formalisms and tools for the analysis
of ordinary distributed algorithms, there are not as many pow-
erful tools for the analysis of randomization within distributed
systems. This paper is part of a project that aims at develop-
ing the right math tools for proving properties of complicated
randomized distributed algorithms and systems. The tools we
want to develop should be based on traditional probability
theory, but at the same time should be tailored to the com-
putational setting. Furthermore, the tools should have good
facilities for modular reasoning due to the complexity of the
systems to which they should be applied. The types of mod-
ularity we are looking for include parallel composition and
abstraction mappings, but also anything else that decomposes
the math analysis.

We develop our tools by analyzing complex algorithms
of independent interest. In this paper we analyze the random-
ized consensus algorithm of Aspnes and Herlihy [5], which
guarantees termination within expected polynomial time. The
Aspnes-Herlihy algorithm is a rather complex algorithm. Pro-
cessesmove through a succession of asynchronous rounds, at-
tempting to agree at each round. At each round, the agreement
attempt involves a distributed random walk. The algorithm is
hard to analyze because of its use of nontrivial results of prob-
ability theory (specifically, random walk theory), because of
its complex setting, including asynchrony and both nondeter-
ministic and probabilistic choice, and because of the interplay
among several different sub-protocols.

We formalize the Aspnes-Herlihy algorithm using proba-
bilistic I/O automata [31]. In doing so, we decompose it for-
mally into three subprotocols: one to carry out the agreement
attempts, one to conduct the random walks, and one to imple-
ment a shared counter needed by the randomwalks. Properties
of all three subprotocols are proved separately, and combined
using general results about automaton composition. It turns
out that most of the work involves proving non-probabilistic
properties (invariants, simulationmappings, non-probabilistic
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progress properties, etc.). The probabilistic reasoning is iso-
lated to a few small sections of the proof.

The taskof carryingout thisproofhas ledus todevelopsev-
eral general proof techniques for probabilistic I/O automata.
These includeways tocombineexpectations for different com-
plexitymeasures, to compose expected complexity properties,
to convert probabilistic claims to deterministic claims, to use
abstraction mappings to prove probabilistic properties, and to
apply random walk theory in a distributed computational set-
ting. We apply all of these techniques to analyze the expected
complexity of the algorithm.

Previous work on verification of randomized distributed
algorithms includes [28], where the randomized dining
philosophers algorithm of [22] is shown to guarantee progress
with probability 1, [24,29], where the algorithm of [22] is
shown to guarantee progress within expected constant time,
and [2], where the randomized self-stabilizingminimumspan-
ning tree algorithm of [3] is shown to guarantee stabilization
within an expected time proportional to the diameter of a net-
work. The analysis of [28] is based on converting a probabilis-
tic property into a property of some of the computations of an
algorithm (extreme fair computations); the analysis of [24,29,
2] is based on part of the methodology used in this paper. An-
other verification technique, based on the so called scheduler-
luck games, is presented in [14]. Other work is based on the
extension of model checking techniques to the probabilistic
case [32,19,10] and on the extension of predicate transform-
ers to the probabilistic case [27].

Prior to the algorithm of Aspnes and Herlihy, the best
known randomizedalgorithm for consensuswith sharedmem-
ory was due to Abrahamson [1]. The algorithm has expo-
nential expected running time. The algorithm of Aspnes and
Herlihy was improved by Attiya, Dolev, and Shavit [7] by
eliminating the use of unbounded counters needed for the ran-
dom walk. Further improvements were proposed by Aspnes
[4], by Dwork, Herlihy, Plotkin, and Waarts [15], by Bracha
and Rachman [11] (O(n2 log n) operations), and by Aspnes
and Waarts [6] (O(n log2 n) operations per processor). Other
improvements were proposed by Aumann and Bender [9]
(O(n log2 n) operations), by Chandra [12] (O(log2 n) work
per processor), and by Aumann [8] (O(log n) work per pro-
cessor) by imposing appropriate restrictions on the power of
the adversary.

The rest of the paper is organized as follows. Section 2
presents the basic theoretical tools for our analysis, includ-
ing probabilistic I/O automata, abstract complexity measures,
progress statements and refinementmappings; Sect. 3 presents
a coin lemma for random walks and a result about the ex-
pected complexity of a random walk within a probabilistic
I/O automaton; Sect. 4 presents the algorithm of Aspnes and
Herlihy and describes formally the module that carries out
the agreement attempts; Sects. 5 and 6 prove that the Aspnes-
Herlihy algorithm satisfies the validity and agreement proper-
ties; Sect. 7 proves several progress properties of the algorithm
that arenot basedonanyprobabilistic argument;Sect. 8 proves
the probabilistic progress properties of the algorithm by using
the results of Sect. 7; Sect. 9 builds the module that conducts
the random walk; Sect. 10 builds the shared counter needed
in Sect. 9; Sect. 11 derives the termination properties of the
algorithm, where the complexity is measured in terms of ex-

pected number of rounds; Sect. 12 studies the expected time
complexity of the algorithm; Sect. 13 gives some concluding
remarks and discusses the kinds of modularization that we use
in the proof.

Part I: The underlying theory

2 Formal model and tools

In this section we introduce the formalism that we use in the
paper. We start with ordinary I/O automata following the style
of [25,23]; then we move to probabilistic I/O automata by
adding the input/output structure to the probabilistic automata
of [31]. We describe methods to handle complexity measures
within probabilistic automata, and we present progress state-
ments as a basic tool for the complexity analysis of a prob-
abilistic system. Finally, we describe verification techniques
based on refinements and traces.

2.1 I/O automata

An I/O automatonA consists of five components:

• A setStates(A) of states.
• A non-empty setStart(A) ⊆ States(A) of start states.
• An action signatureSig(A) = (in(A), out(A), int(A)),
wherein(A), out(A)andint(A)aredisjoint sets:in(A) is
the set of input actions,out(A) is the set of output actions,
andint(A) is the set of internal actions.

• A transition relationTrans(A)⊆States(A)×Actions(A)
×States(A), whereActions(A) denotes the setin(A) ∪
out(A) ∪ int(A), such that for each states of States(A)
and each input actiona of in(A) there is a states′ such
that(s, a, s′) is an element ofTrans(A). The elements of
Trans(A) are calledtransitions, andA is said to beinput
enabled.

• A task partitionTasks(A), which is an equivalence rela-
tion onint(A)∪ out(A) that has at most countably many
equivalence classes. An equivalence class ofTasks(A) is
called ataskof A.

In the rest of the paper we refer to I/O automata as automata.
A states of A is said toenablea transition if there is

a transition(s, a, s′) in Trans(A); an actiona is said to be
enabledfrom s if there is a transition(s, a, s′) in Trans(A);
a taskT ofA is said to beenabledfrom s if there is an action
a ∈ T that is enabled froms.

An execution fragmentof an automatonA is a sequence
α of alternating states and actions ofA starting with a state,
and, ifα is finite, endingwith a state,α = s0a1s1a2s2..., such
that for eachi ≥ 0 there exists a transition(si, ai+1, si+1) of
A. Denote byfstate(α) the first state ofα and, ifα is finite,
denote bylstate(α) the last state ofα. Denote byfrag∗(A)
the set of finite execution fragments ofA. An executionis an
execution fragment whose first state is a start state.

An execution fragmentα is said to befair iff the following
conditions hold for every taskT of A:

1. if α is finite thenT is not enabled inlstate(α);
2. if α is infinite, then either actions fromT occur infinitely

many times inα, orα contains infinitelymanyoccurrences
of states from whichT is not enabled.
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A states ofA is reachableif there exists a finite execution ofA
that ends ins. Denote byrstates(A) the set of reachable states
ofA. A propertyφ of states is said to bestablefor an execution
fragmentα = s0a1s1 · · · if, onceφ is true,φ remains true in
all later states. That is, for everyi ≥ 0, φ(si) ⇒ ∀j≥iφ(sj).

A finite execution fragmentα1 = s0a1s1 · · · ansn of A
and an execution fragmentα2 = snan+1sn+1 · · · ofA can be
concatenated. The concatenation, writtenα1

� α2, is the exe-
cution fragments0a1s1 · · · ansnan+1sn+1 · · ·. An execution
fragmentα1 ofA is aprefixof an execution fragmentα2 ofA,
writtenα1 ≤ α2, iff either α1 = α2 or α1 is finite and there
exists an execution fragmentα′

1 ofA such thatα2 = α1
� α′

1.
If α = α1

� α2, thenα2 is called asuffixofα, and it is denoted
alternatively byα�α1.

2.2 Probabilistic I/O automata

2.2.1 Preliminaries on probability theory

In this section we recall some basic definitions and results
from probability theory. The reader interested in more details
is referred to any book on probability theory.

A probability spaceis a triplet(Ω,F , P ) where

1. Ω is a set, also called thesample space,
2. F is a collection of subsets ofΩ that is closed under com-

plement and countable union and such thatΩ ∈ F , also
called aσ-field, and

3. P is a function fromF to [0, 1] such thatP [Ω] = 1
and such that for any collection{Ci}i of at most count-
ably many pairwise disjoint elements ofF , P [∪iCi] =∑

i P [Ci].

The pair(Ω,F) is called ameasurable space, and themeasure
P is called aprobability measure.

A probability space(Ω,F , P ) is discreteif F = 2Ω and
for eachC ⊆ Ω,P [C] =

∑
x∈C P [{x}]. For any arbitrary set

X, letProbs(X) denote the set of discrete probability distri-
butions whose sample space is a subset ofX and such that all
the elements of the sample space have a non-zero probability.

A function f : Ω1 → Ω2 is said to bemeasurablefrom
(Ω1,F1) to (Ω2,F2) if for eachE ∈ F2, f−1(E) ∈ F1.
Given a probability space(Ω1,F1,P1), a measurable space
(Ω2,F2), and a measurable functionf from (Ω1,F1) to (Ω2,
F2), let f(P1), the image measureof P1, be the measure de-
fined on(Ω2,F2) as follows: for eachE ∈ F2, f(P1)(E) =
P1(f−1(E)). Standard measure theory arguments show that
(Ω2,F2, P2) is a probability space. If(Ω,F , P ) is discrete,
then we can definef((Ω,F , P )) as(f(Ω), 2f(Ω), f(P )).

For notational convenience we denote a probability space
(Ω,F , P ) by P. We also use primes and indices that carry
over automatically to the components of a probability space.
Thus, for example,P ′

i denotes(Ω
′
i,F ′

i , P
′
i ).

Given aprobability spaceP anda setX, we abusenotation
and we writeP [X] even ifX contains elements that are not
in Ω. By writing P [X] we mean implicitlyP [X ∩ Ω]. Also,
given an elementx, we writeP [x] for P [{x}].

Given two discrete probability spacesP1 andP2, define
the productP1 ⊗ P2 of P1 andP2 to be the triplet(Ω1 ×
Ω2, 2Ω1×Ω2 , P1 ⊗ P2), where, for each(x1, x2) ∈ Ω1 ×Ω2,
P1 ⊗ P2[(x1, x2)] = P1[x1]P2[x2].

We conclude with some notions about random variables
thatareneeded insomeof theproofsofour results. Let(�,F�)
be a measurable space with the real numbers as sample space.
Given a probability spaceP, a random variableX for P is
a measurable function from(Ω,F) to (�,F�). As an exam-
ple, a random variable could be the function that expresses
the complexity of each element ofΩ. It is possible to study
the expected valueof a random variable, that is, the aver-
age complexity of the elements ofΩ, as follows:E[X] =∑

x∈Ω X(x)P [x].
LetP beaprobability spaceand letX bea randomvariable

for P. For a natural numberi ≥ 0, let the expressionX ≥ i
denote the event{x ∈ Ω | X(x) ≥ i}. Then the following
two useful properties are valid.

1. If the rangeofX is thesetof natural numbers, thenE[X] =∑
i>0 P [X ≥ i].

2. E[X] ≥∑i>0 P [X ≥ i].

2.2.2 Probabilistic I/O automata

A probabilistic I/OautomatonM consists of five components:

• A setStates(M) of states.
• A non-empty setStart(M) ⊆ States(M) of start states.
• An action signatureSig(M).
• A transition relationTrans(M) ⊆ States(M)×Actions

(M) × Probs(States(M)) such that for each states of
States(M)andeach input actionaof in(M) there is a dis-
tributionP such that(s, a,P) is an element ofTrans(M).
We say thatM is input-enabled.

• A task partitionTasks(M), which is an equivalence re-
lation on int(M) ∪ out(M) that has at most countably
many equivalence classes.

In the rest of the paper we refer to probabilistic I/O automata
as probabilistic automata. Probabilistic I/O automata are sim-
ilar in structure to the probabilistic automata of [30], the con-
current labeled Markov chains of [32], and Markov decision
processes [13]. In this paper probabilistic I/O automata are
viewed as an extension of I/O automata, and thus the notation
and the results that we present are chosen along the lines of
[25].

Execution fragments and executions are defined similarly
to the non-probabilistic case. Anexecution fragmentof M
is a sequenceα of alternating states and actions ofM start-
ing with a state, and, ifα is finite ending with a state,α =
s0a1s1a2s2..., such that for eachi ≥ 0 there exists a transition
(si, ai+1,P) of M such thatsi+1 ∈ Ω. All the terminology
that is used for executions in the non-probabilistic case applies
to the probabilistic case as well.

2.2.3 Probabilistic executions

An execution fragment ofM is the result of resolving both
the probabilistic and the nondeterministic choices ofM . If
only the nondeterministic choices are resolved, then we ob-
tain a stochastic process, which we call aprobabilistic exe-
cution fragmentof M . From the point of view of the study
of algorithms, the nondeterminism is resolved by anadver-
sary that chooses a transition to schedule based on the past
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history of the system. A probabilistic execution is the result
of the action of some adversary that is allowed to know ev-
erything about the past but nothing about the future. Thus,
the adversaries that we model cannot predict the values of fu-
ture coin flips. These adversaries are called policies within the
theory of Markov Decision Processes. A probabilistic execu-
tion can be thought of as the result of unfolding the transition
relation of a probabilistic automaton and then choosing one
transition for each state of the unfolding. We also allow an ad-
versary to use randomization in its choices, that is, a transition
to be chosen probabilistically. This models the fact that the
environment of a probabilistic automaton may provide input
randomly. We remark that from the point of view of the study
of an algorithm (how long it takes for the algorithm to ter-
minate) randomized adversaries are not more powerful than
non-randomized adversaries [20,31]. However, randomized
adversaries are fundamental for the study of compositional
verification techniques as we do in this paper.

Formally, aprobabilistic execution fragmentH of a prob-
abilistic automatonM consists of four components.

• A set of statesStates(H) ⊆ frag∗(M); let q range over
the states ofH;

• A signatureSig(H) = Sig(M);
• A singleton setStart(H) ⊆ States(M);
• A transition relationTrans(H) ⊆ States(H) × Probs

((Actions(H)×States(H))∪{δ})such that for each tran-
sition(q,P)ofH there isa family{(lstate(q), ai,Pi)}i≥0
of transitions ofM and a family{pi}i≥0 of probabilities
satisfying the following properties:
1.
∑

i≥0 pi ≤ 1,
2. P [δ] = 1−∑i≥0 pi, and
3. for each actiona and state s, P [(a, qas)] =∑

i|ai=a piPi[s].

Furthermore, each state ofH is reachable, where reachabil-
ity is defined analogously to the notion of reachability for
probabilistic automata after defining an execution of a proba-
bilistic execution fragment in the obviousway. Aprobabilistic
executionH of a probabilistic automatonM is a probabilis-
tic execution fragment ofM whose start state is a state of
Start(M).

A probabilistic execution is like a probabilistic automaton,
except that within a transition it is possible to choose proba-
bilistically over actions as well. Furthermore, a transition may
contain a special symbolδ, which corresponds to not schedul-
ing any transition. In particular, it is possible that from a state
q a transition is scheduled only with some probabilityp < 1.
In such a case the probability ofδ is 1− p.

The reader familiar with stochastic processes or Markov
Decision Processes may be confused by the terminology in-
troduced so far since an adversary should be referred to as
a policy, a probabilistic execution as a probabilistic tree, and
an execution as a trace. The naming convention that we have
chosen originates from the theory of I/O automata, which is in
contrast with the naming convention of stochastic processes.
We have decided to follow the I/O automata convention be-
cause we are extending to the probabilistic case techniques
that are typical of I/O automata.

We now describe the probability space associated with
a probabilistic execution fragment, which is a standard con-
struction for stochastic processes. Given a probabilistic exe-

cution fragmentH, the sample spaceΩH is the limit closure
of States(H), where the limit is taken under prefix ordering.
Theσ-fieldFH is the smallestσ-field that contains the set of
conesCq, consisting of those executions ofΩH havingq as a
prefix. The probability measurePH is the unique extension of
the probability measure defined on cones as follows:PH [Cq]
is the product of the probabilities of each transition ofH lead-
ing to q. It is easy to show that there is a unique probability
measure having the property above, and thus(ΩH ,FH , PH)
is a well defined probability space.

An eventE of H is an element ofFH . An eventE is
calledfinitely satisfiableif it can be expressed as a union of
cones. A finitely satisfiable event can be represented by a set
of incomparable states ofH, that is, by a setΘ ⊆ States(H)
such that for eachq1, q2 ∈ Θ, q1 �≤ q2 andq2 �≤ q1. The event
denotedbyΘ is∪q∈ΘCq.Weabusenotation bywritingPH [Θ]
for PH [∪q∈ΘCq]. We call a set of incomparable states ofH a
cutofH, and we say that a cutΘ is full if PH [Θ] = 1. Denote
by cuts(H) the set of cuts ofH, and denote byfull-cuts(H)
the set of full cuts ofH.

An important event ofPH is the set of fair executions of
ΩH . We define a probabilistic execution fragmentH to be fair
if the set of fair executions has probability1 in PH .

We conclude by extending the� operator to probabilistic
execution fragments.Givenaprobabilistic execution fragment
H of M and a stateq of H, defineH�q (the fragment ofH
given thatq has occurred), to be the probabilistic execution
fragment ofM obtained fromH by removing all the states
that do not haveq as a prefix, by replacing all other statesq′
with q′�q, and by defininglstate(q) to be the new start state.
An important property ofH�q is the following.

Proposition 2.1 For each stateq′ of H�q, PHq[Cq′ ] =
PH [Cq�q′ ]/PH [Cq]. ��

2.3 Parallel composition

Two probabilistic automataM1 andM2 are compatibleiff
int(M1) ∩ acts(M2) = ∅ andacts(M1) ∩ int(M2) = ∅.
Theparallel compositionof two compatible probabilistic au-
tomataM1 andM2, denoted byM1 ‖M2, is the probabilistic
automatonM such that

1. States(M) = States(M1)× States(M2).
2. Start(M) = Start(M1)× Start(M2).
3. Sig(M) = ((in(M1)∪in(M2))−(out(M1)∪out(M2)),

(int(M1) ∪ int(M2)), (out(M1) ∪ out(M2))).
4. ((s1, s2), a,P) ∈ Trans(M) iff P = P1 ⊗ P2 where

(a) if a ∈ Actions(M1) then(s1, a,P1) ∈ Trans(M1),
elseP1 = U(s1), and

(b) if a ∈ Actions(M2) then(s2, a,P2) ∈ Trans(M2),
elseP2 = U(s2),

whereU(s) denotes a probability distribution over a single
states. Informally, two probabilistic automata synchronize on
their common actions and evolve independently on the others.
Whenever a synchronization occurs, the state that is reached
is obtained by choosing a state independently for each of the
probabilistic automata involved.

In a parallel composition the notion ofprojection is one
of the main tools to support modular reasoning. A projection
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of an execution fragmentα onto a component in a parallel
composition context is the contribution of the component to
obtainα. Formally, letM beM1‖M2, and letαbeanexecution
fragment ofM . The projection ofα onto Mi, denoted by
α�Mi, is the sequence obtained fromα by replacing each state
with its ith component and by removing all actions that are not
actions ofMi together with their following state. It is the case
thatα�Mi is an execution fragment ofMi. The projections
of an executionα represent the contributions of the single
components of a system toα. Projections are a fundamental
tool for compositional reasoning within I/O automata.

The notion of projection can be extended to probabilistic
executions (cf. Sect. 4.3 of [31]), although the formal defi-
nition of projection for a probabilistic execution is more in-
volved than the corresponding definition for an execution. For
the purpose of this paper it is not important to know the details
of such definition; rather, it is important to know some prop-
erties of projections. Given a probabilistic execution fragment
H of M , it is possible to define an objectH�Mi, which is a
probabilistic execution fragment ofMi that informally repre-
sents the contribution ofMi to H. The states ofH�Mi are
the projections ontoMi of the states ofH. Furthermore, the
probability space associated withH�Mi is the image space
under projection of the probability space associated withH
(see Proposition 2.2 below). This property allows us to prove
probabilistic properties ofH based on probabilistic properties
of H�Mi.

Proposition 2.2 LetM beM1‖M2, and letH beaprobabilis-
tic execution fragment ofM . Let i ∈ {1, 2}. ThenΩH	Mi

=
{α�Mi | α ∈ ΩH}, and for eachΘ ∈ FH	Mi

, PH	Mi
[Θ] =

PH [{α ∈ ΩH | α�Mi ∈ Θ}]. ��

2.4 Complexity measures

A complexity functionis a function from execution fragments
ofM to�≥0. A complexitymeasureis a complexity functionφ
such that, for each pairα1 andα2 of execution fragments that
can be concatenated,max (φ(α1), φ(α2)) ≤ φ(α1

� α2) ≤
φ(α1) + φ(α2).

Informally, a complexity measure is a function that deter-
mines the complexity of an execution fragment. A complexity
measure satisfies two natural requirements: the complexity of
two tasks performed sequentially should not exceed the com-
plexity of performing the two tasks separately and should be
at least as large as the complexity of the more complex task; it
should not be possible to accomplishmore by working less. In
this section we present several results that apply to complexity
functions; later in the paper we present results that apply only
to complexity measures.

2.4.1 Expected complexity

Consider a probabilistic execution fragmentH of M and a
finitely satisfiable eventΘ of FH . Informally, the elements
of Θ represent the points where the property denoted byΘ is
satisfied. Letφ be a complexity function. Then, we can define
the expected complexityφ to reachΘ in H as follows:

EH,Θ[φ] �=



∑
q∈Θ

φ(q)PH [Cq] if PH [Θ] = 1

∞ otherwise.

Complexity functions on full cuts enjoy several properties that
are typical of random variables [16]. That is, ifΘ is a full cut,
thenH induces a probability distributionPΘ over the states
of Θ. In such case,φ is a random variable andEH,Θ[φ] is the
expected value of the random variable.

2.4.2 Linear combination of complexity functions

If several complexity measures are related by a linear inequal-
ity, then their expected values over a full cut are related by the
same linear inequality (cf. Proposition 2.3). This is a trivial
consequence of the analogous result for random variables.We
use this property for the time analysis of the protocol of Asp-
nes andHerlihy. That is, we express the time complexity of the
protocol in terms of two other complexity measures (rounds
and elementary coin flips), and then we use Proposition 2.3 to
derive an upper bound on the expected time for termination
based on upper bounds on the expected values of the other
two complexity measures. The analysis of the other two com-
plexity measures is simpler, and the relationship between time
and the other two complexity measures can be studied using
known methods for ordinary nondeterministic systems, with
no probability involved.

Proposition 2.3 LetH be a probabilistic execution fragment
of some probabilistic automatonM , and letΘ be a full cut
ofH. Letφ, φ1, φ2 be complexity functions, andc1, c2 be two
constants such that, for eachα ∈ Θ, φ(α) ≤ c1φ1(α) +
c2φ2(α). ThenEH,Θ[φ] ≤ c1EH,Θ[φ1] + c2EH,Θ[φ2]. ��

2.4.3 Computation subdivided into phases

In this section we study a property of complexity functions
that becomes useful whenever a computation can be divided
into phases. Specifically, suppose that in a system there are
several phases, each one with its own complexity, and sup-
pose that the complexity associated with each phase remains
0 until the phase starts. Suppose that the expected complex-
ity of each phase is bounded by some constantc. If we know
that the expected number of phases that start is bounded byk,
then the expected complexity of the system is bounded byck.
The difficult part of this result is that several phases may run
concurrently.

The protocol of Aspnes and Herlihy works inrounds. At
each round a specialcoin flipping protocol is run, and the
coin flipper flips a number of elementary coins (elementary
coin flips). The expected number of elementary coin flips is
bounded by some known valuec independent of the round
number. We also know an upper boundk on the expected
number of rounds that are started. If we view each round as a
phase, then Proposition 2.4 below says that the expected num-
ber of elementary coin flips is upper bounded byck. We give
a formal proof of Proposition 2.4 to give an idea of how it is
possible to prove non-trivial facts about probabilistic execu-
tions. The reader may skip the proof without compromising
understanding.

Proposition 2.4 LetM be a probabilistic automaton. Letφ1,
φ2, φ3, . . . be a countable collection of complexity measures
forM , and letφ′ be a complexity function defined asφ′(α) =
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∑
i≥0 φi(α). Let c be a constant, and suppose that for each

fair probabilistic execution fragmentH ofM , each full cutΘ
ofH, and eachi > 0, EH,Θ[φi] ≤ c.

Let H be a probabilistic fair execution fragment ofM ,
and letφ be a complexity measure forM . For eachi > 0,
letΘi be the set of minimal statesq ofH such thatφ(q) ≥ i.
Suppose that for eachq ∈ Θi, φi(q) = 0, and that for each
stateq ofH and eachi > φ(q), φi(q) = 0.

Then, for each full cutΘ ofH, EH,Θ[φ′] ≤ cEH,Θ[φ].

Proof. From the definition ofφ′,
EH,Θ[φ′] =

∑
q∈Θ

∑
i>0

φi(q)PH [Cq]. (1)

Since for eachq ∈ Θ and eachi > φ(q), φi(q) = 0, Equa-
tion (1) can be rewritten as
EH,Θ[φ′] =

∑
q∈Θ

(
φ1(q) + · · ·+ φ
φ(q)�(q)

)
PH [Cq], (2)

which can be rearranged into

EH,Θ[φ′] =
∑
i>0


 ∑

q∈Θ|φ(q)≥i

φi(q)PH [Cq]


 . (3)

For eachi > 0, let ηi denote the set of minimal statesq of H
that are prefixes of some element ofΘ and such thatφ(q) ≥ i.
Then, by breaking the inner summation of Equation (3),

EH,Θ[φ′] =
∑
i>0


∑

q∈ηi

PH [Cq]


 ∑

q′∈Θ|q≤q′
φi(q′)PH [Cq′ ]/PH [Cq]




 . (4)

Since for eachq ∈ ηi, φi(q) = 0 (ηi ⊆ Θi) the inner-
most expression of the right hand side of Equation (4) is
EHq,(Θ∩Cq)q[φi]. SinceH�q is a fair probabilistic execution
fragment ofM as well,EHq,(Θ∩Cq)q[φi] ≤ c. Thus,

EH,Θ[φ′] ≤
∑
i>0

(∑
q∈ηi

cPH [Cq]

)
, (5)

and since
∑

q∈ηi
PH [Cq] = PH [ηi],

EH,Θ[φ′] ≤
∑
i>0

PH [ηi]c. (6)

Observe thatPH [ηi] is the probability thatφ is at leasti in
Θ. Recall also thatφ is a random variable for the probability
space identified byΘ. Thus,

∑
i>0 PH [ηi] ≤ EH,Θ[φ] (see

Sect. 2.2.1), and by substituting in (5),EH,Θ[φ′] ≤ cEH,Θ[φ].
��

2.4.4 Complexity functions and parallel composition

To verify properties in a modular way it is useful to derive
complexity properties of complex systems based on complex-
ity properties of the single components. Proposition 2.5 helps
in doing this. Informally, suppose that we have a complexity
functionφ for M = M1 ‖M2 and a complexity functionφ1
for M1 such thatφ andφ1 coincide up to projection. In other
wordsφ measures inM the property ofM1 that is measured
byφ1. Furthermore, suppose that we know an upper bound on
the expected value ofφ1 that is independent how the nonde-
terminism is resolved inM1. Then, the same upper bound is

valid forφ as well. In other words, the property that we know
aboutM1 can be lifted toM .

Proposition 2.5 LetM beM1 ‖M2, and leti ∈ {1, 2}. Let
φ be a complexity function forM , and letφi be a complexity
function forMi. Suppose that for each finite execution frag-
mentα ofM ,φ(α) = φi(α�Mi). Letc be a constant. Suppose
that for each probabilistic execution fragmentH of Mi and
each full cutΘ of H, EH,Θ[φi] ≤ c. Then, for each proba-
bilistic execution fragmentH ofM and each full cutΘ ofH,
EH,Θ[φ] ≤ c. ��
The converse of Proposition 2.5 does not hold in general. In
fact, even though for each probabilistic execution fragmentH
of M and each full cutΘ of H, EH,Θ[φ] ≤ c, there could be
a probabilistic execution fragmentH ′ of Mi and a full cutΘ′
of H ′ such thatEH′,Θ′ [φi] > c. As an example,H ′ could be
the projection of no probabilistic execution fragment ofM .
If i = 1, thenH ′ could be a probabilistic execution fragment
resulting from the interaction with an environment thatM2
does not provide.

2.5 Probabilistic complexity statements

A probabilistic complexity statement is a predicate that can
be used to state whether all the fair probabilistic executions of
a probabilistic automaton guarantee some reachability prop-
erty within some timet with some minimum probabilityp.
Probabilistic complexity statements essentially express par-
tial progress properties of a probabilistic system. Such partial
progress properties can then be used to derive upper bounds
on the expected complexity for progress.

Probabilistic complexity statements can also be decom-
posed into simpler statements, thus splitting the progress prop-
erties of a randomized system into progress properties that ei-
ther are simpler to analyze or can be derived by analyzing a
smaller subcomponent of the system.

Progress statements are introduced in [24,29,31]. In this
section we specialize the theory of [31] to fair schedulers.

2.5.1 Probabilistic complexity statements

A probabilistic complexity statement is a predicate of the form

U
φ≤c−→

p
U ′, whereU andU ′ are sets of states,φ is a complexity

measure, andc is a nonnegative real number. Informally, the

meaning ofU
φ≤c−→

p
U ′ is that starting from any state ofU ,

under any fair scheduler, the probability of reaching a state
from U ′ within complexityc is at leastp. The complexity of
an execution fragment is measured according toφ.

Definition 2.6 Let M be a probabilistic I/O automaton,U,
U ′ ⊆ States(M), c ∈ �, andφ be a complexity measure.

ThenU
φ≤c−→

p
U ′ is a predicate that is true forM iff for each

fair probabilistic execution fragmentH of M that starts from
a state ofU , PH [eU ′,φ(c)(H)] ≥ p, whereeU ′,φ(c)(H) de-
notes the set of executionsα of ΩH with a prefixα′ such that
φ(α′) ≤ c andlstate(α′) ∈ U ′. ��
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The fair probabilistic execution fragments of a probabilistic
automaton enjoy a property that in [31] is calledfinite his-
tory insensitivity. Thus, using a result of [31], the following
holds, which permits us to decompose a progress property into
simpler progress properties.

Proposition 2.7 LetM be a probabilistic automaton, and let
U,U ′, U ′′ ⊆ States(M). Let φ be a complexity measure.
Then,

1. if U
φ≤c−→

p
U ′ andU ′ φ≤c′

−→
p′ U ′′, thenU

φ≤c+c′
−→
pp′ U ′′;

2. if U
φ≤c−→

p
U ′, thenU ∪ U ′′ φ≤c−→

p
U ′ ∪ U ′′. ��

2.5.2 From probabilistic complexity statements
to expected complexity

In this section we show how to use probabilistic complexity
statements to derive properties about expected complexities.
In theanalysisof theprotocol ofAspnesandHerlihyweuse the
result of this section to study the expected number of rounds
that the protocol needs to terminate.

Let M be a probabilistic automaton, and letU ,U ′ ⊆
States(M). We denote byU ⇒ UunlessU ′ the predicate
that is true forM iff for every execution fragmentsas′ of M ,
s ∈ U − U ′ ⇒ s′ ∈ U ∪ U ′. Informally,U ⇒ UunlessU ′
means that, once a state fromU is reached,M remains inU
unlessU ′ is reached.

For each probabilistic execution fragmentH of M , let
ΘU ′(H) denote the set of minimal states ofH where a state
fromU ′ is reached. That is,ΘU ′(H) represents the event that
contains all those executions ofΩH where a state fromU ′ is
reached. The following theorem, which is an instantiation of a
more general result of [31], provides a way of computing the
expected complexity for satisfyingΘU ′(H).
Theorem 2.8 ([31])LetM be a probabilistic automaton and
φ be a complexity measure forM . Let r be a real number
such that for each execution fragment ofM of the formsas′,
φ(sas′) ≤ r, that is, each transition ofM can increase the
complexityφ by at mostr. LetU andU ′ be sets of states of
M . LetH be a probabilistic execution fragment ofM that
starts from a state ofU , and suppose that for each stateq of
H such thatlstate(q) ∈ U some transition is scheduled with
probability1 (i.e., the probability ofδ in the transition enabled
from q in H is 0). Furthermore, suppose that

1. U
φ≤c−→

p
U ′ and

2. U ⇒ UunlessU ′.
Then,EH,ΘU ′ (H)[φ] ≤ (c + r)/p.
Proof idea.Westart at the beginning from a state ofU andwe
observe the system after complexityc + r. With probability
at leastp a state fromU ′ is reached, and with probability at
most(1 − p) we are still inU . If we are still inU we start
again and we observe the system after otherc + r complexity
units. Again with probabilityp a state fromU ′ is reached (cf.
Fig. 1). In practice we are repeating a binary experiment until
it is successful. Each time we repeat the experiment we pay
c+ r complexity units. We know from probability theory that
on average the experiment is repeated at most1/p times, and
thus the expected complexity to reachU ′ is at most(c+ r)/p.

��

ΘU’

ΘU’Θc+r

p

p

Θ

c+r

c+r

c+r

Fig. 1.Computation of the expected time fromU toU ′

2.5.3 How to verify probabilistic complexity statements

A useful technique to prove the validity of a probabilistic com-

plexity statementU
φ≤c−→

p
U ′ for a probabilistic automatonM

is the following.

1. Choose a set of random draws that may occur within a
probabilistic execution ofM , and choose some of the pos-
sible outcomes;

2. Show that, no matter how the nondeterminism is resolved,
the chosen random draws give the chosen outcomes with
some minimum probabilityp;

3. Show that whenever the chosen random draws give the
chosen outcome, a state fromU ′ is reached withinc units
of complexityφ.

This technique corresponds to the informal arguments of cor-
rectness that appear in the literature. Usually the intuition be-
hind an algorithm is exactly that success is guaranteed when-
ever some specific random draws give some specific results.

The first two steps can be carried out using the so-called
coin lemmas[31], which provide rules to map a stochastic
process onto a probabilistic execution and lower bounds on
the probability of the mapped events based on the properties
of the given stochastic process; the third step concerns non-
probabilistic properties and can be carried out bymeans of any
known technique for non-probabilistic systems. Coin lemmas
are essentially away of reducing the analysis of a probabilistic
property to the analysis of an ordinary nondeterministic prop-
erty. The importance of coin lemmas is also in the fact that a
common source of errors in the analysis of a randomized al-
gorithm is to map a probabilistic process onto a probabilistic
execution in the wrong way, or, in other words, to believe that
a probabilistic automaton always behaves like some defined
probabilistic process while the claim is not true. In Sect. 3 we
present in full detail a coin lemma that deals with random
walks. For a general introduction to coin lemmas the reader is
referred to [31].

2.6 Refinement mappings and traces

A common verification technique consists of specifying a sys-
tem as an I/O automaton or a probabilistic I/O automaton and
then building animplementationof the specification. Typi-
cally the notion of implementation is identified by some form
of language inclusion. The important fact is that the interest-
ing properties of a specification are preserved by the notion
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of implementation, that is, whenever a property is true for the
specification, such property is true for the implementation as
well. In this section we provide the pieces of the technique
that we use for the analysis of the algorithm of Aspnes and
Herlihy. More details can be found in [25,26,31].

2.6.1 Traces and trace distributions

Trace and trace distributions are abstractions of the behav-
ior of automata and probabilistic automata, respectively, that
are based only on the sequences of external actions that the
automata can provide. Several times, as is the case for the
algorithm of Aspnes and Herlihy, the interesting properties
of a system can be expressed in terms of trace and trace dis-
tributions. In such cases it is possible to use traces and trace
distributions for the analysis and in particular to use the related
proof techniques.

Letα be an execution of an automatonA. Thetraceof α,
denoted bytrace(α), is the ordered sequence of the external
actions that appear inα. Denote a generic trace byβ. A trace
is fair if it is the trace of a fair execution. Denote bytraces(A)
the set of traces ofA and byftraces(A) the set of fair traces
of A.

Let H be a probabilistic execution fragment of a prob-
abilistic automatonM . Let Ω = ext(M)∗ ∪ ext(M)ω be
the set of finite and infinite sequences of external actions of
M . Thetrace distributionof H, denoted bytdistr(H), is the
probability space(Ω,F , P ) whereF is the minimumσ-field
that contains the set of conesCβ , whereβ is an element of
ext(M)∗, andP = trace(PH), that is, for eachE ∈ F ,
P [E] = PH [{α ∈ ΩH | trace(α) ∈ E}]. The fact that
tdistr(H) is well defined follows from standard measure the-
ory arguments. In simple words, a trace distribution is just a
probability distribution over traces induced by a probabilis-
tic execution. Denote a generic trace distribution byD. A
trace distribution of a probabilistic automatonM is the trace
distribution of one of the probabilistic executions ofM . A
trace distribution isfair if it is the trace distribution of a fair
probabilistic execution. Denote bytdistrs(M) the set of trace
distributions ofM and byftdistrs(M) the set of fair trace
distributions ofM .

2.6.2 Refinements

Denote a transition(s, a, s′) by s
a−→ s′. For a finite se-

quencea1 · · · an let s
a1···an−→ s′ if there is a collection of states

s1, . . . , sn−1 such thats
a1−→ s1

a2−→ · · · an−1−→ sn−1
an−→ s′.

For any external actiona, let s
a=⇒ s′ if there are two finite

sequencesx, y of internal actions and two statess1, s2 such
thats

x−→ s1
a−→ s2

y−→ s′. Let s ε=⇒ s′ if there is a finite
sequencex of internal actions such thats

x−→ s′.
LetA1, A2 be twoautomatawith thesameexternal actions.

A refinementfromA1 toA2 is a functionh : States(A1) →
States(A2) such that the following conditions hold.

1. For eachs ∈ Start(A1), h(s) ∈ Start(A2).

2. For each transitions
a−→ s′ of A1, h(s)

a	ext(A2)=⇒ h(s′).

That is,A2 can simulate all the transitions ofA1 via the re-
finement functionh. An important property of a refinement is
the following.

Proposition 2.9 ([26])Suppose that there exists a refinement
fromA1 toA2.
Thentraces(A1) ⊆ traces(A2). ��
A refinement can be defined also for probabilistic automata as
follows. LetM1,M2 be two probabilistic automata with the
same external actions. A probabilisticrefinementfromM1 to
M2 is a functionh : States(M1) → States(M2) such that
the following conditions hold.

1. For eachs ∈ Start(M1), h(s) ∈ Start(M2).

2. For eachs
a−→ P, h(s)

a	ext(M2)=⇒ h(P).
In particular, a refinement is a special case of a probabilistic
refinement. The following property is valid as well.

Proposition 2.10 ([31])Suppose that there exists a proba-
bilistic refinement fromM1 toM2.
Thentdistrs(M1) ⊆ tdistrs(M2). ��
Finally, the existence of refinements is preserved by parallel
composition, thus enabling modular verification.

Proposition 2.11 ([31])Suppose that there exists a proba-
bilistic refinement between two probabilistic automataM1
andM2. Then, for each probabilistic automatonM compat-
ible withM1 andM2, there exists a probabilistic refinement
fromM1 ‖M toM2 ‖M . ��

2.6.3 The execution correspondence theorem

Refinements can be used also to show some liveness proper-
ties. Specifically, it is possible to use refinements to derive fair
trace inclusion and fair trace distribution inclusion. Our main
technique is based on theexecution correspondence theorem
[18], which allows us to establish close relationships between
the executions of two automata.

We use refinements in the analysis of the shared counter in
the algorithm of Aspnes and Herlihy. Our analysis is carried
out mainly on an abstract specification of the counters. This
allows us to avoid dealing with unimportant details.

Let A1 andA2 be I/O automata with the same external
actions and leth be a refinement fromA1 to A2. For an ex-
ecution fragmentα, let |α| denote the number of actions that
occur inα. If α is an infinite execution fragment, then|α|
is∞. Let α = s0a1s1a2s2 · · · andα′ = u0b1u1b2u2 · · · be
executions ofA1 andA2, respectively. We say thatα andα′
areh-related, written(α, α′) ∈ h, if there exists a total, non-
decreasing mappingm : {0, 1, . . . , |α|} → {0, 1, . . . , |α′|}
such that

1. m(0) = 0,
2. h(si) = um(i) for all 0 ≤ i ≤ |α|,
3. trace(bm(i−1)+1 · · · bm(i)) = trace(ai) for all 0 < i ≤
|α|, and

4. for all j, 0 ≤ j ≤ |α′|, there exists ani, 0 ≤ i ≤ |α|, such
thatm(i) ≥ j.

Theorem 2.12 ([18])Let A1 andA2 be automata with the
same external actions, and leth be a refinement fromA1 to
A2. Then, for each executionα1 of A1 there is an execution
α2 ofA2 such that(α1, α2) ∈ h. ��
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The execution correspondence theorem can be used to show
fair trace inclusion as follows: given(α1, α2) ∈ h, show that
α2 is fair wheneverα1 is fair. In this case we also say that
h preserves the fair executions ofA1. By using some other
results from [31] we can also show the following result that
deals with probabilistic executions.

Proposition 2.13 LetA1, A2 be two I/O automata, and letM
be a probabilistic I/O automaton compatible withA1 andA2.
Let h be a refinement fromA1 to A2 that preserves the fair
executions ofA1. Thenftdistrs(A1‖M) ⊆ ftdistrs(A2‖M).
��

3 Symmetric random walks for probabilistic automata

The correctness of the protocol of Aspnes andHerlihy is based
on the theory of random walks [16]. That is, some parts of
the protocol behave like a probabilistic process known in the
literature as a random walk. The main problem is to make
sure that the protocol indeed behaves as a random walk, or
better, tomake sure that the protocol has the sameprobabilistic
properties as a random walk. This is a point where intuition
often fails, and therefore we need a proof technique that is
sufficiently rigorous and simple to avoid mistakes.

In this section we present a coin lemma for randomwalks.
That is, we show that if we choose eventswithin a probabilistic
execution fragment according to some specific rules, then the
chosen events are guaranteed to have properties similar to the
properties of random walks. Then, by verifying that each one
of the chosen events guarantees progress, a non-probabilistic
property, we can derive probabilistic progress properties of the
protocol.

This section is divided into three parts. In the first part we
give an introduction to the elements of random walk theory
that are relevant for our paper; in the second part we present a
coin lemma for random walks; in the third part we instantiate
the coin lemma to the cases that are useful for the analysis of
the algorithm of Aspnes and Herlihy. We prove formally all
the non-trivial results since similar coin lemmas do not appear
in [31].

3.1 Random walks

Let X be a probability space with sample set{−1, 1} that
assigns probabilityp to 1 and probabilityq = (1 − p) to
−1. LetRW = (ΩRW ,FRW , PRW ) be the probability space
built as follows. The sample setΩRW is the set{−1, 1}ω of
infinite sequences of numbers from{−1, 1}. For each finite
sequencex ∈ {−1, 1}n, letCx, thecylinderwith basex, be
the set of elements fromΩRW with common prefixx, and
let PRW [Cx] = pkqn−k, wherek is the number of1’s in x.
ThenFRW is the minimumσ-field that contains the set of
cylinders, andPRW is the unique extension toFRW of the
measure defined on the cylinders. The construction is justified
by standard measure theory arguments. In other words,RW
is a probability space on infinite sequences of independent
experiments performed according toX.

Similarly to our probabilistic executions, define an event
of FRW to befinitely satisfiableif it is a union of cylinders.

Furthermore, denote a finitely satisfiable event by a setΘ of
incomparable finite sequences over{−1, 1}.

Consider a particle in the real line, initially at positionz,
and letX describe a move of the particle:−1 corresponds to
decreasing by1 the position of the particle, and1 corresponds
to increasing by1 the position of the particle. An element of
ΩRW describes an infinite sequence of moves of the particle.
The probability spaceRW describes arandom walkof the
particle.

An important randomwalk is a randomwalk withabsorb-
ing barriers, that is, a random walk that is considered to be
successful or failed whenever the particle reaches some spec-
ified positions (absorbing barriers) of the real line. Consider
two barriersB, T such thatB ≤ z ≤ T . Then the following
events are studied:

1. the particle reachesT before reachingB;
2. the particle reachesB before reachingT ;
3. the particle reaches either absorbing barrier.

Formally, given a starting pointz and a finite sequencex =
x1x2 · · ·xn ∈ {−1, 1}n letzx = z+

∑
i≤n xi be the position

of the particle afterx. Then, the events 1, 2, and 3 above are
finitely satisfiable and can be denoted by the following sets of
finite sequences, respectively:

1. the setTopRW [B, T, z] of minimal sequencesx ∈
{−1, 1}∗ such thatzx = T and for no prefixx′ of x,
zx′ = B;

2. the setBotRW [B, T, z] of minimal sequencesx ∈
{−1, 1}∗ such thatzx = B and for no prefixx′ of x,
zx′ = T ;

3. the setEitherRW [B, T, z]=TopRW [B, T, z]∪BotRW

[B, T, z].

The following results are known from random walk theory
[16].

Theorem 3.1 Letp = q = 1/2. Then

1. P [TopRW [B, T, z]] = (T − z)/(T −B);
2. P [BotRW [B, T, z]] = (z −B)/(T −B);
3. P [EitherRW [B, T, z]] = 1. ��
For a finitely satisfiable eventΘ that has probability1 it is
possible to study the average number of moves that are needed
to satisfyΘ as follows:
LRW [Θ] =

∑
x∈Θ

length(x)PRW [Cx].

From random walk theory [16] we know the following result.

Theorem 3.2 Let p = q = 1/2. ThenLRW [EitherRW

[B, T, z]] = −z2 + (B + T )z −BT . ��

3.2 A coin lemma for random walks

As we said earlier a coin lemmas provides us with rule to map
a stochastic process onto a probabilistic execution and with
a lower bound on the probability of the mapped events. In
our case the rule should map an event ofFRW to an eventΘ
of a probabilistic executionH, while the lower bound should
bePRW [Θ]. In this section we present both the rule and the
lower bound. Furthermore we introduce a result for the study
of expectations.
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3.2.1 Terminology

We use the actions of a probabilistic automaton to identify
the single experiment of drawing a number, and we partition
the target states of each transition to identify the outcomes
−1 and 1. We use a terminology that resembles coin flip-
ping; thus, the number−1 is replaced byt (tail), the num-
ber 1 is replaced byh (head),p is replaced byph, andq is
replaced bypt. Let M be a probabilistic automaton and let
Acts = {flip1, . . . ,flipn} be a subset ofActions(M). Let
S = {(U h

1 ,U t
1 ), (U h

2 ,U t
2 ), . . . , (U h

n ,U t
n)} be a set of pairs

where for eachi, 1 ≤ i ≤ n, U h
i ,U t

i are disjoint subsets
of States(M), and such that for every transition(s,flipi,P)
with an actionflipi the following hold:
Ω ⊆ U h

i ∪U t
i , and (7)

P [U h
i ] = ph andP [U t

i ] = pt. (8)
The actions fromActs represent coin flips, and the sets of
statesU h

i andU t
i represent the two possible outcomes of a

coin flip labeled withflipi. Since the setsActs andS are
usually clear from thecontext,weomit themfromournotation.
We writeActs andS explicitly only the first time each new
notation is introduced.

3.2.2 The rule

Given an executionα of H, let xActs,S(α) be the ordered
sequence of results of the coin flips that occur inα, e.g., if the
ith occurrence of an action fromActs in α is an occurrence
of flipj that leads to a state fromU h

j , then thei
th element of

x(α) is h, and if theith occurrence of an action fromActs in
α is an occurrence offlipj that leads to a state fromU t

j , then
theith element ofx(α) is t. Observe thatx(α) is finite if in α
there are finitely many occurrences of actions fromActs.

LetΘ be a finitely satisfiable event ofRW , and letH be a
probabilistic execution fragment ofM . LetWActs,S(H,Θ) be
the set of executionsα ofΩH such that eitherx(α) has a prefix
in Θ, or x(α) is a prefix of some element ofΘ. Informally,
W(H,Θ) contains all those executions ofΩH where either
the coin flips describe a random walk contained in the event
denotedbyΘ, or it is possible to extend the sequenceof flipped
coins to a new sequence contained in the event denoted byΘ,
i.e., there is away to fix the values of the unflipped coins so that
a random walk of the event denoted byΘ is obtained. In other
words, if we view the scheduler that leads toH as a malicious
adversary that tries to resolve the nondeterminism so that the
probability ofW(H,Θ) is minimized, the scheduler does not
gain anything by not scheduling coin flipping operations. It is
easy to show thatW(H,Θ) is measurable inPH .

3.2.3 The lower bound

We now prove that, no matter how the nondeterminism is re-
solved, the probabilityPH of the eventW(H,Θ) is lower-
bounded by the probabilityPRW of the eventΘ. That is, the
probability of the mapping of the eventΘ ontoH is at least
as large as the probability ofΘ. We first prove our result for
a special class of eventsΘ in Lemma 3.3. Then, we prove the
full result in Theorem 3.4. Note that in the rest of this sec-
tion we are not simply proving a standard result of random

walk theory, but rather we are proving that a result of random
walk theory continues to hold in a restrictd form no matter
how an andversarial scheduler tries to violate it. The reader
not interested in the proofs may simply read the statement of
Theorem 3.4 and move to Sect. 3.2.4.

Lemma 3.3 Suppose that for each transition(s,flipi,P) of
M , P [U h

i ] = ph andP [U t
i ] = pt. If there is a finite upper

boundk on the lengthof theelementsofΘ, thenPH [W(H,Θ)]
≥ PRW [Θ].

Proof. For notational convenience, for each stateq of H let
PH

q denote the probability space associated with the unique
transition that leaves fromq in H.

We prove thatPH [W(H,Θ)] ≤ 1− PRW [Θ].
For each stateq of H, eachi ∈ {1, . . . , n}, and each

j ∈ {h, t}, denote byΩ(q,U j
i ) the set{(flipi, q

′) ∈ ΩH
q |

lstate(q′) ∈ U j
i } of pairs whereflipi occurs and leads to a

state ofU j
i , and for each actiona let a denote also the set of

pairs whose first element isa, that is, the event that actiona
occurs. For eachi ∈ {1, . . . , n}, letΘi be the set of statesq
of H such that no actionflipj , 1 ≤ j ≤ n, occurs inq, and
such thatPH

q [flipi] > 0.
The proof is by induction onlength(Θ), the maximum

length of the elements ofΘ. If length(Θ) = 0, then either
Θ = ∅ or Θ = {ε}, whereε denotes the empty sequence.
In the first caseW(H,Θ) = ∅, and thusPH [W(H,Θ)] =
1 − PRW [Θ] = 1; in the second caseW(H,Θ) = ΩH , and
thusPH [W(H,Θ)] = 1 − PRW [Θ] = 0. For the inductive
step, suppose thatlength(Θ) = k + 1. Then,
PH [W(H,Θ)]

=
∑

i∈{1,...,n}

∑
q∈Θi

PH [Cq]


 ∑

j∈{h,t}

∑
(flipi,q

′)∈Ω(q,U j
i )

× PH
q [(flipi, q

′)]PHq′ [W(H�q′, Θ�j)]


 . (9)

whereΘ�j is the eventΘ after performingj, that is, the set of
the tails of the sequences ofΘ whose head isj. Informally, to
violateW(Θ�j,H�q′) with a non-emptyΘ, it is necessary to
flip at least once and then violate the rest ofΘ. Observe that
length(Θ�j) ≤ k. Thus, by induction, for eachj ∈ {h, t}
and each stateq′ of H,
PHq′ [W(H�q′, Θ�j)] ≤ 1− PRW [Θ�j]. (10)
Using (10) in (9), and factoring1 − PRW [Θ�j] out of the
innermost summation, we obtain
PH [W(H,Θ)]

≤
∑

i∈{1,...,n}

∑
q∈Θi

PH [Cq]

×

 ∑

j∈{h,t}
PH

q [Ω(q,U j
i )](1− PRW [Θ�j])


 . (11)

Let i ∈ {1, . . . , n}, andj ∈ {h, t}, and consider a stateq
of H. From the definition of the transition relation of a prob-
abilistic execution fragment, there is a collection of transi-
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tions (lstate(q),flipi,Pk) and a collection of probabilities
ptk

such that
∑

k ptk
= PH

q [flipi] and PH
q [Ω(q,U j

i )] =∑
k ptk

Pk[U j
i ]. From hypothesis, for eachk, Pk[U j

i ] = pj .
Thus,PH

q [Ω(q,U j
i )] = PH

q [flipi]pj . By substituting in (11),

PH [W(H,Θ)] ≤
∑

i∈{1,...,n}

∑
q∈Θi

PH [Cq]PH
q [flipi]

×

 ∑

j∈{h,t}
(1− PRW [Θ�j])pj


 . (12)

Observe that
∑

i∈{1,...,n}
∑

q∈Θi
PH [Cq]PH

q [flipi] is the
probability that some actionflipi occurs from inH, and hence
its value is at most1. Furthermore, observe that

∑
j∈{h,t} pj

PRW [Θ�j] = PRW [Θ], that is, sinceph+pt = 1,
∑

j∈{h,t} pj

(1− PRW [Θ�j]) = 1− PRW [Θ]. Thus, from (12),
PH [W(H,Θ)] ≤ 1− PRW [Θ]. (13)
This completes the proof. ��
Theorem 3.4 Suppose that for each transition(s,flipi,P) of
M , P [U h

i ] = ph andP [U t
i ] = pt. Then,PH [W(H,Θ)] ≥

PRW [Θ].

Proof. For eachk > 0, let Θk be the set of elements ofΘ
whose length is at mostk. Then,Θ = ∪k>0Θk, and from the
definition ofW,W(H,Θ) = ∪k>0W(H,Θk). Furthermore,
for eachk > 0,Θk ⊆ Θk+1, andW(H,Θk) ⊆ W(H,Θk+1).
From simple arguments of measure theory,PRW [Θ] =
limk→+∞ PRW [Θk], and PH [W(H,Θ)] = limk→+∞ PH

[W(H,Θk)]. From Lemma 3.3, for eachk > 0, PH

[W(H,Θk)] ≥ PRW [Θk]. Thus,limk→+∞ PH [W(H,Θk)]
≥ limk→+∞ PRW [Θk], that is,PH [W(H,Θ)] ≥ P [Θ]. ��

3.2.4 Expected complexity of the random walk

The next theorem states that the average length of a random
walk is preserved by the mappingW, that is, for fixedH and
Θ such thatPH [Θ] = 1, the expected number of coin flips that
may occur inH without reachingΘ is bounded above by the
expected number of coin flips necessary to reachΘ in RW .
First we need a definition.

Definition 3.5 Let Θ be an event inRW , and letM be a
probabilistic automaton. For each finite execution fragmentα
ofM , defineφ(α) to be the number of actions fromActs that
occur inα if x(α) does not have any prefix inΘ, and to be the
number of actions fromActs that occur in the minimum prefix
α′ of α such thatx(α′) ∈ Θ, otherwise. ��
Informally,φ(α) is the number of moves of the random walk
that occur inα before satisfying the event denoted byΘ. In
particular, ifΘ is not satisfied yet withinα, φ(α) is the total
number of moves of the randomwalk that occur inα. Observe
thatφ is a complexity function but not a complexity measure.

Theorem 3.6 Suppose that for each transition(s,flipi,P) of
H,P [U h

i ] = pandP [U t
i ] = q. Also, suppose thatPRW [Θ] =

1. LetΘ′ be a full cut ofH. ThenEH,Θ′ [φ] ≤ LRW [Θ].

Proof. By definition,EH,Θ′ [φ] =
∑

q∈Θ′ φ(q)PH [Cq].
From the definition ofφ, if q′ ≤ q andx(q′) ∈ Θ, then

φ(q′) = φ(q). Thus, we can build a new full cutΘ′′ obtained

fromΘ′ by replacing eachq ∈ Θ′ such thatx(q) has a prefix
inΘ with the minimum prefixq′ of q such thatx(q′) ∈ Θ and
obtainEH,Θ′ [φ] =

∑
q∈Θ′′ φ(q)PH [Cq]. In particular, for no

elementq of Θ′′ does the sequencex(q) have a proper prefix
in Θ.

PartitionΘ′′ into the setΘ′′
p of statesq such thatx(q) is

a prefix of some element ofΘ, and the setΘ′′
n of statesq

such thatx(q) is not a prefix of any element ofΘ. From the
definition ofΘ′′, for no elementq of Θ′′

n x(q) has a prefix
in Θ. Thus,W(H,Θ) ∩ (∪q∈Θ′′

n
Cq) = ∅. Since from The-

orem 3.1PH [W(H,Θ)] = 1, we derive thatPH [Θ′′
n] =

0, which means thatΘ′′
p is a full cut of H. Furthermore,

sinceΘ′′
p ⊆ Θ′′, EH,Θ′ [φ] ≤ ∑

q∈Θ′′
p

φ(q)PH [Cq], that is,
EH,Θ′ [φ] ≤ EH,Θ′′

p
[φ].

For eachk > 0, letΘ<k be the set of elements ofΘ whose
length is less thank, and letΘ≥k be the set of elements ofΘ
whose length is at leastk. Similarly, letΘ′′

<k be the set of
elementsq ofΘ′′

p such thatlength(x(q)) < k, and letΘ′′
≥k be

the set of elementsq of Θ′′
p such thatlength(x(q)) ≥ k.

Fix k > 0, and letα ∈ W(H,Θ<k) ∩ (∪q∈Θ′′
p
Cq). Since

α ∈ W(H,Θ<k), from the definition ofφ for each finite pre-
fix α′ of α, φ(α′) < k. From the definition ofΘ′′

p , α ∈ Cq for
someq ∈ Θ′′

p with length(x(q)) < k. Thus,W(H,Θ<k) ∩
(∪q∈Θ′′

p
Cq) ⊆ ∪q∈Θ′′

<k
Cq, which impliesPH [W(H,Θ<k) ∩

(∪q∈Θ′′
p
Cq)] ≤ PH [Θ′′

<k]. Since PH [Θ′′
p ] = 1, then

PH [W(H, Θ<k)] = PH [W(H,Θ<k) ∩ (∪q∈Θ′′
p
Cq)]. This

implies thatPH [W(H,Θ<k)] ≤ PH [Θ′′
<k].

From Theorem 3.4,PH [W(H,Θ<k)] ≥ PRW [Θ<k],
which, combined with the previous result, givesPH [Θ′′

<k] ≥
PRW [Θ<k]. From this we derive thatEH,Θ′′

p
[φ] =∑

i>0 PH [Θ′′
≥k] ≤∑i>0 PRW [Θ≥k] = LRW [Θ], where the

first and third steps follow from the properties seen in
Sect. 2.2.1. Since, we have shown already thatEH,Θ′ [φ] ≤
EH,Θ′′

p
[φ], we conclude thatEH,Θ′ [φ] ≤ LRW [Θ]. ��

3.3 Instantiation of the coin lemma

In this section we instantiate Theorem 3.4 and Theorem 3.6
with theeventspresented inSect. 3.1. Inaddition,we introduce
anotation that ismore suitable for the analysis of an algorithm.

Given a finite execution fragmentα of M , let
HeadsActs,S(α) denote the number of actions of the form
flipi in αwhose post state is in the corresponding setU h

i , and
let TailsActs,S(α) denote the number of actions of the form
flipi in α whose post state is in the corresponding setU t

i . Let
Diff Acts,S(α) denoteHeadsActs,S(α)− TailsActs,S(α).

Definition 3.7 For each probabilistic execution fragmentH
of M , letTop[Acts,S, B, T, z](H) be the set of executions
α ofΩH such that either

• ∃α′≤α((z+Diff (α′)= T )∧∀α′′≤α′(B < z+Diff (α′′))),
or

• ∀α′≤α(B < z + Diff (α′) < T ) and actions fromActs
occur finitely many times inα.

The eventTop[Acts,S, B, T, z](H) captures the situations
where eitherz +Diff (α′) reaches the top barrierT before the
bottom barrierB, or the total number of “flips” is finite and
z +Diff (α′) reaches neither barrier.
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Definition 3.8 For each probabilistic execution fragmentH
ofM , letBot[Acts,S, B, T, z](H) be the set of executionsα
ofΩH such that either

• ∃α′≤α((z + Diff (α′) = B) ∧ ∀α′′≤α′(z + Diff (α′′) <
T )), or

• ∀α′≤α(B < z + Diff (α′) < T ) and actions fromActs
occur finitely many times inα.

The eventBot[Acts,S, B, T, z](H) captures the situations
where eitherz+Diff (α′) reaches the bottom barrierB before
the top barrierT , or the total number of “flips” is finite and
z +Diff (α′) reaches neither barrier.

Definition 3.9 For each probabilistic execution fragmentH
ofM , let
Either[Acts,S, B, T, z](H) �= Top[Acts,S, B, T, z](H)
∪Bot[Acts,S, B, T, z](H).

The eventEither[Acts,S, B, T, z](H) excludes those exe-
cutions ofM where infinitely many “flips” occur andz +
Diff (α′) reaches neither barrier.

Proposition 3.10 LetH beaprobabilistic execution fragment
ofM . Then

1. PH [Top[B, T, z](H)] ≥ (z −B)/(T −B).
2. PH [Bot[B, T, z](H)] ≥ (T − z)/(T −B).
3. PH [Either[B, T, z](H)] = 1.

Proof.

1. From the definitions, the eventsTop[B, T, z](H) and
W(H,TopRW [B, T, z]) are the same. From Theorems
3.1 and 3.4,PH [Top[B, T, z](H)] ≥ (z −B)/(T −B).

2. From the definitions, the eventsBot[B, T, z](H) and
W(H,BotRW [B, T, z]) are the same. From Theorems
3.1 and 3.4,PH [Bot[B, T, z](H)] ≥ (T − z)/(T −B).

3. From the definitions, the eventsEither[B, T, z](H) and
W(H,EitherRW [B, T, z])are thesame.FromTheorems
3.1 and 3.4,PH [Either[B, T, z](H)] = 1. ��

We conclude with an instantiation of the result about ex-
pected complexities. LetφActs be the complexity measure
such thatφActs(α) is the number of actions fromActs that
occur in α. Define φActs,B,T,z(α) to be the truncation of
φActs at the point where one of the absorbing barriers is
reached. That is, if there is no prefixα′ of α such thatz +
Diff (α′) ∈ {B, T}, thenφActs,B,T,z(α) = φActs(α); other-
wise,φActs,B,T,z(α) = φActs(α′), whereα′ is the minimum
prefix of α such thatz + Diff (α′) ∈ {B, T}. Observe that
φActs,B,T,z is not a complexitymeasure, but rather a complex-
ity function:

Example 3.1If T = −B = 10, z = 0, α1 contains 5 flip
actions, all giving tail, andα2 contains 15 flip actions, all
giving head, thenφActs,B,T,z(α1) = 5, φActs,B,T,z(α2) =
10, while φActs,B,T,z(α1

� α2) = 20, which is greater than
10 + 5. ��
Proposition 3.11 LetH beaprobabilistic execution fragment
ofM , and letΘ′ be a full cut ofH. Letz be chosen so thatB ≤
z ≤ T . Then,EφActs,B,T,z

[H,Θ′] ≤ −z2 + (B + T )z −BT .

Proof. For each stateq of H observe thatφActs,B,T,z(α) =
φ(x(α)), whereφ is the function defined in Definition 3.5
using the setΘ of minimal sequences of{−1, 1}∗ such that
eitherB or T is reached starting fromz. From Theorem 3.6,
EφActs,B,T,z

[H,Θ′] ≤ ERW [Θ]. From Theorem 3.2,ERW [Θ]
≤ −z2+(B+T )z−BT , and thereforeEφActs,B,T,z

[H,Θ′] ≤
−z2 + (B + T )z −BT . ��

Part II: The case study

4 The algorithm of Aspnes and Herlihy

4.1 The consensus problem

The consensus problem consists of makingn asynchronous
processes decide on the same value (either0 or 1) in the pres-
ence of stopping faults, given that each process starts with its
own initial value. The initial value is provided by the environ-
ment during initialization.We say that an algorithm solves the
consensus problem if it satisfies the following properties.

Validity. If a process decides on a value within an execution
of the algorithm, then this value is the initial value of some
process.

Agreement.Any twoprocesses that decidewithinanexecution
of the algorithm decide on the same value.

Wait-free termination.All initialized and non-failed processes
eventually decide.

It is known from [17] that there is no deterministic algorithm
for asynchronous processes that solves consensus and guar-
antees termination even in the presence of at most one single
faulty process. However, the problem becomes solvable using
randomization if we relax the termination condition and we
replace it with the following condition.

Probabilistic wait-free termination.With probability 1, all
initialized and non-failed processes eventually decide.

The algorithm that we analyze in this paper is due to Aspnes
and Herlihy [5] and relies on the theory of random walks. It
terminates within expected polynomial time. We have chosen
this algorithmbecause it is frequently cited in the literature and
because it is among the most complicated randomized algo-
rithms so far proposed. The complex structure of the algorithm
allows us to show howmodular verification techniques can be
applied within a randomized framework.

4.2 Description of the algorithm

The algorithm of Aspnes and Herlihy proceeds in rounds. Ev-
ery process maintains a variable with two fields,value and
round , that contain the process’ current preferred value (0, 1
or⊥) and current round (a non-negative integer), respectively.
We say that a process is at roundr if its round field is equal
to r. Note that, due to asynchrony, different processes could
be at different rounds at some point of an execution. The vari-
ables(value, round) are multiple-reader single-writer. Each
process starts with itsround field initialized to0 and itsvalue
field initialized to⊥.
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Fig. 2. Interaction diagram of the algorithm of Aspnes and Herlihy

After receiving the initial value to agree on, each process
i executes the following loop. It first reads the(value, round)
variables of all other processes in its localmemory.Wesay that
processi is aleaderif according to its readings its own round
is greater than or equal to the rounds of all other processes.
We also say that a processi observedthat another processj
is a leader if according toi’s readings the round ofj is greater
than or equal to the rounds of all other processes. If processi
at roundr discovers that it is a leader, and that according to its
readings all processes that are at roundsr andr − 1 have the
same value asi, theni breaks out of the loop and decides on its
value. Otherwise, if all processes thati observed to be leaders
have the same valuev , theni sets its value tov, increments
its round and proceeds to the next iteration of the loop. In
the remaining case (leaders thati observed do not agree),i
sets its value to⊥ and scans the other processes again. If once
again the leaders observed byi do not agree, theni determines
its new preferred value for the next round by invoking a coin
flipping protocol. There is a separate coin flipping protocol for
each round. Figure 2 gives a high level view of the algorithm.
The left box is the main algorithm which is subdivided into
processes; the right boxesare the coin flippingprotocolswhich
interact with the main algorithm through some invocation and
response messages.

We represent the main part of the algorithm as an automa-
tonAP (Agreement Protocol), and the coin flipping protocols
as probabilistic automataCF r (Coin Flipper), one for each
roundr. With this decomposition we can prove several impor-
tant properties of the algorithmasproperties ofAP using ordi-
nary techniques for non-probabilistic systems. Indeed, in this
section we deal withAP only, and we leave the coin flippers
unspecified. Table 1 describes the state variables ofAP . The
shared state of processi consists of a single-writer multiple-
reader shared variable with two fields,value(i) andround(i),
that contain processi’s current preferred value and round. The
local state of a processi consists of a program counterpc, two
arrays,values androunds that store the(value, round) vari-
ables of other processes afteri reads them, a variableobs that
records the processes already observed byi, a variablestart
that records the initial preferred value ofi, and two boolean
flags,decided andstopped , that reflect whetheri has decided
or failed. The variablestopped is not relevant for the actual
code for processi; it is used only in the analysis of the algo-
rithm to identify those points where processi has failed.

Table 2 describes the actions and the transition relation
of AP . The transitions associated with each actiona are de-
scribed by giving the conditions that a states should satisfy to
enablea (Pre:), and the transformations that are performed on
s to obtain the post-state of the transition (Eff:). If the precon-

dition is omitted, then it is taken to be true. Table 2 is based
on the following predicates and functions:obs-max-round is
the maximum round observed by processi; obs-leader(j) is
true if i observes thatj is a leader;obs-agree(r, v) is true if
the observations of all the processes whose round is at least
r agree onv; obs-leader-agree(v) is true if, according to the
observations ofi, the leaders agree onv; obs-leader-value is
the value of one of the leaders observed byi. Formally,

obs-max-round �= maxj∈obs(rounds[j])

obs-leader(j) �= j ∈ obs ∧ rounds[j]
= obs-max-round

obs-agree(r, v) �= ∀j∈obs rounds[j] ≥ r ⇒ values[j]
= v

obs-leader-agree(v) �= obs-agree(obs-max-round , v)

obs-leader-value �=




v
if obs-leader-agree(v)

undefined
if � ∃vobs-leader-agree(v)

It is simple to check thatobs-leader-value is a well defined
function since it is never the case thatobs-leader-agree(0)
andobs-leader-agree(1) are satisfied simultaneously.

We associate all the locally controlled actions of a process
i with a single task. Thus, an execution fragmentα of AP is
fair if all processes that are continuously enabledare scheduled
eventually inα.

4.3 Informal analysis of the algorithm

It is easy to show that the algorithmsatisfies validity since if all
processes start all with the same valuev, then no process will
ever observe disagreement among the leaders and no process
will ever propose a value different fromv.

It is more difficult to show that the algorithm satisfies
agreement. The first important observation is that agreement
does not rely on probability, but rather on the fact that the
processes at the two highest rounds all agree when a process
decides. The very strict condition on the decision action en-
sures that no process will ever be able to compromise a de-
cision that was taken already. If a process decidesv at round
r, then all processes at roundr agree onv and no process at
roundr− 1 can observe leaders with values different fromv.
More precisely, suppose for the sake of contradiction that the
decision is taken by processP and that there is a processQ
at roundr − 1 that is up to proposing a value different from
v for roundr or up to flipping a coin for the value to propose
at roundr. LetQ be the first such process. This means that all
processes at roundr or higher agree onv. We distinguish two
exhaustive cases.

1. ProcessQ observed that the leaders agree on a value dif-
ferent fromv.
In this case, since all processes at roundr preferv, process
Q observed that the leaders are at roundr−1. Thus, since
Q is at roundr− 1,Q itself prefers a value different from
v at roundr − 1. Consider the last observation thatP
made ofQ. If P observedQ at roundr−1, then the value
preferred byQ at roundr − 1 must bev, a contradiction
(it is possible to show that a process cannot switch its
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Table 1.The state variables of a processi in AP

Name Values Initially

Local state
pc {nil , init , read1, read2, check1, check2,flip,wait , decide} init
values array [1 . . . n] of {0, 1,⊥} array of⊥
rounds array [1 . . . n] of int array of0
obs set of{1, . . . , n} ∅
start {0, 1,⊥} ⊥
decided Bool false
stopped Bool false

Single-writer multiple-reader shared variables
(value(i), round(i)) {0, 1,⊥} × int (⊥, 0)

Table 2.The actions and transition relation ofAP

Actions and transitions of processi.

input init(v)i

Eff: start ← v

output start(v)i

Pre: pc = init ∧ start = v 	= ⊥
Eff: value(i)← v

round(i)← 1
obs← ∅
pc ← read1

output read1(k)i

Pre: pc = read1
k /∈ obs

Eff: values[k]← value(k)
rounds[k]← round(k)
obs← obs ∪ {k}
if obs = {1, . . . , n} thenpc ← check1

output check1i

Pre: pc = check1
Eff: if obs-leader(i)∧

∃v∈{0,1}obs-agree(rounds[i]− 1, v) then
pc ← decide

elseif∃v∈{0,1}obs-leader-agree(v) then
value(i)← obs-leader-value
round(i)← rounds[i] + 1
obs← ∅
pc ← read1

else
value(i)← ⊥
obs← ∅
pc ← read2

output decide(v)i

Pre: pc = decide ∧ values[i] = v
Eff: decided ← true

pc ← nil

output read2(k)i

Pre: pc = read2
k /∈ obs

Eff: values[k]← value(k)
rounds[k]← round(k)
obs← obs ∪ {k}
if obs = {1, . . . , n} thenpc ← check2

output check2i

Pre: pc = check2
Eff: if ∃v∈{0,1}obs-leader-agree(v) then

value(i)← obs-leader-value
round(i)← rounds[i] + 1
obs← ∅
pc ← read1

else
pc ← flip

output start-flip(r)i

Pre: pc = flip
round(i) = r

Eff: pc ← wait

input return-flip(v, r)i

Eff: if pc = wait andround(i) = r then
value(i)← v
round(i)← rounds[i] + 1
obs← ∅
pc ← read1

input stopi

Eff: stopped ← true
pc ← nil

Tasks:The locally controlled actions of processi form a single task.
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preferred value within a round); ifP did not observeQ
at roundr − 1, thenP was already at roundr whenQ
moved to roundr − 1, which means thatQ observed at
least one process at roundr during its last scan, again a
contradiction.

2. ProcessQ observed that the leaders do not agree onv.
Since during the second scan of processQ the value pro-
posed byQ is⊥, processP observedQ either at a round
lower thanr − 1 or while processQ was scanning the
other processes for the first time. In both cases during the
second scan of roundr− 1 processQ sees that processP
is at roundr, and thus that all leaders agree onv. This is a
contradiction.

The agreement property is quite intricate to analyze, and the
analysis above may look incomplete since each statement re-
lies on the understanding of several subtle interactions be-
tween processes. However, assuming that all the statements
are correct, the informal analysis above provides the main
ideas behind the correctness of the algorithm of Aspnes and
Herlihy. In the formal proof all the informal analysis above is
embedded in Invariant 6.3.Weencourage the reader to observe
carefully Invariant 6.3 and check how the informal analysis
above is embedded.

The termination property (eventually some process will
decide) relies strongly on the properties of the coin flipping
protocol. If at a certain round the coin flip protocol behaves
like a global coin flip, i.e., like the flip of a unique coin the
result of which is returned to each process, then termination
occurs within a few rounds. Informally, all the processes that
do not flip coins to select the value for the next round will
select the same value, and all the processes that flip obtain the
same value. The key problem is how to define a coin flipper
that behaves like a global coin flipper with high probability.
We postpone the discussion to Sect. 9.

In the next three sections we prove validity, agreement,
and those parts of termination (progress) that do not depend
on the low level details of the coin flippers.

5 Proving validity

The proof of validity is very simple and is based on an invari-
ant property (cf. Invariant 5.2). In this section and in the rest
of this paper we use the word “invariant” both for automata
and for execution fragments. An invariant of an automaton is
a property that is valid in all the reachable states of the au-
tomaton; an invariant of an execution fragment is a property
that is valid in all the states of the execution fragment. For
notational convenience, givenv ∈ {0, 1}, we denote byv the
value(v + 1)mod 2. We also define a new predicate:
agree(r, v) �= ∀j(round(j) ≥ r ⇒ value(j) = v).

That is, predicateagree(r, v) is true if all the processes at
round at leastr agree on valuev.

Invariant 5.1 Letα be an execution ofAP where no action
of the forminit(v̄)i occurs. Then each state ofα satisfies
agree(1, v) andobs-agree(1, v).
Proof. Straightforward inductive argument. Informally, each
process observes that the leaders agree onv, and thus no pro-

cess ever flips a coin or choosesv̄ as its preferred value for the
next round. ��
Invariant 5.2 For each reachable state ofAP , and each pair
of processesi, j,

1. s.round(i) = 0 ⇒ s.value(i) = ⊥, and
2. s.rounds[i]j = 0 ⇒ s.values[i]j = ⊥.
Proof. Straightforward inductive argument. ��

Theorem 5.3 (Validity property) Let α be an execution of
AP where no action of the forminit(v̄)i occurs. Then inα no
action of the formdecide(v̄)i occurs.

Proof. Suppose by contradiction that there is an occurrence
of actiondecide(v̄)i in α, and lets be the state immediately
before actiondecide(v̄)i. From the transition relation ofAP ,
s.values[i]i = v̄, and by Invariant 5.2,s.rounds[i]i > 0. This
contradicts Invariant 5.1. ��

6 Proving agreement

In this section we prove the agreement property ofAP , that is,
that any two processes that decide within an execution decide
the same value (cf. Theorem 6.2).We give the high level proof
in Sect. 6.1 and we prove the main invariant in Sect. 6.2.

6.1 High level proof

The key idea of the agreement proof is that if a processi that
is at roundr is “about to decide” on some valuev, then every
process that is at roundr or higher has its value equal tov. We
formalize this statement in Invariant 6.1.

Invariant 6.1 Let i be a process. Given a reachable state of
AP , let v = value(i) andr = round(i). Then
(obs-agree(r − 1, v)i ∧ obs-leader(i)i ∧ obsi

= {1, . . . , n}) ⇒ agree(r, v).

Invariant 6.1 states that if processi has observed all the other
processes and has determined that it is a leader and that all the
processes at round at leastr−1 agree on a valuev, then all the
processes at round at leastr agree on a valuev. Before giving
the proof of Invariant 6.1, we use Invariant 6.1 to prove the
agreement property. Essentially the idea is that the premise
of Invariant 6.1 is stable, that is, it is always satisfied in the
future once it is satisfied: if processi satisfies the premise of
Invariant 6.1, then processi decides on valuev, and thus the
local state of processi does not change any more.

Theorem 6.2 (Agreement property)For every traceγ of
AP the following is true: ifdecide(v)i anddecide(v′)j both
occur inγ thenv = v′.

Proof. Let γ be a trace ofAP such thatdecide(v)i and
decide(v′)j both occur inγ. Letα be an execution ofAP that
has traceγ. Assumewithout loss of generality thatdecide(v)i

occurs first inγ. Let si andsj be the states before actions
decide(v)i anddecide(v′)j occur, respectively. From the tran-
sition relation ofAP , processi satisfies the premise of In-
variant 6.1 in statesi, and processj satisfies the premise
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of Invariant 6.1 in statesj . Thus,si.agree(round(i), v) and
sj .agree(round(j), v′). Furthermore, it is a simple inductive
argument to show that the premise of Invariant 6.1 is stable,
that is, once it is satisfied it continues to be satisfied. Thus,
sj .agree(round(i), v). Since insj there is at least one pro-
cess at roundmax (sj .round(i), sj .round(j)), we derive that
v = v′. ��

6.2 Proof of Invariant 6.1

The problem with Invariant 6.1 is that it is not strong enough
to hold inductively. Therefore, we provide a stronger invariant
that implies Invariant 6.1 and holds inductively. Invariant 6.1
guarantees that some properties hold for those states where a
processi has observed all other processes; for the inductive
argument we need to guarantee some properties also for those
states where processi has not observed all other processes
yet. Furthermore, we need to ensure more properties than just
the fact that all processes at round at leastr have valuev. In
particular, we need to make sure that all processes at round
r − 1 cannot reach roundr with a value different fromv.

Givenv ∈ {0, 1}, denote byv the value(v+1)mod 2. De-
fine new predicates and functionsfill-max-round i,fill-leader
(j)i,fill-agree(r, v)i, andfill-leader-agree(v)i to be the same
as the corresponding predicates and functionsobs-max -
round i, obs-leader(j)i, obs-agree(r, v)i, and obs-leader -
agree (v)i, with the following exception: the rounds and pre-
ferred values used in the definitions are the values observed
by i for the processes thati has already observed, and the ac-
tual values of the shared variables for the processes thati has
not yet observed. In other words, an incomplete observation
is “completed instantly” with the actual values of the unob-
served processes. Formally, for each processi, letfill-roundsi

andfill-valuesi be two vectors defined as follows:

fill-rounds[j]i
�=
{
rounds[j]i if j ∈ obsi,
round(j) if j /∈ obsi,

fill-values[j]i
�=
{
values[j]i if j ∈ obsi,
value(j) if j /∈ obsi.

The vectorsfill-rounds andfill-values are called thefilled
vectors of rounds and values. Then,

fill-max-round i
�= maxj(fill-rounds[j]i),

fill-leader(j)i
�= fill-rounds[j]i = fill-max-round i,

fill-agree(r, v)i
�= fill-roundsi[j]
≥ r ⇒ fill-values[j]i = v,

fill-leader-agree(v)i
�= fill-agree(fill-max-round i, v)i.

The actual invariant that we prove is the following.

Invariant 6.3 Let i be a process. Given a reachable state of
AP , let v = value(i), r = round(i). If the following holds

1. obs-agree(r − 1, v)i,
2. fill-agree(r, v)i,
3. fill-max-round i = r,

then

a. ∀jobs-agree(r, v)j ,
b. agree(r, v),

c. ∀j∈obsi((round(j) = r − 1 ∧ value(j) �= v)
⇒ fill-max-round j ≥ r).

Informally, Invariant 6.3 states that if nothing is preventing
some processi from deciding on a valuev at roundr, then
none of the processes observed byi is in a position to cause
other processes not to agree onv at roundr. Thus, the premises
state that according to the observations of processi, process
i is a leader at roundr and observes that the other processes
that are at round at leastr − 1 agree onv; furthermore all the
non-observed processes do not compromise the leadership of
processi and agree onv if they are at round at leastr. This
means that it is possible fori to decide onv after completing
its scan: the non-observed processes that are at roundr − 1
and do not agree onv may reach roundr with valuev before
being observed byi. Conditiona states that all processes ob-
serve agreement onv from roundr, Conditionb states that all
processes at round at leastr do agree onv, and Conditionc
states that none of the processes that have been observed al-
ready by processi is in a condition to reach roundr with a
value different fromv.

At this point we can understand better the use of⊥ in
AP . When a processi is about to decide onv at roundr,
it could be the case that another processj at roundr − 1
is about to flip a coin for the value to be used in roundr.
Processj could have observed some old values of the other
processes. However, in such a case the value of processj
would be⊥. Then, Condition c ensure that processj observes
some process at round at leastr, and thus, from Condition a,
processj observes that the leaders agree onv. Hence, process
j cannot flip. In other words, a processj might not discover
that another processi is about to decide onv at roundr during
its first scan; however, processj would certainly discover the
intent of processi during its second scan.

Observe that Invariant 6.3 implies Invariant 6.1 directly;
thus, proving Invariant 6.3 is sufficient to prove Invariant 6.1.
To prove Invariant 6.3we need several auxiliary invariants that
illustrate some of the key ideas behind the algorithm. Several
invariants have straightforward inductive proofs, which we
omit. The first invariant, Invariant 6.4, states that a process
that has not started yet is at round0.

Invariant 6.4 Let i be a process. Then, for each reachable
state ofAP ,
(pci = init) ⇒ (round(i) = 0). ��

Invariant 6.5 states that a process has observed all other pro-
cesseswhenever either it hasdecided, or it is checking the local
variables, or it is interacting with the coin flipping protocol.

Invariant 6.5 Let i be a process. Then, for each reachable
state ofAP ,
pci ∈ {check1, check2, decide,flip,wait} ⇒ obsi

= {1, . . . , n}. ��
Invariant 6.6 states that the preferred value of a process is⊥
during the second scan of the shared variables and during the
interaction with the coin flipping protocol.

Invariant 6.6 Let i be a process. Then, for each reachable
state ofAP ,
pci ∈ {read2, check2,flip,wait} ⇒ value(i) = ⊥. ��
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Invariant 6.7 states that if a process is interacting with a coin
flipping protocol, then that process observes that the leaders
do not agree.

Invariant 6.7 Let i be a process. Then, for each reachable
state ofAP ,
pci ∈ {flip,wait} ⇒� ∃vobs-leader-agree(v)i.

��
Invariant 6.8 states that the round numbers observed by each
process are never larger than the actual round numbers of the
processes.

Invariant 6.8 Leti, j be two processes. Then, for each reach-
able state ofAP ,
rounds[j]i ≤ round(j). ��
Invariant 6.9 is a consequence of the fact that a process cannot
prefer two different values during the same round. That is, if
processj observes the current round of processi and processi
does not prefer⊥, then then the value of processi observed by
processj coincides with the actual preferred value of process
i. In other words, if processj observes that at some point
processi is at roundr and prefers valuev, then the actual
preferred value of processi while its round isr is eitherv or
⊥.
Invariant 6.9 Leti, j be two processes. Then, for each reach-
able state ofAP ,
(rounds[i]j = round(i) ∧ value(i) ∈ {0, 1})

⇒ (values[i]j = value(i)).

Proof. For notational convenience, letI(s) denote the invari-
ant above. We proveI(s) by induction on the length of an
execution ofAP leading tos. If s is a start state, thenI(s) is
satisfied trivially sinces.value(i) = ⊥ for all i. For the induc-
tive step it is enough to show that for every transition(s, a, s′)
ofAP , I(s) impliesI(s′). We distinguish the following cases
based ona.

1. a = read1(i)j or a = read2(i)j .

The transition relation ofAP ensures thats′.values[i]j =
s′.value(i). Thus,I(s′) is true.

2. a = check1i or a = check2i or a = start(v)i, or a =
return-flip(v, r)i, v ∈ {0, 1}, r > 0.
If s′.pci = decide, then none of the relevant variables
for I(s′) has changed, and thusI(s′) is true; if s′.pci �=
decide, then eithers′.round(i) = s.round(i) + 1 or
s′.value(i) = ⊥ (cf. Ivariants 6.4 and 6.6). In the first
case, since processj does not change state, and since by
Invariant 6.8s.round(i) ≥ s.rounds[i]j , we derive that
s′.round(i) > s′.rounds[i]j . Thus, in both cases one of
the premises ofI(s′) is not satisfied, which means that
I(s′) is true.

3. None of the previous cases hold.

I(s) impliesI(s′) trivially, since all the relevant compo-
nents stay unchanged. ��

Invariant 6.10 states that whenever a process has observed
itself, the observed round and value coincide with the actual
round and value.

Invariant 6.10 Let i be a process. Then, for each reachable
state ofAP ,
i ∈ obsi ⇒ (rounds[i]i =round(i) ∧ values[i]i =value(i)).

Proof. Fix a processi. For notational convenience letI(s)
denote the invariant above. We proveI(s) by induction on the
length of an execution ofAP leading tos. If s is a start state,
thenI(s) is satisfied trivially sinces.obsi = ∅. For the induc-
tive step it is enough to show that for every transition(s, a, s′)
ofAP , I(s) impliesI(s′). We distinguish the following cases
based ona.

1. a = read1(i)i or a = read2(i)i.

The transition forread(i)i ensures thats′.rounds[i]i =
s.round(i) and thats′.values[i]i = s.value(i). Since
round(i) andvalue(i) do not change froms to s′, I(s′)
is true.

2. a = check1i or a = check2i or a = init(v)i, or a =
return-flip(v, r)i, v ∈ {0, 1}, r > 0.
If s′.pci ∈ {decide,flip}, then none of the relevant vari-
ables forI(s′) has changed froms to s′, andI(s′) is true.
If s′.pci /∈ {decide,flip}, then s′.obs = ∅, falsifying
i ∈ s.obsi. Therefore,I(s′) is satisfied trivially.

3. None of the cases above hold.

I(s) impliesI(s′) trivially, sinceall the relevant conditions
stay unchanged. ��

Invariant 6.11 states that whenever the maximum round is at
mostr and all processes agree on a valuev from roundr, then
all processes observe that there is agreement onv from round
r.

Invariant 6.11 Letrbeanon-negative integerandv ∈ {0, 1}.
Then, for each reachable state ofAP ,
(max-round ≤ r ∧ agree(r, v)) ⇒ ∀jobs-agree(r, v)j .

Proof. Suppose that the premises of the invariant above are
satisfied, and leti, j be two processes such thatrounds[i]j =
r. By Invariant 6.8 and frommax-round ≤ r, round(i) =
r. Thus, fromagree(r, v), value(i) = v. By Invariant 6.9,
values[i]j = v. ��
The following lemma is more technical and is used to shorten
the inductive argument in the proof of Invariant 6.3. It states
that, under certain conditions, if the premises of Invariant 6.3
are satisfied in the post-state of a transition, then the premises
of Invariant 6.3 are satisfied in the pre-state of the transition
as well.

Lemma 6.12 Let (s, a, s′) be a transition ofAP , wherea
is eitherread1(k)j or read2(k)j or check1j or check2j or
return-flip(v′, r′)i, v′ ∈ {0, 1}, r′ > 0. Let i be a process
such thati �= j if a = check1j or a = check2j or a =
return-flip(v′, r′)j . If, for v ∈ {0, 1}andr > 0, the following
conditions hold ins′:

1. obs-agree(r − 1, v)i,
2. fill-agree(r, v)i,
3. fill-max-round i = r,
4. value(i) = v andround(i) = r,

then the same conditions hold ins as well.

Proof. We distinguish two cases based ona.

1. a = read1(k)j or a = read2(k)j .

Observe that for each processl, s.value(l) = s′.value(l)
ands.round(l) = s′.round(l). This implies Condition4
in s. It is left to show Conditions1, 2, and 3 fors. If
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i �= j then s.valuesi = s′.valuesi and s.roundsi =
s′.roundsi. Thus, Conditions1, 2, and 3 are satisfied triv-
ially in s. If i = j, then for every processl such that
l �= k, s.values[l]i = s′.values[l]i ands.rounds[l]i =
s′.rounds[l]i. Sincek �∈ s.obsi (i is reading fromk), and
since Condition1 holds ins′, Condition 1 also holds ins.
Condition 2 follows directly from Condition 2 fors′ and
the fact thats′.values[k]i = s.value(k) ands′.rounds[k]i
= s.round(k); Condition 3 follows from Condition 3 in
s′ and froms′.rounds[k]i = s.round(k).

2. a = check1j or a = check2j or a = return-flip(v′, r′)j .

Observe that, by Invariants 6.5 and 6.10,s.round(j) =
s.rounds[j]j . Conditions3 and4 are trivial, since the state
of processi is the same ins ands′ (i �= j), s.round(j) ≤
s′.round(j), ands.round(i) = r. Similarly, Condition1
holds ins. It is left to show that Condition 2 holds ins.
Sincej is the only process that changes state, and since
Condition 2 is affected only ifj �∈ s′.obsi, which is equiv-
alent toj �∈ s.obsi, it is sufficient to verifys.round(j) =
r ⇒ s.value(j) = v under theassumption thatj �∈ s.obsi.
We distinguish two cases.
(a) s′.pcj ∈ {decide,flip}.

No other state variable has changed in the transition.
Thus, Condition2 holds ins.

(b) s′.pcj = read .

From Condition 3 ins′ we haves′.round(j) ≤ r.
If s′.value(j) = ⊥, then Condition2 for s′ implies
s′.round(j) < r, and therefores.round(j) < r,
which implies Condition2 for s. If s′.value(j) �= ⊥,
then the transition relation ofAP impliess.round(j)
< s′.round(j), and therefore, since from Condition 3
s′.round(j) ≤ r, s.round(j) < r. This implies Con-
dition 2 for s. ��

Proof of Invariant 6.3.For notational convenience, for each
states and processi let I(s) denote the whole invariant,
C1 (s, i),C2 (s, i),andC3 (s, i)denoteConditions 1, 2, and3,
respectively, andCa(s, i),Cb(s, i), andCc(s, i) denote Con-
ditionsa, b, andc, respectively.

We proveI(s) by induction on the length of an execution
of AP leading tos. If s is a start state, thenI(s) is satisfied
trivially sinces.value(j) = ⊥ for all j ands.obsi = ∅, and
thusC2 (s, i) is not satisfied. For the inductive step it is enough
to show that for every transition(s, a, s′) ofAP , I(s) implies
I(s′). We distinguish the following cases based ona.

1. a = start(v′)j for somev′ andj.
Consider a processesi such thatC1 (s′, i) ∧ C2 (s′, i) ∧
C3 (s′, i). Let r = s′.round(i), v = s′.round(i). We
distinguish the following cases.
(a) i = j.

In this caser = 1 andv′ = v. Sinces′.obsi = ∅,
Cc(s′, i) is trivially true, andCb(s′, i) follows from
C2 (s′, i). Furthermore, fromC3 (s′, i),s′.max-round
= 1, and thus the premises of Invariant 6.11 are satis-
fied, givingCa(s′, i).

(b) i �= j andr = 1.
FromC1 (s′, i),j /∈ s′.obsi, otherwiseprocessiwould
have observed⊥ at roundr−1. Thus, fromC2 (s′, i),
v′ = v. Since, except for processj, all the relevant

components forC1 (s, i) andC2 (s, i) do not change,
we deriveC1 (s, i) ∧ C2 (s, i). If C3 (s, i) is true as
well, thenCa(s, i) ∧ Cb(s, i) ∧ Cc(s, i) is true, and
Ca(s′, i) ∧ Cb(s′, i) ∧ Cc(s′, i) follow directly. If
C3 (s, i) is false, thens.obsi = ∅, otherwiseC1 (s, i)
would be false, and thusj is the only process ins′ that
is at roundr. This impliesCb(s′, i)∧Cc(s′, i)directly.
By Invariant 6.8,Ca(s, i) is true, and thus, since none
of the relevant state components change,Ca(s′, i) is
true as well.

(c) i �= j andr = 2.
Observe thatC1 (s, i) ∧ C2 (s, i) ∧ C3 (s, i) is true,
since processj does not affect their validity. Thus,
Ca(s, i)∧Cb(s, i)∧Cc(s, i) is true. Then,Ca(s′, i)∧
Cb(s′, i) since processj does not affect their valid-
ity. Sinces′.obsj = ∅, from C3 (s′, i) and by Invari-
ant 6.8 we derive that processj satisfies the condition
for Cc(s′, i). Thus,Cc(s′, i) follows fromCc(s, i).

(d) i �= j andr > 2.
I(s′) follows trivially from I(s) since processj does
not affect any of the relevant conditions.

2. a = read1(k)j or a = read2(k)j for somej andk.

Consider a processesi such thatC1 (s′, i) ∧ C2 (s′, i) ∧
C3 (s′, i). Let r = s′.round(i), v = s′.round(i). By
Lemma 6.12,s.value(i) = v, s.round(i) = r, and
C1 (s, i) ∧ C2 (s, i) ∧ C3 (s, i). SinceI(s) is true, we
also haveCa(s, i)∧Cb(s, i)∧Cc(s, i). We need to show
Ca(s′, i) ∧ Cb(s′, i) ∧ Cc(s′, i).
To showCa(s′, i) it is enough to show thats′.rounds[k]j
≥ r ⇒ s′.values[k]j = v. From the transition relation
of AP , s′.rounds[k]j = s.round(k) ands′.values[k]j =
s.value(k). Thus,Cb(s, i) suffices.
Cb(s′, i) follows trivially from Cb(s, i) since none of the
relevant state components change.

ForCc(s′, i), suppose thatj ∈ s′.obsi,s′.round(j) = r−
1,s′.value(j) �= v.Observe thati �= j sinces.round(i) =
r and thuss′.round(i) �= r − 1. The termss.fill -max -
round j ands′.fill-max-round j differ only in the use of
round(k) androunds[k]j . The transition relation ofAP
ensures theequalityof the two termsabove.Thus,Cc(s′, i)
follows fromCc(s, i).

3. For somej, a = check1j or a = check2j or a = return-
flip(v′, r′)i, v′ ∈ {0, 1}, r′ > 0.
Consider a processesi such thatC1 (s′, i) ∧ C2 (s′, i) ∧
C3 (s′, i). Letr = s′.round(i),v = s′.round(i). Observe
that, by Invariants 6.5 and 6.10,s.round(j) = s.rounds
[j]j . Furthermore, observe that for all processesl,

s′.rounds l = s.rounds l ∧ s′.values l

= s.values l ∧ s′.obsl ⊆ s.obsl. (14)

If s′.pcj ∈ {decide,flip}, thenI(s′) follows trivially from
I(s) since none of the relevant state components change.
Thus, we consider only the case wheres′.pcj �= decide.
In particular,s′.obsj = ∅.
If i = j (ands′.pci /∈ {decide,flip}), then froms′.obsi =
∅wegetCc(s′, i). Furthermore,s′.obsi = ∅ andC2 (s′, i)
imply s′.agree(r, v), and thusCb(s′, i) is true. From
s′.obsi = ∅ andC3 (s′, i), we derives′.max-round ≤ r.
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This means that the conditions of Invariant 6.11 are satis-
fied, and thusCa(s′, i) is true.
If i �= j (ands′.pci /∈ {decide,flip}), then Lemma 6.12
implies thats.value(i) = v and s.round(i) = r and
C1 (s, i)∧C2 (s, i)∧C3 (s, i). SinceI(s) is true, we have
Ca(s, i)∧Cb(s, i)∧Cc(s, i). Equation (14) andCa(s, i)
implyCa(s′, i). Sinces′.round(i) = r, froms′.obsj = ∅
we derives′.fill-max-round j ≥ r, and thusCc(s′, i) fol-
lows fromCc(s, i). To showCb(s′, i) we distinguish the
following cases.
(a) s.round(j) ≥ r.

By Invariant 6.5,s.obsj = {1, . . . , n}, and thus, by In-
variant 6.10, s.rounds[j]j = s.round(j). From
Ca (s, i), since s.obsj = {1, . . . , n}, and since
s.round(j) ≥ r, we derives.obs-leader-agree(v)j .
By Invariant6.7,s.pcj �= wait , and thus, from the tran-
sition relationofAP ,s′.value(j) = v ands′.round(j)
> r. Therefore,Cb(s′, i) follows fromCb(s, i).

(b) s.round(j) = r − 1 ands.value(j) = ⊥.
By Invariant 6.5,s.obsj = {1, . . . , n}. If j ∈ s′.obsi,
thenCa(s, i) ∧ Cc(s, i) implies s.obs-leader-agree
(v)j . By Invariant 6.7 and from the transition relation
of AP , s′.value(j) = v ands′.round(j) = r. There-
fore Cb(s′, i) follows from Cb(s, i). If j /∈ s′.obsi,
then fromC2 (s′, i), s′.value(j) = v. Thus,Cb(s′, i)
follows fromCb(s, i).

(c) s.round(j) = r − 1 ands.value(j) �= ⊥.
By Invariant 6.5,s.obsj = {1, . . . , n}, and by Invari-
ant 6.6,a = check1. If j /∈ s′.obsi, thenC2 (s′, i) im-
plies ¬s.obs-leader-agree(v̄)j , since otherwise
s ′. pre-fer(j)wouldbēv; if j ∈ s′.obsi ands.value(j)
= v, thenCa(s, i) and Invariant 6.10 imply¬s.obs-
leader -agree(v̄)j ; if j ∈ s′.obsi ands.value(j) = v̄,
then fromCc(s, i) we derives.fill-max-round j ≥ r,
and thus, fromCa(s, i), s.obs-leader-agree(v)j .

Thus, in every casewe have¬s.obs-leader-agree(v̄)j .
If s.obs-leader-agree(v)j , then from the transition re-
lationofAP wehaves′.value(j) = v ands′.round(j)
= r. Therefore,Cb(s′, i) follows from Cb(s, i). If
¬s.obs-leader-agree(v)j , then from the transition re-
lationofAP wehaves′.value(j)=⊥ands′.round(j)
= r − 1. Again,Cb(s′, i) follows fromCb(s, i).

(d) s.round(j) < r − 1.
Sinces′.round(j) ≤ r− 1,Cb(s′, i) follows trivially
fromCb(s, i).

4. None of the previous cases hold.

I(s) impliesI(s′) since all the relevant components ofs
ands′ stay unchanged. ��

Proof of Invariant 6.1.Follows directly from Invariant 6.3.��

7 Non-probabilistic progress properties

Our next objective is to show that in the algorithm of Aspnes
and Herlihy some decision is reached within some expected
number of rounds. This property depends on the probabilistic
properties of the coin flipping protocols. However, there are
several progress properties of the algorithm that do not depend

on any probabilistic assumption. In this section we study such
properties. The advantage of this approach is that we can use
existing techniques for ordinary nondeterministic systems and
confine the probabilistic arguments to a very limited section of
the analysis. In this way we can also point out very precisely
what is the essential role of probability within the protocol
we analyze. The results of this section are integrated with
probabilistic arguments in Sect. 8.

For each roundr, letCF r be a coin flipping protocol, that
is, a probabilistic automatonwith the interface of a coin flipper
ofFig. 2.DefineAH (Aspnes-Herlihy) tobeAP‖(‖r≥1CF r).

For each finite execution fragmentα of AH , define
φMaxRound(α) �= lstate(α).max-round

−fstate(α).max-round ,
wheremax-round is a function that gives themaximum round
number among all the processes. Since the round number of
each process is nondecreasing, it is immediate to verify that
φMaxRound is a complexitymeasure. Define the following sets
of states.

R the set of reachable states ofAH such that∃ipci /∈
{init ,nil};

D the set of reachable states ofAH such that∀i(pci ∈
{init ,nil}).

We call the states ofR active, since they represent situations
where some process is participating actively in the consensus
protocol.Wewant to show that, under some special conditions
on the coin flipping protocols, starting from any state ofR,
a state fromD is reached within some bounded number of
rounds. It turns out that it is easier to split the problem in two
parts: firstweshowasimpleproperty that, unless thealgorithm
terminates, the system reaches a point where one process has
justmoved to a newmaximum round (F0 andF1 below,where
the subscript corresponds to the value preferred by the process
at the maximum round); then, we show that from such an
intermediate point, under some special conditions on the coin
flipping protocols, the algorithm terminates. Formally, define
the following sets of states.

F0 the set of states ofR where there exists a roundr and a
processl such thatround(l) = r, value(l) = 0, obsl = ∅,
and for all processesj �= l, round(j) < r;

F1 the set of states ofR where there exists a roundr and a
processl such thatround(l) = r, value(l) = 1, obsl = ∅,
and for all processesj �= l, round(j) < r.

We show two properties, the first of which is almost trivial:

1. (Proposition 7.3) IfAH is in a states of R and all in-
vocations to the coin flippers on non-failing ports get a
response, then a state fromF0 ∪F1 ∪D is reached within
one round.

2. (Proposition 7.8) IfAH is in a states ofFv, all invocations
to the coin flippers on non-failing ports get a response, and
all invocations toCF s.max-round get only responsev, then
a state fromD is reached within two rounds.

To state formally the two properties above we need to define
the meaning of the sentences “all invocations to the coin flip-
pers on non-failing ports get responses”, and “all invocations
toCF r get only responsev”, which we identify with the con-
cepts ofresponsivenessand(v, r)-globality, respectively.
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Definition 7.1 Aporti is non-failing inanexecution fragment
α of AH or ofCF r if action stopi does not occur inα.

An invocation toCF r fromprocessi ispendingin a reach-
able states of CF r if there is an executionα of CF r, ending
in states, such that inα port i is non-failing, there is at least
one occurrence of actionstart-flip(r)i, and the last occur-
rence ofstart-flip(r)i is not followed by any action of the
form return-flip(v, r)i.

An execution fragmentα of CF r is responsiveif, for
each decompositionα1

� α2 of α the following holds: if in
fstate(α2) there is a pending request of processi toCF r, then
in α2 either actionstopi occurs, or actionreturn-flip(v, r)i

occurs for somev ∈ {0, 1}. An execution fragmentα of AH
is responsiveif, for eachr > 0, α�CF r is responsive.

An execution fragmentα of CF r is v-global iff for each
action of the formreturn-flip(v′, r)i that occurs inα, v′ = v.
An execution fragmentα ofAH is (v, r)-global iff α�CF r is
v-global. ��
Remark 7.1 The definition of pending request may appear
rather cumbersome, since we could state it just in terms of the
components of a state ofCF r. The problem is thatCF r is not
specified yet, and thus we cannot refer to its state components:
we can refer only to the interactions thatCF r has with its
external environment. ��

Statement 1 is almost trivial and states that within one
round some processmoves first to a new round or all processes
terminate. Statement 2 is the key result of this section. It states
that if the maximum round isr and the process at roundr has
valuev, then the system quiesces within two rounds ifCF r

behaves like aglobal coinflipper. We start with Statement 1,
which requires a trivial preliminary lemma.

Lemma 7.2 Let α be a fair execution fragment ofAH that
starts from a state ofR, and assume thatα is responsive. Then
in α either a state fromD is reached, ormax-round grows
unboundedly.

Proof.Followsdirectly from the fact that all processesperform
finitely many operations in every round. ��
Proposition 7.3 Let s0 be a state ofR, and letα be a fair
execution fragment ofAH that starts from states0. Suppose
that α is responsive. Then inα a state ofF0 ∪ F1 ∪ D is
reached within one round. That is,α = α1

� α2 such that
lstate(α1) ∈ F0 ∪ F1 ∪ D andφMaxRound(α1) ≤ 1.
Proof. If D is not reached, then, by Lemma 7.2,max-round
grows unboundedly. Thus, some process will be the first pro-
cess to reach rounds0.max-round + 1. At that point a state
fromF0 ∪ F1 is reached. ��
This proves Statement 1. For Statement 2 we need to prove
some preliminary invariants. The first invariant is an immedi-
ate consequence of the fact that a process has a correct view
of itself whenever it has observed itself.

Invariant 7.4 Let i be a process. Then, for each reachable
state ofAH ,
fill-max-round i ≥ round(i).

Proof. Straightforward inductive argument. ��
The second invariant states that the round of each process is
monotonically increasing and that a process cannot prefer both
values0 and1 in the same round.

Invariant 7.5 Let α be an execution fragment ofAH , and
let s0 = fstate(α) be reachable inAH . Let l be a process,
r = s0.round(l), andv = s0.value(l). If v �= ⊥, then for
each state ofα,
round(l) ≥ r ∧ (round(l) = r ⇒ value(l) �= v̄).

Proof. Straightforward inductive argument. ��
The third invariant is more technical. The important part is
the second condition, which states that all processes observe
agreement on valuev from roundr +1 provided that the coin
flipper for roundr always returnsv, that at the beginning there
is exactly one process at roundr, and that the process at round
r prefers valuev. The other two conditions are necessary to
carry out the inductive proof.

Invariant 7.6 Letα be an execution fragment ofAH whose
first states0 is a state ofFv. Let r = s0.max-round , and
let l be the (unique) process that satisfiess0.round(l) = r.
Suppose thatα is (v, r)-global. Then, for each state ofα,

1. ∀j(round(j) = r ⇒ ¬fill-leader-agree(v̄)j)
2. ∀jfill-agree(r + 1, v)j .
3. agree(r + 1, v).

Proof. For notational convenience letI(s) denote the whole
invariant. States0 satisfies Conditions 2 and 3 trivially since
s0.max-round < r + 1. For Condition 1, since processl is
the only process at roundr, and sinces0.value(l) = v and
s0.obsl = ∅, it cannot be thecase thats0.fill-leader-agree(v̄)l.
For the inductive step we consider a subsequencesas′ of α
and we distinguish cases based ona.

1. a = init(v′)i for somei.

If r > 1, then none of the conditions ofI(s) are affected.
If r = 1, then Conditions 2 and 3 are not affected as
well.Consider ageneric processj such thats′.round(j) =
r. If j = i, then sinces′.obsj = ∅, Invariant 7.5 and
Condition 3 fors′ ensure that¬fill-leader-agree(v̄)j . If
j �= i, then, since Condition 1 holds ins, there is some
processk �= i that is a leader with value different from̄v in
the filled vector of processj. We know thatk �= i because,
by Invariant 7.4,s.fill-max-round j ≥ r, and thus process
i could not affect Condition 1 ins. Thekth entry of the
filled vector ofj is not affected during the transition from
s to s′, and thus Condition 1 is preserved.

2. a = read1(k)i or a = read2(k)i for somei andk.

In this case Condition 3 is not affected. Thus, we need
to deal only with Conditions 1 and 2, which are affected
only for processi. In particular, Conditions 1 and 2 dif-
fer in s ands′ for the use of(round(k), value(k)) and
(rounds[k]i, values[k]i), respectively. The transition re-
lation ofAP ensures the equality of the terms above, and
thus the preservation of Conditions 1 and 2.

3. a = check1i or a = check2i or a = return-flip(v′, r′)i

for somei.

We consider only the case wherer′ = round(i), since
otherwise nothing changes during the transition froms to
s′. We distinguish the following cases.
(a) s.round(i) < r − 1.

In this caseI(s′) follows trivially from I(s) since none
of the conditions are affected.
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(b) s.round(i) = r − 1.
Conditions 2 and 3 are not affected. Ifs′.round(i) =
r − 1, then Condition 1 is not affected as well. Oth-
erwise,s′.obsi = ∅. Observe also thati �= l. Thus,
Condition 1 follows from Condition 1 fors and by
Invariant 7.5.

(c) s.round(i) = r.

If s′.round(i) = r, then Conditions 2 and 3 are not
affected. For Condition 1, ifs′.pci = decide, then
Condition 1 is not affected; otherwise,s′.value(i) =
⊥ ands′.obsi = ∅. Thus, Condition 1 follows from
Condition 1 fors and from Condition 3.

If s′.round(i) = r+1, thenCondition 1and the transi-
tion relation ofAP(v, r) ensure thats′.value(i) = v.
Thus, Conditions 1, 2 and 3 are all preserved.

(d) s.round(i) > r.

From Condition 2 ons, either processi decides onv,
or a new round is reached with preferencev. In both
cases Conditions 1, 2 and 3 are preserved.

4. None of the previous cases hold.

I(s′) follows trivially from I(s) since none of the relevant
state components change. ��

Finally, we can show that fromFv the maximum round of the
processes does not grow bymore than2 provided that the coin
flipper at the maximum round always returnsv.

Invariant 7.7 Letα be an execution fragment ofAH whose
first states0 is a state ofFv. Letr = s0.max-round . Suppose
thatα is (v, r)-global. Then, for each state ofα, and for each
processj, round(j) ≤ r + 2.

Proof. First observe thatα satisfies the conditions of Invari-
ant 7.6, which means that Invariant 7.6 is satisfied by all the
states ofα.

All the cases for the proof are straightforward except for
the case where a transition(s, check1j , s

′) occurs and
s.round(j) = r+2. In such case, from Condition 2 of Invari-
ant 7.6,s.fill-agree(r + 1, v)j . Sinces.obsj = {1, . . . , n},
we derive thats.obs-agree(r + 1, v), and thus processj sets
pcj to decide without reaching roundr + 3. Observe that
check2j cannot occur whenround(j) = r + 2 since in such
casevalue(j) = ⊥ and Invariant 7.6 would be violated. ��
Proposition 7.8 Let α be a fair execution fragment ofAH
whose first states0 is a state ofFv. Let r = s0.max-round .
Suppose thatα is responsive and(v, r)-global. Then inα a
state fromD is reachedwithin two rounds.That is,α = α1

�α2
wherelstate(α1) ∈ D andφMaxRound(α1) ≤ 2.

Proof. Suppose thatD is not reached inα. Then, by
Lemma 7.2, some process eventually reaches roundr + 3,
contradicting Invariant 7.7. Therefore, inα a state fromD
is reached. Furthermore, by Invariant 7.7, a state fromD is
reached within two rounds. ��

8 Probabilistic progress properties

Suppose that each coin flipping protocolCF r satisfies the
following properties.

C1 For each fair probabilistic execution fragment ofCF r that
starts with a reachable state ofCF r, the probability of the
execution fragments that are responsive is1.

C2 For each fair probabilistic execution ofCF r, and each
valuev ∈ {0, 1}, the probability of the executions that
are responsive andv-global is at leastp, wherep is a real
number such that0 < p ≤ 1.

In this section we show that under ConditionsC1 andC2 for
everyCF r,AH guarantees progress within expectedO(1/p)
rounds. That is, we prove the following proposition.

Proposition 8.1 If each coin flipping protocolCF r satisfies
propertiesC1 andC2, then inAH , starting from any state
ofR and under any fair scheduler, a state fromD is reached
within at mostO(1/p) expected rounds.

Thus, we need to show only that it is possible to build dis-
tributed implementations of the coin flippers that satisfyC1
andC2with a suitable value forp. We build the implementa-
tions in Sects. 9 and 10.

Remark 8.1Observe that propertyC1 refers to probabilistic
execution fragments, while PropertyC2 refers to probabilistic
executions. This distinction is important. PropertyC1 states
that a coin flipper gives responses with probability1 from any
arbitrary point in its computation; PropertyC2guarantees that
with probabilityp a specific value is always returned, but only
if we observe the coin flipper from the beginning.C2 is not
true for an arbitrary probabilistic execution fragment: if we
consider a fragment that begins in a state where two processes
are about to return two different values, then all processes
return the same value with probability0. ��

We now turn to the proof of Proposition 8.1. The main
statement that we use is
R φMaxRound≤3−→

p
D. (15)

To prove Statement (15) we prove two intermediate state-
ments:
R φMaxRound≤1−→

1
F0 ∪ F1 ∪ D, (16)

and for eachv ∈ {0, 1},
Fv

φMaxRound≤2−→
p

D. (17)

TheproofsofStatements (16) and (17) rely onPropositions7.3
and 7.8 and on the probabilistic properties of the coin flipping
protocols. In particular, the first statement relies on the fact
that the coin flippers respond, which occurs with probability 1
(C1), and the second statement relies on the fact that some
specific coin flipper always returns a specific valuev, which
is the case with probability at leastp (C2).

Proposition 8.2 Assuming that the coin flippers inAH satisfy
C1,

R φMaxRound≤1−→
1

F1 ∪ F0 ∪ D. (18)

Proof. Let H be a probabilistic execution fragment ofAH
that starts from a state ofR. LetΘ be the set of executions of
ΩH where each invocation to any coin flipper on a non-failing
port gets a response. By Proposition 7.3, in each execution
of Θ a state fromF1 ∪ F0 ∪ D is reached within one round.
Thus, it is sufficient to show thatPH [Θ] = 1. Let, for each
i ≥ 1, Θi be the set of executions ofΩH where each in-
vocation toCF i on a non-failing port gets a response. Then
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Θ = ∩i≥1Θi. Observe that, by definition,Θi is the inverse
image under projection of the set of executions ofΩH	CF i

where each invocation on a non-failing port gets a response.
From C1, for eachi, PH	CF i

[Θi�CF i] = 1, and thus, by
Proposition 2.2,PH [Θi] = 1. Therefore,PH [Θ] = 1 since
any countable intersection of probability1 events has proba-
bility 1. ��
Proposition 8.3 Assuming that the coin flippers inAH satisfy
C1 andC2,

Fv
φMaxRound≤2−→

p
D. (19)

Proof. Let H be a probabilistic execution fragment ofAH
that starts from a states0 of Fv, and letr = s0.max-round .
LetΘ be the set of executions ofΩH where each invocation
to any coin flipper on a non-failing port gets a response and
where each response ofCF r has valuev. By Proposition 7.8,
in each execution ofΘ a state fromD is reached within two
rounds. Thus, it is sufficient to show thatPH [Θ] ≥ p. Let,
for eachi ≥ 1, Θi be the set of executions ofΩH where
each invocation toCF i on a non-failing port gets a response.
Furthermore, letΘ′

r be the set of executions ofΩH where no
responseofCF r hasvaluēv. Then,Θ = (∩i≥1Θi)∩Θ′

r. From
C1, for eachi, PH	CF i

[Θi�CF i] = 1, and thus, by Proposi-
tion 2.2,PH [Θi] = 1. Sinces0 ∈ Fv andr = s0.max-round ,
H�CF r is a probabilistic execution ofCF r (the start state
of H�CF r is a start state ofCF r), and thus propertyC2 can
be applied. FromC2, PH	CFr

[Θ′
r�CF r] ≥ p, and thus, by

Proposition 2.2,PH [Θ′
r] ≥ p. Therefore,PH [Θ] ≥ p since

any countable intersection of probability1 events has proba-
bility 1 and the intersection of a probability1 event with an
event with probabilityp has probability at leastp. ��
Proof of Proposition 8.1.By Proposition 2.7, Statements (16)
and (17) can be combined to lead to Statement (15).

Since inAH R is not left unless a state fromD is reached,
since each transition ofAH increasesφMaxRound by at most
1, and since from fairness andC1some transition is scheduled
with probability1 from each state ofR, by Theorem 2.8 we
derive that within at most expected4/p rounds a state fromD
is reached under any fair scheduler. ��

9 The coin flipping protocol

We are left to show that it is possible to build a distributed
coin flipping protocol with the propertiesC1andC2 stated in
Sect. 8, where by a distributed protocol we mean a protocol
whereprocesses interact throughsingle-writermultiple-reader
shared variables only.

In this section we build an almost distributed version of
the coin flipping protocol where processes interact through
a multiple-writer multiple-reader shared register; in Sect. 10
we refine the protocol of this section to yield a distributed
protocol. The protocol is based on random walks and satisfies
propertiesC1 andC2 with a sufficiently high probabilityp
that is independent ofn.

9.1 The code for the protocol

Werepresent thecoinflippingprotocol by lettinganautomaton
DCN r (Distributed CoiN) interact with a centralized counter

CTr

n

1

i

i

i

i

i

i

start-read

start-inc

start-dec

end-dec

end-inc

end-read
r

rCF

i counter

DCN

AP

Fig. 3.The structure of the coin flipping protocol

CT r (CounTer), that is,CF r = HideI(DCN r‖CT r), where
I is the set of actions used for the interaction betweenDCN r

andCT r, andHideI is an operator that transforms the actions
of I from external to internal. Figure 3 shows the structure of
the coin flipping protocol. In this section,DCN r is distributed
while CT r is composed ofn processes that receive requests
fromDCN r and read/update a single shared variable: the de-
tails of the distributed implementation of a shared counter are
not necessary for any properties of the coin flipping protocol.
The distributed version of the shared counter is presented in
Sect. 10.

Since the protocols forDCN r andCT r are the same for
any roundr, we drop the subscriptr from our notation. Ta-
ble 3 gives the state variables ofDCN ; Table 4 gives the
transition relation ofDCN . Each process flips a fair coin to
decide whether to increment or decrement the shared counter.
Then the process reads the current value of the shared counter,
and if the value read is beyond the barriers±Kn, whereK is a
fixed constant, then the process returns, otherwise, it flips the
fair coin again. The protocol described in Table 4 is slightly
different from the protocol described in [5]: once a coin flip is
requested, our protocol checkscounter before flipping a coin,
while the protocol of [5] starts immediately by flipping a coin.
Our protocol improves the protocol of [5] in that propertiesC1
andC2 are satisfied even in the presence of multiple requests
on the same port. This improvement is not essential for the
correctness of the protocol of [5], since the protocol guaran-
tees that there is at most one request at each port; however,
our improvement simplifies the proof slightly in that we do
not have to prove explicitly that there is at most one request at
each port.

Table 5 gives the state variables of the shared counterCT ;
Table 6 gives the actions and transition relation ofCT . Infor-
mally, each process ofCT receives requests that are handled
by referring to a multiple-writer multiple-reader shared vari-
ablecounter . Increment and decrement operations are per-
formed by updatingcounter directly; read operations are im-
plemented by first copying the value ofcounter to a multiple-
writer single-reader variablepreread and then, in a separate
step, returning the value ofpreread to the environment. How-
ever, an update tocounter may invalidate the value that a read
operation is ready to return. This fact is expressed by the non-
deterministic choice to reset any set ofpreread variables to
⊥ whenever a process updatescounter . Due to the way the
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Table 3.The state variables of a processi in DCN .

Name Values Initially

Local state
fpc {nil ,flip, inc,wait-inc, dec,wait-dec, read-counter ,wait-counter , nil

compare, return-flip0, return-flip1}
stopped Bool false
local-counter int 0

Table 4.The actions and transition relation ofDCN

Actions and transitions of processi.
input start-flip(r)i

Eff: if fpc = nil ∧ ¬stopped then
fpc ← read-counter

output start-read i

Pre: fpc = read-counter
Eff: fpc ← wait-counter

input end-read(c)i

Eff: if fpc = wait-counter then
local-counter ← c
fpc ← compare

internal comparei

Pre: fpc = compare
Eff: if local-counter ≥ Kn then

fpc ← return-flip1
elseif local-counter ≤ −Kn then

fpc ← return-flip0
else

fpc ← flip
output return-flip(v, r)i

Pre: fpc = return-flipv

Eff: fpci ← nil

internal flip(r)i

Pre: fpc = flip
Eff: Pr[fpc ← inc] = 1/2∧

Pr[fpc ← dec] = 1/2
output start-inci

Pre: fpc = inc
Eff: fpc ← wait-inc

input end-inci

Eff: if fpc = wait-inc then
fpc ← read-counter

output start-deci

Pre: fpc = dec
Eff: fpc ← wait-dec

input end-deci

Eff: if fpc = wait-dec then
fpc ← read-counter

input stopi

Eff: stopped ← true
fpc ← nil

Tasks:The locally controlled actions of processi form a single task.

Table 5.The state variables of a processi in CT

Name Values Initially

Local state
cpc {nil ,wait , inc, end-inc, dec, end-dec, read-counter} wait
stopped Bool false

Multiple-writer multiple-reader shared variables
counter int 0

Multiple-writer single-reader shared variables (processi reads)
preread(i) int ∪ {⊥} ⊥

preread variables are handled, the specification ofCT states
that an increment or decrement operation always completes
unless the corresponding process fails, while a read operation
is guaranteed to complete only if increments and decrements
eventually cease. Essentially, our use of thepreread variables
is an abstraction of what the implementation of Sect. 10 actu-
ally does.

We now proceedwith the analysis ofCF . In particular, we
show that with probability1, all the invocations toCF on a
non-failing port get an answer, and, forv ∈ {0, 1}, with prob-
ability at least(K−1)/2K all the answers arev. The analysis

is split into two parts: the first part dealswith non-probabilistic
properties, while the second part deals with probability.

9.2 Informal analysis

The idea behind the coin flipping protocol is very simple: the
difference between the heads and tails obtained in the elemen-
tary coin flips form a random walk. The value of the shared
counter and the actual difference between heads and tails may
differ by at mostn since in the worst case each processmay be



178 A. Pogosyants et al.

Table 6.The actions and transition relation ofCT

Actions and transitions of processi.
input start-inci

Eff: if cpc = wait then
cpc ← inc

internal inci

Pre: cpc = inc
Eff: counter ← counter + 1

∀jpreread(j)← choose(preread(j),⊥)
cpc ← end-inc

output end-inci

Pre: cpc = end-inc
Eff: cpc ← wait

input start-deci

Eff: if cpc = wait then
cpc ← dec

internal deci

Pre: cpc = dec
Eff: counter ← counter − 1

∀jpreread(j)← choose(preread(j),⊥)
cpc ← end-dec

output end-deci

Pre: cpc = end-dec
Eff: cpc ← wait

input start-read i

Eff: if cpc = wait then
cpc ← read-counter

internal read i

Pre: cpc = read-counter
preread(i) = ⊥

Eff: preread(i)← counter
output end-read(c)i

Pre: cpc = read-counter
preread(i) = c 	= ⊥

Eff: cpc ← wait
preread(i)← ⊥

input stopi

Eff: stopped ← true
cpc ← nil

Tasks:The locally controlled actions of processi form a single task.

trying to update the counter. Finally, if the difference between
heads and tails is greater than or equal to(K + 1)n, then no
processwill ever observe a value belowKn. This last property
requires a careful analysis, but the idea is that the processes
that have to update the counter will not flip any more and the
other processes will flip at most once.

Based on the properties above, if the difference between
heads and tails ends above(K + 1)n before ending below
−(K − 1)n, then all processes will return head: no process
will ever observe a value below−Kn since the value of the
counter and the difference between heads and tails differ by
at mostn; furthermore, after hitting(K + 1)n all processes
will observe a value aboveKn. A symmetric argument holds
for tail. From random walk theory, the barrier(K + 1)n is
reached before−(K − 1)n with probability(K − 1)/2K.

Most of the properties described in this informal analysis
do not rely on any probabilistic assumption. For this reason in
the formal analysis we separate the arguments that need prob-
ability from those that are independent of any probabilistic
assumption.

9.3 Non-probabilistic analysis

Let Acts be {flip1, . . . ,flipn}, and let S be {(U i
1 ,U

d
1 ),

(U i
2 ,U

d
2 ), . . . , (U i

n,U d
n )}, whereU i

j is the set of states of
CF where processj has just flippedinc (fpcj = inc), and
U d

j is the set of states ofCF where processj has just flipped
dec (fpcj = dec).

Given a finite execution fragmentα ofCF , letφinc(α) be
the number of coin flips inα that giveinc, and letφdec(α)
be the number of coin flips inα that givedec. Functionφinc
andφdec correspond to functionsHeadsActs,S andTailsActs,S
in Sect. 3.3; the differenceφinc(α)− φdec(α) corresponds to
Diff Acts,S(α). Given a states ofCF , let |s|inc be the number

of processes ins whose program counter of eitherDCN or
CT is inc, and let|s|dec be the number of processes inswhose
program counter of eitherDCN or CT is dec. Formally, let
Sinc = {j | s.fpcj = inc ∨ s.cpcj = inc}, the processes that
are about to increment, and letSdec = {j | s.fpcj = dec ∨
s.cpcj = dec}, the processes that are about to decrement. Let
|s|inc = |Sinc | and |s|dec = |Sdec |. The following lemma
states howcounter and the actual number of coin flips giving
inc anddec are related.

Lemma 9.1 Let α be a finite execution ofCF , and lets =
lstate(α). Then,

φinc(α)− φdec(α) = s.counter + |s|inc − |s|dec .
Proof. Straightforward induction on the length ofα. ��
Given a states, let Sbelow (Sabove ) be the set of processes
in s that have a pending request and either are up to flipping
an elementary coin or are up to detecting thatcounter is be-
low (above) the barrierKn (−Kn). Let |s|below and|s|above
denote the cardinality ofSbelow andSabove , respectively. For-
mally,Sbelow is the set of processesi such that either

1. s.fpci = flip, or
2. s.fpci = read-counter ands.counter < Kn, or
3. s.fpci = compare ands.local-counter i < Kn, or
4. s.cpci = read-counter and eithers.preread i < Kn or

s.counter < Kn.

Similarly, Sabove can be defined by replacing< Kn with
> −Kn. The following two lemmas state a key property for
the analysis of the coin flipping protocol. We describe only
Lemma 9.2 since Lemma 9.3 is symmetric. Suppose that a
state is reached where the value ofcounter minus the num-
ber of processes that either are up to decrementingcounter
or are up to detecting thatcounter is belowKn is at least
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Kn. Then Lemma 9.2 states that this property continues to re-
main valid in the future. Roughly speaking, each process that
readscounter terminates (does not flip nor updatecounter
any more) because it observes a value that is at leastKn.

Lemma 9.2 The following property is stable forCF , that is,
it continues to be satisfied once it is satisfied.

s.counter − |s|dec − |s|below ≥ Kn. (20)

Proof. Straightforward inductive argument. ��
Lemma 9.3 The following property is stable forCF .

s.counter + |s|inc + |s|above ≤ −Kn. (21)

Proof. Straightforward inductive argument. ��
Asimple consequenceof Lemmas9.2and9.3 is thatwhen-

ever the difference between the coin flips that giveinc and the
coin flips that givedec is beyond the barriers±(K + 1)n, the
value ofcounter is always beyond±Kn.

Lemma 9.4 Let α = α1
� α2 be an execution ofCF such

thatφinc(α1)−φdec(α1) = (K +1)n. Then each state ofα2
satisfiescounter ≥ Kn.

Proof. By Lemma 9.1,φinc(α1)− φdec(α1) = s.counter +
|s|inc − |s|dec wheres = lstate(α1) = fstate(α2), and thus
s.counter+|s|inc−|s|dec = (K+1)n. By a simple algebraic
manipulation,s.counter − |s|dec − |s|below = s.counter +
|s|inc − |s|dec − (|s|inc + |s|below ). Observe that, by defini-
tion,Sinc ∩ Sbelow = ∅, and therefore|s|inc + |s|below ≤ n.
This means thats.counter − |s|dec − |s|below ≥ Kn. By
Lemma 9.2, each states′ of α2 satisfiess′.counter−|s′|dec−
|s′|below ≥ Kn. Thus, each state ofα2 satisfiescounter ≥
Kn. ��
Lemma 9.5 Let α = α1

� α2 be an execution ofCF such
thatφinc(α1)− φdec(α1) = −(K + 1)n. Then each state of
α2 satisfiescounter ≤ −Kn.

Proof. Symmetric to the proof of Lemma 9.4. ��
Lemma 9.6 Let α be an execution ofCF , such thatα ∈
Top[−(K−1)n, (K +1)n, 0](H) for some probabilistic ex-
ecutionH ofCF . Thenα is 1-global.

Proof. Sinceα ∈ Top[−(K − 1)n, (K + 1)n, 0](H), ei-
ther each prefixα′ of α satisfies−(K − 1)n < φinc(α′) −
φdec(α′) < (K + 1)n, or α = α1

� α2 whereφinc(α1) −
φdec(α1) = (K+1)nandnoprefixα′

1 ofα1 satisfiesφinc(α′
1)

−φdec(α′
1) ≤ −(K − 1)n.

In the first case, by Lemma 9.1, no state ofα satisfies
counter ≤ −Kn. In the second case, by Lemma 9.1, no state
ofα1 satisfiescounter ≤ −Kn. Furthermore, by Lemma9.4,
each state ofα2 satisfiescounter ≥ Kn. Therefore, no state
of α satisfiescounter ≤ −Kn. This means that in both cases
no process returns value0 in α. ��
Lemma 9.7 Let α be an execution ofCF , such thatα ∈
Bottom[−(K−1)n, (K+1)n, 0](H) for someprobabilistic
executionH ofCF . Thenα is 0-global.

Proof. Symmetric to the proof of Lemma 9.6. ��
Lemma 9.8 Letα be a fair execution ofCF , such thatα ∈
Either[−(K + 1)n, (K + 1)n, 0](H) for some probabilistic
executionH ofCF . Thenα is responsive.

Proof. If α contains finitely many flip actions, then even-
tually all the increment and decrement operations deriving
from the flipping operations are completed or interrupted (the
correspondingend-inc or end-dec actions occur or the corre-
sponding processes fail). Thus, there is a point after which no
moreinc anddec operations are performed. Letα′ be a suffix
of α where no more flip, increment or decrement operations
are performed. Then inα′ none of thepreread i variables is set
to ⊥ while actionend-read(c)i is enabled, and thus all read
operations on non-failing ports terminate eventually. At that
point, since no more flips are performed inα′, each process
that completes a read operation returns a value.

If α contains infinitely many flip actions, then, sinceα ∈
Either[−(K + 1)n, (K + 1)n, 0](H), α = α1

� α2 such
thatφinc(α1) − φdec(α1) = ±(K + 1)n. Here we consider
the case whereφinc(α1) − φdec(α1) = (K + 1)n; the other
case is symmetric. By Lemma 9.4, each state ofα2 satisfies
counter ≥ Kn. Thus, eachnon-failingprocess returnsavalue
once it readscounter (performing the read operation inα2)
since the value read is at leastKn. ��
Lemma 9.9 Letα be a fair execution ofCF , such thatα ∈
Top[−(K−1)n, (K +1)n, 0](H) for some probabilistic ex-
ecutionH ofCF . Thenα is responsive and1-global.

Proof. By Lemma 9.8, each invocation on a non-failing port
gets a response. By Lemma 9.6 no invocation gets response0.
Hence, each invocation on a non-failing port gets response1.

��
Lemma 9.10 Letα be a fair execution ofCF , such thatα ∈
Bottom[−(K−1)n, (K+1)n, 0](H) for someprobabilistic
executionH ofCF . Thenα is responsive and0-global.

Proof. Symmetric to the proof of Lemma 9.9. ��

9.4 Probabilistic analysis

In this short subsection we prove the probabilistic properties
of the coin flipping protocol, that is, it guarantees properties
C1 (Proposition 9.11) andC2 (Proposition 9.12). The proofs
rely on the non-probabilistic properties proved in Sect. 9.3 and
on the coin lemmas for symmetric random walks of Sect. 3.3.

Proposition 9.11 The coin flipperCF satisfiesC1. That is,
for each fair probabilistic execution fragment ofCF that starts
with a reachable state ofCF , the probability of the executions
that are responsive is1.

Proof. Let H be a fair probabilistic execution fragment of
CF that starts with a reachable states of CF , and letα
be a finite execution ofCF such thatlstate(α) = s. Let
z = φinc(α) − φdec(α). If α′ is an execution of the event
Either[−(K + 1)n, (K + 1)n, z](H), thenα � α′ is an ex-
ecution ofEither[−(K − 1)n, (K + 1)n, 0](H ′) for some
fair probabilistic executionH ′ ofCF , and by Lemma 9.8, ev-
ery invocation toCF in α � α′ gets a response. From Defini-
tion 7.1, every invocation toCF inα′ gets a response. By The-
orem 3.10,PH [Either[−(K + 1)n, (K + 1)n, z](H)] = 1.
This completes the proof. ��
Proposition 9.12 The coin flipperCF satisfiesC2 with p =
(K + 1)/2K. That is, fixedv ∈ {0, 1}, for each fair proba-
bilistic execution ofCF , the probability of the executions that
are responsive andv-global is at least(K − 1)/2K.
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Table 7.The state variables of a processi in DCT

Name Values Initially

Local state
cpc {nil ,wait , inc, end-inc, dec, end-dec, scan, read-counter} wait
prescan array [1 . . . n] of int × int array of(0, 0)
first array [1 . . . n] of int × int array of(0, 0)
obs set of{1, . . . , n} ∅
stopped Bool false

Single-writer multiple-reader shared variables
(num(i), val(i)) int × int (0, 0)

Proof.Assume thatv = 1; the case forv = 0 is symmetric. Let
H be a fair probabilistic execution ofCF . If α is an execution
of Top[−(K − 1)n, (K + 1)n, 0](H), then, by Lemma 9.9,
every invocation toCF in α gets response1. Furthermore,
by Theorem 3.10,PH [Top[−(K− 1)n, (K +1)n, 0](H)] ≥
(K − 1)/2K. This completes the proof. ��

10 Implementation of the shared counter

In this sectionwebuild an implementation ofCT andweshow
that it can replace the abstract automatonCT in CF without
compromising Propositions 9.11 and 9.12, that is, properties
C1andC2with p = (K− 1)/2K. In this way, using the coin
flippingprotocolwith thenewcounter,weobtainaprotocol for
consensus that uses only single-writer multiple-reader shared
variables.

The implementation ofCT , which we denote byDCT
(Distributed CounTer), is an adaptation of an algorithm pro-
posed by Lamport [21] for read/write registers. The state vari-
ablecounter ofCT is representedbynsingle-writermultiple-
reader registers, one for each process, with two fields: anum
field, which is incremented whenever the value of the register
is changed, and aval field representing the contribution of the
corresponding process to the value ofcounter . The operations
inc anddec on a processi are implemented by incrementing
or decrementing theval register and incrementing thenum
register of processi. The operationread-counter is imple-
mented by scanning the shared registers until two consecutive
scans give the same value. Table 7 gives the state variables of
DCT ; Table 8 gives the transition relation ofDCT .

We now verify that it is possible to replaceDCT for CT
inCF without compromising propertiesC1andC2. LetDCF
(DistributedCoinFlipper) bedefinedasHideI(DCN ‖DCT ),
whereI is the set of actions used for the interaction between
DCN andDCT .

Observe that propertiesC1 andC2 are properties of the
fair trace distributions ofCF andDCF . Specifically, observe
that responsiveness andv-globality can be stated in terms of
traces. Then, propertyC1 can be stated as “in each fair trace
distribution, the probability of the set of traces that are re-
sponsive is 1”, and propertyC2 can be stated as: “in each
fair trace distribution, the probability of the set of traces that
are responsive andv-global is at least p”. Thus, to show that
DCF satisfies propertiesC1andC2 it is sufficient to show that
ftdistrs(DCF ) ⊆ ftdistrs(CF ). For this purpose, by using
Proposition 2.13, it is sufficient to build a refinementh from

DCT toCT and show thath preserves the fair executions of
DCT . Note thath is not probabilistic sinceDCT andCT are
not probabilistic. That is, the properties that we need to show
do not involve probability.

Proposition 10.1 There is a refinement fromDCT toCT that
preserves the fair executions ofDCT .

Proof. The refinement keeps thepreread variables different
from⊥whenever the first scan has occurred and no increment
or decrement operations have done anything that would make
the first and second scans differ. Formally,h(s) = s′ where,
for each processi,

s′.cpci =
{
read-counter if s.cpci = scan
s.cpci otherwise,

s′.counter =
∑

j

val(j)

s′.preread i =


c if ¬s.first i andc =
∑

j s.prescan[j]i
ands.cpci ∈ {scan, read-counter}
and∀j(j ∈ obsi ⇒ prescan[j]i = scan[j]i)
and∀j(j /∈ obsi ⇒ prescan[j]i =
(val(j),num(j)))

⊥ otherwise.
It is straightforward to check thath is a refinement mapping.

Consider now a fair executionα1 of DCT . From the ex-
ecution correspondence theorem there is an executionα2 of
CT such that(α1, α2) ∈ h. Suppose by contradiction thatα2
is not fair. Then inα2 there is a processiwhose corresponding
task is eventually continuously enabled but never performed.
Observe thath−1 preserves the enabledness of each task of
CT , and that inDCT it is not possible that for some taskT
there is an execution fragment with infinitely many internal
actions fromT and no external action fromT . Thus, since
(α1, α2) ∈ h, eventually inα1 the task of processi is con-
tinuously enabled but never performed. This means thatα1 is
not fair, a contradiction. ��

Theorem 10.2 The coin flipperDCF satisfies propertiesC1
andC2with p = (K − 1)/2K.

Proof. By Proposition 10.1, there is a refinement fromDCT
toCT that preserves the fair executions ofDCT . By Propo-
sition 2.13,ftdistrs(DCF ) ⊆ ftdistrs(CF ). This completes
the proof. ��
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Table 8.The actions and transition relation ofDCT

Actions and transitions of processi.
input start-inci

Eff: if cpc = wait then
cpc ← inc

internal inci

Pre: cpc = inc
Eff: val(i)← val(i) + 1

num(i)← num(i) + 1
cpc ← end-inc

output end-inci

Pre: cpc = end-inc
Eff: cpc ← wait

input start-deci

Eff: if cpc = wait then
cpc ← dec

internal deci

Pre: cpc = dec
Eff: val(i)← val(i)− 1

num(i)← num(i) + 1
cpc ← end-dec

output end-deci

Pre: cpc = end-dec
Eff: cpc ← wait

input start-read i

Eff: if cpc = wait then
cpc ← scan
obs← ∅

internal scan(k)i

Pre: cpc = scan
k /∈ obs

Eff: scan[k]← (counter(k),num(k))
obs← obs ∪ {k}
if obs = {1, . . . , n} then
if ¬first ∧ (prescan = scan) then
first ← true
counter ←∑n

j=1 scani[j].val
cpc ← read-counter

else
prescan ← scan
first ← false

output end-read(c)i

Pre: cpc = read-counter
c =

∑n
j=1 scan[j].val

Eff: cpc ← wait
input stopi

Eff: stopped ← true
cpc ← nil

Tasks:The locally controlled actions of processi form a single task.

11 Summing up

In this section we paste together the results of the previous
sections to derive an upper bound on the expected number of
rounds for termination.

Theorem 11.1Using the coin flippers of Sects. 9 and 10,AH
guarantees wait-free termination within a constant expected
number of rounds, that is, from each reachable state ofAH ,
under any fair scheduler, a state ofD is reached within a
constant expected number of rounds.

Proof. The coin flippersDCF of Sects. 9 and 10 satisfy prop-
ertiesC1andC2with p = (K−1)/2K, whereK is a constant
(cf. Theorem 10.2 and Propositions 9.11 and 9.12). By Propo-
sition 8.1,AH guaranteeswait-free terminationwithin atmost
O(2K/(K − 1)) expected rounds, that is, within a constant
expected number of rounds. ��

We analyze some implications of Theorem 11.1. In par-
ticular, the definition ofDmay appear rather counterintuitive,
since reachingD does not necessarily mean deciding: it is
possible to reachD by letting processes fail. However, Theo-
rem 11.1 gives enough information to derive several different
termination properties as the following corollary shows.

Corollary 11.2 LetH be a fair probabilistic execution frag-
ment ofAH , and suppose thatH starts from a reachable state
s ofAH . Then the following properties are satisfied byH.

1. If in s all processes are initialized already, then within a
constant expected number of rounds all non-failing pro-
cesses decide.

2. If in s there is at least one initialized and non-failed pro-
cess, and if no new processes fail inH, then a decision is
reached within a constant expected number of rounds.

Proof. To reachD all initialized processes must either fail
or decide. In the first case, sinceD is reached, all non-failed
processes have decided. In the second case, since there is at
least a non-failed initialized process, and since such process
does not fail, such process decides. ��

12 Timing analysis of the algorithm

In this sectionweprove an upper bound on the expected time it
takes for all processes to terminate, starting from an arbitrary
reachable state, once all processes have someminimumspeed.
For this purpose we augment the I/O automata of the previous
sections so that time can be observed. Our augmentation re-
sembles the patient construction of [18] and produces another
probabilistic I/O automaton. Note that we cannot regard the
augmentation we present in this paper as the definition of a
general timed probabilistic model. Our augmentation is the
minimummachinery that is necessary for the time analysis of
an asynchronous algorithm.

12.1 Modeling time

In order to model time we add a special component.now to
the states of all our probabilistic I/O automata, and we add the



182 A. Pogosyants et al.

set of positive real numbers to the input actions of all our prob-
abilistic I/O automata. We call the new actionstime-passage
actions. The .now component is a nonnegative real number
and describes the current time of an automaton. At the begin-
ning (i.e., in the start states) the current time is0, and thus the
.now component is0. The occurrence of an actiond, whered
is a positive real number, increments the.now component byd
and leaves the rest of thestateunchanged.Thus, theoccurrence
of an actiond models the fact thatd time units are elapsing.
The amount of time elapsed since the beginning of an execu-
tion is recorded in the.now component. Since time-passage
actions must synchronize in a parallel composition context,
parallel composition ensures that the.now components of the
components are always equal. Thus, we can abuse notation
and talk about the.now component of the composition of
two automata while we refer to the.now component of one
of the components. Observe that our augmented probabilistic
I/O automata are still probabilistic I/O automata.

For any probabilistic I/O automaton augmented with time
we define a new complexity measureφt as follows:
φt(α) = lstate(α).now − fstate(α).now .
It is straightforward to check thatφt is a complexity measure.
Informally, φt measures the time that elapses during an exe-
cution. We say that an execution fragmentα of a probabilistic
automatonM iswell-timedif there is no taskT of M and no
decompositionα1

� α2
� α3 of α such thatφt(α2) > 1, all

the states ofα2 enableT , and no action fromT occurs inα2.
That is,α is well-timed if each task does not remain enabled
for more than one time unit without being performed.

All the properties that we have studied in the previous
sections are still valid for our augmented automata, since they
are not affected by the presence of the.now component and
of the new input actions. It is simple to observe that if we
remove the time-passage transitions from a fair execution of
an augmented automaton we obtain a fair execution of the
non-augmented automaton.

In the rest of this section we strengthen the properties of
the previous sections by showing that, under the assumption
of well-timedness, the algorithm of Aspnes and Herlihy ter-
minates within an expected polynomial time. That is, if from
a certain point each processor has someminimum speed, then
the algorithm of Aspnes and Herlihy guarantees termination
within an expected polynomial time.

12.2 Preliminary definitions

Before presenting the timing analysis we give some prelimi-
nary definitions. Recall that, for eachr > 0, DCF r denotes
HideI(DCN r ‖DCT r), whereI is the set of actions used for
the interaction betweenDCN r andDCT r. That is,DCF r is
the result of substitutingDCT r for CT r in CF r. LetDAH
(Distributed Aspnes-Herlihy) denoteAP ‖ (‖r≥1DCF r). For
an execution fragmentα of DCF r or ofDAH , letφflip,r(α)
be the number offlip events ofDCF r that occur inα, and
let φid,r(α) be the number ofinc anddec events ofDCF r

that occur inα. For each execution fragmentα of DAH let
φid(α) denote the number ofinc anddec events that occur in
α. It is straightforward to check thatφflip,r, φid,r andφid are
complexity measures. Observe that the following trivial result
holds.

Lemma 12.1 For each execution fragmentα ofDAH ,

1. φid(α) =
∑

r>0 φid,r(α), and
2. for eachr > 0, φid,r(α) = φid,r(α�DCF r). ��

12.3 Non-probabilistic properties of the complexity measures

In this section we study the relationship between the complex-
ity measuresφt, φid , φflip , φid,r, andφflip,r defined above.
The first significant result of this section, Lemma 12.4, pro-
vides a linear upper bound on the time it takes forDAH to
span a given number of rounds and to flip a given number of
coins under the assumption of well-timedness.

We first prove a preliminary lemma, which provides a lin-
ear upper bound on the time a coin flipping protocol is active
without anyinc, dec, return-flip or stop action occurring.
The preliminary lemma is first proved for a coin flipping pro-
tocol (cf. Lemma 12.2), and then proved for a coin flipping
protocol withinDAH .

Lemma 12.2 Letα be a fair, well-timed execution fragment
of DCF r, r > 0. Suppose that infstate(α) there is at least
one non-failed process with a pendingstart-flip(r) request.
Then inα there is an occurrence of an action from{inc, dec,
return-flip, stop} within timeO(n).

Proof. Let X be {inc, dec, return-flip, stop}. Let i be a
non-failed process with a pendingstart-flip(r) request in
fstate(α), and suppose for the sake of contradiction that inα
there is no occurrence of actions fromX within time3n + d,
whered is a sufficiently large constant. From the code of
DCF r, processi runs through a cycle where a read request is
performed and an action from{inc, dec, return-flip} occurs
unless processi fails (actionstop) occurs. Thus, one action
fromX occurs before completing a cycle. Themaximum time
necessary to complete a cycle is given by the time to complete
a read request plus the time to check the result and perform the
correspondingoperations.Theconstantdaccounts for the time
necessary to complete all the operations except for the read
request. Since no action fromX occurs within time3n + d, a
read request completes within time at most3n: in fact, within
3 scans of processi there are two consecutive scans that give
the same result. Thus, within time3n+d processi completes
a cycle, which means that an action fromX occurs, a contra-
diction. ��
Lemma 12.3 Letαbea fair, well-timedexecution fragment of
DAH , and letr > 0. Suppose that infstate(α)�DCF r there
is at least one non-failed process with a pendingstart-flip(r)
request. Then inα there is an occurrence of an action from
{inc, dec, return-flip, stop} within timeO(n).

Proof. LetX be{inc,dec,return-flip, stop}. By Lemma12.2
in α�DCF r there is an occurrence of an action fromX within
time c1n + c2 for appropriate constantsc1 and c2. That is,
α�DCF r = α1

� α2 such thatφt(α1) ≤ c1n + c2 and an
action fromX occurs inα1. Letα′

1 be a prefix ofα such that
α1 = α′

1�DCF r. Then, from the definition of projection, an
action fromX occurs inα′

1, and from the definition of.now
within parallel composition,φt(α′

1) = φt(α1) ≤ c1n + c2.
This means that inα an action fromX occurs within time
c1n + c2. ��
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Lemma 12.4 Let α be a well-timed execution fragment of
DAH , and letR = fstate(α).max-round . Suppose that all
the states ofα, with the possible exception oflstate(α) are ac-
tive, that is, are states ofR. Then,φt(α) ≤ d1n

2(φMaxRound
(α)+R)+d2nφid(α)+d3n

2 for some constantsd1, d2, and
d3.

Proof. At each round each process performs a linear num-
ber of transitions outside the coin flipping protocol using time
at mostc1n for some constantc1. Divide α into two kinds
of execution fragments: those where some active process is
outside the coin flipping protocols, and those where no active
process is outside the coin flipping protocols. The total time
complexity of the first kind of execution fragments is upper
bounded byc1n

2(φMaxRound(α) + R), corresponding to the
case where at each time there is exactly one process outside
the coin flipping protocols. Consider now the second kind
of execution fragments. Since each process returns at most
once in each round and fails at most once overall, there are at
mostφid(α) + n(φMaxRound(α) + R) + n eventsinc, dec,
return-flip andstop in α. By Lemma 12.3, whenever some
process is flipping, themaximumdistance between two events
of the kind inc, dec, return-flip, and stop is linear. Thus,
the maximum time where some process is flipping inα (the
time complexity of the second kind of execution fragments)
is at mostc′

1n
2(φMaxRound(α)+R)+ c2nφid(α)+ c3n

2 for
some constantsc′

1, c2, andc3. Combining the two results, the
time that elapses inα is at mostd1n

2(φMaxRound(α) + R) +
d2nφid(α)+d3n

2, whered1 = c1+c′
1,d2 = c2, andd3 = c3.

��
The next two lemmas state basic properties of the coin

flipping protocols. Lemma 12.5 derives from the fact that all
the processes within a coin flipping protocol terminate once
the shared counter reaches an absorbing barrier(K + 1)n or
−(K +1)n. Essentially, once an absorbing barrier is reached,
there are at most othern flip events, one for each process.
Lemma 12.6 derives from the fact that eachinc or dec event
must be preceded by aflip event. If we start from an arbitrary
reachable state, there could be someinc anddec events that
occur without any precedingflip event. However, the number
of anomalousinc anddec events is at mostn, that is, one for
each process.

Lemma 12.5 Letα = α1
� α2 be a finite execution ofDCF r,

and suppose that|φinc(α1) − φdec(α1)| ≥ (K + 1)n. Then
φflip,r(α2) ≤ n.

Proof. We consider the case whereφinc(α1) − φdec(α1) ≥
(K + 1)n. The other case is symmetric. By Lemma 9.4, each
state ofα2 satisfiescounter ≥ Kn, and thus each non-failing
process returns1 once it readscounter (performing the read
operation inα2) and checks its value. Each process can flip at
most once inα2 before starting a new read operation. Thus,
the number offlip events that occur inα2 is bound byn. ��
Lemma 12.6 Letα be a finite execution fragment ofDCF r

that starts from a reachable state. Then,φid,r(α) ≤ φflip,r

(α) + n.

Proof. In fstate(α) there are atmostn increment or decrement
events that can be performed without first flipping a coin.��

12.4 Expected bound on increment and decrement events

In this section we show an upper bound on the expected num-
ber of increment and decrement events that occur within a
probabilistic execution ofDAH . First, based on our results on
randomwalks (cf. Proposition 3.11), we show in Lemma 12.7
an upper bound on the expected number of coin flips per-
formed by a coin flipper. Then, in Lemma 12.8 we use this
result together with our results about linear combinations of
complexity measures (cf. Proposition 2.3) to derive an upper
bound on the expected number of increment and decrement
events performed by a coin flipper. Then, in Lemma 12.9 we
use our compositionality results about complexity measures
(cf. Proposition 2.5) to show that the bound of Lemma 12.8 is
preserved by parallel composition. Finally, in Lemma 12.10
we use our result about phases of computations (cf. Propo-
sition 2.4) to combine the result about the expected number
of increment and decrement events of a coin flipper with our
knowledge of the maximum expected number of coin flip-
pers that may be invoked. This allows us to derive an upper
bound on the expected total number of increment and decre-
ment events during the consensus protocol.

Lemma 12.7 LetH be a probabilistic execution fragment of
DCF r that starts from a reachable state ofDCF r, and letΘ
be a full cut ofH. ThenEH,Θ[φflip,r] ≤ (K + 1)2n2 + n.

Proof. Let s be the start state ofH, and letα be a finite execu-
tion ofDCF r with s = lstate(α). Letz = φinc(α)−φdec(α).
If |z| ≥ (K + 1)n, then, by Lemma 12.5, for eachq ∈ Θ,
φflip,r(q) ≤ n, and thusEH,Θ[φflip,r] ≤ n. If |z| < (K+1)n,
then, by Proposition 3.11,EH,Θ[φActs,−(K+1)n,(K+1)n,z] ≤
−z2 + (K + 1)2n2 ≤ (K + 1)2n2, that is, the event denoted
byΘ is satisfied within expected(K+1)2n2 flip events, trun-
cating the count whenever an absorbing barrier±(K +1)n is
reached.Once an absorbing barrier is reached, by Lemma12.5
there are at mostn other flip events. Thus, for each stateq of
H, φflip,r(q) ≤ φActs,−(K+1)n,(K+1)n,z(q)+n. By Proposi-
tion 2.3,EH,Θ[φflip,r] ≤ (K + 1)2n2 + n. ��
Lemma 12.8 LetH be a probabilistic execution fragment of
DCF r that starts from a reachable state ofDCF r, and letΘ
be a full cut ofH. ThenEH,Θ[φid,r] ≤ (K + 1)2n2 + 2n.

Proof. By Lemma 12.6, for each execution fragment ofα of
CF r, φid,r(α) ≤ φflip,r(α) + n. Then, by Proposition 2.3,
EH,Θ[φid,r] ≤ EH,Θ[φflip,r] + n. By Lemma 12.7,
EH,Θ[φflip,r] ≤ (K + 1)2n2 + n. Thus,EH,Θ[φid,r] ≤
(K + 1)2n2 + 2n. ��
Lemma 12.9 LetH be a probabilistic execution fragment of
DAH that starts from a reachable state ofDAH , and letΘ
be a full cut ofH. ThenEH,Θ[φid,r] ≤ (K + 1)2n2 + 2n.

Proof. SinceH�DCF r is a probabilistic execution fragment
of DCF r that starts from a reachable state ofDCF r, by
Lemma 12.8,EH	DCFr,Θ′ [φid,r] ≤ (K + 1)2n2 + 2n for
each full cutΘ′ of H�DCF r. By Proposition 2.5, since by
Lemma12.1 for eachexecution fragmentαofAH ,φid,r(α)=
φid,r(α�DCF r), EH,Θ[φid,r] ≤ (K + 1)2n2 + 2n. ��
Lemma 12.10 LetH be a probabilistic fair execution frag-
ment ofDAH with start states, and letR = s.max-round .
Suppose thats is reachable. LetΘ denote the set of minimal
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statesofH whereastate fromD is reached.ThenEH,Θ[φid ] =
O(Rn2).

Proof. If R = 0, thenΘ = {s}, and thusEH,Θ[φid ] =
0 = O(Rn2). For the rest of the proof assume thatR > 0.
Given a stateq ofH, we know thatφid(q) = φid,1(q)+ · · ·+
φid,R(q)+φ′(q), whereφ′(q) =

∑
r>0 φid,r+R(q). For each

r > 0, let Θr be the set of minimal statesq of H such that
φMaxRound(q) ≥ r. Then, for eachq ∈ Θr, φid,r+R(q) = 0,
and for each stateq of H and eachr > φMaxRound(q),
φid,r+R(q) = 0 (CF r+R does not start until some process
reaches roundr + R). Furthermore, by Lemma 12.9, there is
a constantc = (K + 1)2n2 + 2n such that for each proba-
bilistic execution fragmentH ′ of M , each full cutΘ′ of H ′,
and eachi > 0, EH,Θ′ [φid,i] ≤ c. Therefore, we are in the
conditions to apply our result about phases of computation
(cf. Proposition 2.4): each round is a phase, and the numbers
of inc anddec events that occur within each round are the
complexity measures for their corresponding round. Function
φMaxRound is themeasure of howmany phases are started. By
Proposition 2.4,EH,Θ[φ′] ≤ cEH,Θ[φMaxRound ]. By Theo-
rem 11.1,EH,Θ[φMaxRound ] is bound by a constant (indepen-
dent ofn). Therefore,EH,Θ[φ′] = O(n2). Finally, since for
eachi,H, andΘ, EH,Θ[φid,i] = O(n2), by Proposition 2.3,
EH,Θ[φid ] = O(Rn2) + O(n2) = O(Rn2). ��

12.5 Expected bound on time

We are now ready to prove our main result, which is just a
pasting together of the results obtained so far. Specifically, we
show that starting fromany reachable state ofDAH , assuming
well-timedness, a state fromD is reachedwithin expected time
O(Rn3), whereR is the maximum round of the processes at
the starting state. Our result about reachingD implies directly
several results about the termination properties of the consen-
sus protocol of Aspnes and Herlihy (cf. Corollary 12.12).

Theorem 12.11LetH be a probabilistic fair, well-timed ex-
ecution fragment ofDAH with start states, and letR =
s.max-round . Suppose thats is reachable. LetΘ denote the
set of minimal states ofH where a state fromD is reached.
ThenEH,Θ[φt] = O(Rn3).

Proof. If R = 0, thenΘ = {s}, and thusEH,Θ[φt] = 0 =
O(Rn3). If R > 0, then, by Lemma 12.4, for each well-timed
execution fragmentα of DAH ,
φt(α) ≤ d1n

2(φMaxRound(α) + R) + d2nφid(α) + d3n
2.

By Proposition 2.3,
EH,Θ[φt] ≤ d1n

2EH,Θ[φMaxRound ] + d1n
2R

+d2nEH,Θ[φid ] + d3n
2.

Thus, by Theorem 11.1 and Lemma 12.10,EH,Θ[φt] =
O(Rn3). ��

Theorem 12.11 gives enough information to derive some
time bounds forDAH . Here we give some examples. The first
item says that whenever all processes are initialized already
all non-failingprocessesdecidewithinexpected timeO(Rn3),
whereR is the number of rounds that are started already. That
is, the algorithm has to work for an expected cubic time for
eachoneof the rounds that are startedalready. Thesecond item
says that ifweknow that at least oneof the initializedprocesses

will not fail, then some process decides within expected time
O(Rn3). The third item is an instantiation of the first item
saying that all non-failingprocessesdecidewithin cubic time if
at the beginning all processes are initialized and themaximum
round number is1.

Corollary 12.12 LetH be a fair, well-timed probabilistic ex-
ecution fragment ofDAH that starts from a reachable states
ofDAH . The following properties are satisfied byH.

1. If in s all processes are initialized already andR is the
maximum round of the processes, then within expected
timeO(Rn3) all non-failing processes decide.

2. If in s there is at least one initialized and non-failed pro-
cess, themaximum round number isR, and no newprocess
fails, then within expected timeO(Rn3) some process de-
cides.

3. If in s all processes are initialized and themaximum round
is 1, then within expected timeO(n3) all non-failing pro-
cesses decide.

Proof. Item 1 follows from Theorem 12.11 and from the fact
that at to reachD eachprocessmust either fail or decide; Item2
follows from the fact that to reachD all active processes must
decide; Item 3 is an instantiation of Item 1. ��

13 Concluding remarks

We have studied the expected complexity of the randomized
consensus algorithm of Aspnes and Herlihy, a nontrivial ran-
domized distributed algorithm, and we have developed a col-
lection of mathematical tools that can be used for the analysis
of other algorithms as well. Our analysis of the algorithm was
driven by two main ideas: decompose the algorithm into sim-
pler parts and separate probability from nondeterminism. The
collection of modularization tools that we have developed and
their successful application show that the rigorous analysis
of randomized distributed algorithms is indeed feasible and
not too difficult. Most of our analysis is essentially the same
as the analysis of an ordinary distributed, non-randomized,
algorithm.

It is useful to observe the kinds of modularization that we
have used and where we have used them. For each kind of
modularization we provide a breif description and references
to the places in the paper where the modularization results are
stated and used, respectively.

• Decomposition of a partial progress statement into more
statements:progress isachieved throughseveral small easy
steps (Proposition 2.7 used in Proposition 8.1).

• Derivation of expected complexity bounds from partial
progress statements: an infinitary property is analyzed by
means of some finite form of progress (Theorem 2.8 used
in Proposition 8.1).

• Modularity of probability spaces with respect to paral-
lel composition (Proposition 2.2 used in Propositions 8.2
and 8.3).

• Coin lemmas and related results to reduce probability to
nondeterminism (Theorems 3.4 and 3.6 used in Proposi-
tions 9.11 and 9.12 and in Lemma 12.7).

• Transformation of relations between complexitymeasures
into relations between expected complexities. We analyze
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the complexity of an ordinary execution and we study the
relationship between different complexity measures at the
level of executions. Then,we lift the results to probabilistic
executions and expected values. (Proposition 2.3 used in
Lemmas 12.8 and 12.10 and in Theorem 12.11).

• Analysis of computations divided into phases (Proposi-
tion 2.4 used in Lemma 12.10).

• Preservationof expectedcomplexity boundsunderparallel
composition (Proposition 2.5 used in Lemma 12.9).

• Refinementmappings and related compositionality results
(Propositions 2.9, 2.10, and 2.13 used in Theorem 10.2).

If we compare the length of our analysis with the length of
the original paper of Aspnes and Herlihy, we observe that the
two lengths are similar. The length of our analysis is double the
length of the analysis in [5]; however, our analysis includes
a timing analysis of the protocol, which was not present in
[5], and it includes all the details, many of which were not
considered in the analysis of [5]. Also, our proof would be
considerably shorter if we had not included the detailed invari-
ants and their proofs. These details are usually not included in
algorithm papers.

Although we think it is acceptable that low-level details
of a proof be omitted in an algorithm paper, we believe that a
high level proof should be rigorous enough to avoid the sub-
tleties of randomization, which are duemainly to the interplay
between probability and nondeterminism. Intuition often fails
when dealing with randomization in a distributed setting. The
results that we have presented in this paper provide criteria
that allow us to avoid becoming confused by the subtleties
of randomization. We have analyzed a complicated algorithm
in order to ensure that our results are applicable to realistic
randomized distributed protocols (not just toy examples), and
in order to increase the chance that our results will apply to a
wide range of protocols.
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