
Axiomatization of Trace Semantics for Stochastic Nondeterministic
Processes∗

Augusto Parma and Roberto Segala
Dipartimento di Informatica - Università di Verona

Abstract

We give a complete axiomatization of trace distri-
bution precongruence for probabilistic nondeterministic
processes based on a process algebra that includes inter-
nal behavior and recursion. The axiomatization is given
for two different semantics of the process algebra that are
consistent with the alternating model of Hansson and the
non-alternating model of Segala, respectively. It is shown
that the two semantics coincide up to trace distribution
precongruence.

1. Introduction

Randomness is used extensively in computer science,
both from the algorithmic point of view, where it is
used to solve problems that would otherwise be unfea-
sible, and from the analytical point of view, where the
performance of a complex system depends on phenom-
ena that are governed by stochastic laws. The perva-
sive use of randomness requires adequate formal mod-
els; in this paper we are interested in the special case
of concurrent probabilistic systems.

When embedded into a concurrent system, random-
ness interferes with a phenomenon called nondetermin-
ism that arises from the unknown relative speeds of
processes running in parallel. The choice of the next
process that takes a computational step is not gov-
erned by any known law, but rather is under the con-
trol of an entity called either arbiter, or scheduler, or
adversary. The objective is then to study the perfor-
mance of a system under any scheduling policy.

Among the many formalisms proposed in the litera-
ture for this purpose [1, 7, 9, 10, 11, 12, 13, 16, 20, 23,
24, 29, 26, 33] we concentrate on two operational mod-
els: the Labeled Concurrent Markov Chains of Hansson
[10], also known as the alternating model of concurrent
probabilistic systems, and the Probabilistic Automata

∗ Supported by MURST project CoVer.

of Segala [26], also known as the non-alternating model
of concurrent probabilistic systems. Both models are
conservative extensions of Labeled Transition Systems
[15], and thus are amenable to the extension of related
concepts and verification techniques. In particular, the
two models are equipped with simulation and bisimu-
lation relations [10, 26, 28, 22] as well as trace and test-
ing semantics [25, 32]. These extended concepts satisfy
most of the properties that are valid within Labeled
Transition Systems, but also satisfy several other prop-
erties that are specific to stochastic behavior. In this
paper we study how these properties relate to nonde-
terminism from an algebraic point of view.

From the definitional point of view the alternat-
ing and non-alternating models are very similar. For-
mally, in a probabilistic automaton a state enables sev-
eral transitions that lead to discrete probability mea-
sures over states, while in a labeled concurrent Markov
chain states are partitioned into nondeterministic and
probabilistic states, where a nondeterministic state en-
ables several transitions that lead to single probabilistic
states, and a probabilistic state enables a single tran-
sition that leads to a discrete probability measure over
nondeterministic states. Thus, in the alternating model
a strict alternation between nondeterministic and prob-
abilistic states is imposed. There are also folklore con-
structions to convert one model to the other, where a
transition of a probabilistic automaton is transformed
into two consecutive transitions of a labeled concur-
rent Markov chain and vice versa.

Yet, the two models are different, and the differ-
ences are not completely clear. It is known that check-
ing weak bisimulation equivalence is polynomial for the
alternating model [22] and exponential for the non-
alternating model [4], and that bisimulation distin-
guishes too much in the alternating model when con-
sidering randomized schedulers [3]. Furthermore, weak
bisimulation is incomparable in the two models [3]. The
alternating model can be seen as a special case of the
non-alternating model, which justifies several of the ob-
servations above. In this paper we contribute further to

the understanding of the relations between the models.
Our study is concentrated on a natural stochastic

extension of language inclusion: we are interested in
studying the properties of stochastic language inclu-
sion and the potential differences that exist between
the alternating and non-alternating models in the con-
text of language inclusion. The problem here is partic-
ularly interesting because the naive extension of lan-
guage inclusion to the stochastic case is not preserved
by parallel composition, and thus a new trace distri-
bution precongruence relation is defined as the coarsest
precongruence that refines language inclusion [25]. It is
already known that trace distribution precongruence
coincides with probabilistic forward simulations [17];
here we complete the picture by addressing the prob-
lem via process algebras and axiomatizations. Indeed,
process algebras allow us to describe nondeterministic
stochastic systems via very few basic operators, and
complete axiomatizations give us clear ideas of the al-
gebraic structure of the models, especially when the
axiom systems are simple like in our case.

We consider a process algebra with nondeterminis-
tic choice, probabilistic choice, and recursion, that is,
an algebra that extends classical process algebras with
just one new operator that models probability. Then
we give two operational semantics that reflect the al-
ternating and non-alternating models and that respect
the folklore conversions between the two models. Fi-
nally, we study complete axiomatizations for the trace
distribution precongruence of [25]. The axioms we ob-
tain are the classical axioms for nondeterministic sys-
tems [8, 18] plus a few axioms that are specific to
the probabilistic choice operator. In this way we also
achieve a complete algebraic separation between prob-
ability and nondeterminism. Besides obtaining simple
axiom systems, we discover that the alternating and
non-alternating models are equivalent up to trace se-
mantics.

The process algebra considered in this paper does
not include parallel composition nor action renaming.
We have chosen not to consider these operators be-
cause their axiomatization follows the standard rules
that are known for CCS. In particular action renam-
ing can be removed by moving it to the atomic expres-
sions of a process, while parallel composition can be re-
moved by means of an expansion rule like the expansion
rule of CCS [19]. Thus, the analysis of parallel composi-
tion and action renaming does not add any new insight
to our study. Indeed, we do not run into the faithful-
ness problems of [16] nor into the associativity prob-
lems of [26] because the discussions in [16, 26] refer
to a generative model of concurrent probabilistic sys-
tems according to [9], while the models studied in this

paper are reactive. As shown in [26], most of the prob-
lems related to parallel composition disappear in a re-
active model.

Similar studies of axiomatizations exist already for
bisimulation relations. In particular the recursion free
version of our algebra is used in [3] to study axiomati-
zations for weak and strong probabilistic bisimulations
in the alternating and non-alternating models. The ax-
iomatization of strong bisimulation was studied already
in [10]. Other axiomatizations of probabilistic process
calculi with different underlying models, usually with-
out nondeterminism, are studied in [2, 14, 21, 30].

The rest of the paper is structured as follows. Sec-
tion 2 introduces the alternating and non-alternating
models and related concepts that are relevant for our
treatment; Section 3 introduces some of the simula-
tion relations of [28] that are used in the paper; Sec-
tion 4 introduces the trace distribution precongruence
relation and recalls some of its properties; Section 5 in-
troduces our probabilistic process algebra and gives it
an alternating and non-alternating semantics following
the approach of [3]; Section 6 describes our axiomati-
zation; Section 7 gives some concluding remarks.

2. Probabilistic Model

In this section we define the non-alternating and al-
ternating models together with related basic concepts.
We also illustrate the folklore transformation between
the two models. We start with some preliminary math-
ematical concepts and notation.

2.1. Probability Measures and Notation

A σ-field on a set Ω, denoted by F , is a family of
subsets of Ω that contains Ω and that is closed under
complement and countable union. The elements of a σ-
field are called measurable sets. The σ-field generated
by a family of sets C, denoted by σ(C) is the smallest
σ-field that contains C. A pair (Ω,F), where F is a σ-
field on Ω, is called a measurable space.

A measure on a measurable space (Ω,F) is a func-
tion µ : F → R≥0 such that, for each countable
family {Xi}i∈I of pairwise disjoint elements of F ,
µ(∪i∈IXi) =

∑
i∈I µ(Xi). Function µ is said to be σ-

additive. A probability measure on (Ω,F) is a measure
µ on (Ω,F) such that µ(Ω) = 1, and a sub-probability
measure on (Ω,F) is a measure µ on (Ω,F) such that
µ(Ω) < 1. A discrete probability measure over a set Ω is
a probability measure on (Ω, 2Ω). Denote by Disc (Q)
the set of discrete probability measures over Q and by
SubDisc (Q) the set of discrete sub-probability mea-
sures; given an element q ∈ Q, denote by δ(q) the prob-

ability measure that assigns probability 1 to {q}. This
is called the Dirac measure on q.

Given a collection of measures {µi}i∈I over F and
a collection of non-negative numbers {pi}i∈I such that∑

i∈I pi ≤ 1, define the convex combination
∑

i∈I piµi

of the µi’s to be the measure µ such that, for each set
X ∈ F , µ(X) =

∑
i∈I piµi(X).

A function f : Ω1 → Ω2 is measurable from (Ω1,F1)
to (Ω2,F2) if the pre-image of each element of F2 is
an element of F1. If f is a measurable function from
(Ω1,F1) to (Ω2,F2) and µ is a measure on (Ω1,F1),
then it is possible to define the image measure of µ un-
der f on (Ω2,F2), denoted by f(µ), as follows: for each
X ∈ F2, f(µ)(X) = µ(f−1(X)).

2.2. Probabilistic Automata

A probabilistic automaton is a tuple P =
(Q, q,Act ,D), where Q is the set of states, q is the
start state, Act is the set of actions, and D is the tran-
sition relation, where D ⊆ Q×Act ×Disc (Q). The set
Act is partitioned into two sets H and Act −H of in-
ternal and external actions, respectively.

Probabilistic automata were defined in [26] as a con-
servative extension of Labeled Transition Systems [15],
also called automata. Indeed, an ordinary automaton
can be seen as a probabilistic automaton where each
transition leads to a Dirac measure. Probabilistic au-
tomata can also be seen as nondeterministic Markov
Decision Processes [6], that is, Markov Decision Pro-
cesses where more than one measure over states can be
associated with a state and a label.

An alternating probabilistic automaton is a tuple
P = (N,P, q,Act ,Dn,Dp), where N and P are two
disjoint sets of nondeterministic states, and probabilis-
tic states, respectively, q ∈ N is the start state, Act
is the set of actions, and D is the transition relation,
where D = Dn ∪ Dp, Dn ⊆ N × Act × P , and
Dp ⊆ P × Disc (N). The set Act is partitioned into
two sets H and Act − H of internal and external ac-
tions, respectively.

Alternating probabilistic automata were defined in
[10] as an extension of the (unlabeled) Concurrent
Markov Chains of [33], and were used as a semanti-
cal model for a probabilistic process algebra and as an
underlying model for probabilistic model checking.

For notational convenience we denote the elements
of a probabilistic automaton P by Q, q,Act ,D, and we
propagate the notation to primes and indices as well.
Thus, the elements of a probabilistic automaton P ′i are
Q′

i, q
′
i,Act ′i,D′

i. We adopt a similar notational conven-
tion for alternating probabilistic automata.

Remark 1 The alternating model, that is, alternating
probabilistic automata, can be seen as a special case of the
non-alternating model, that is, probabilistic automata.
Indeed, an alternating probabilistic automaton P can be
seen as a probabilistic automaton P ′ where

• Q′ = N ∪ P ,

• q′ = q,

• Act ′ = Act ∪ {τ}, and

• D′ = D′
n ∪ D′

p,

where D′
n is obtained from Dn by replacing the third el-

ement of each triplet by a Dirac measure, and D′
p is ob-

tained fromDp by adding a label τ to each transition. Ac-
tion τ is meant to be internal.

Based on Remark 1, in the rest of this section we
give definitions for probabilistic automata only. The
same definitions apply to alternating probabilistic au-
tomata as well.

An execution fragment of a probabilistic automaton
P is a finite or infinite sequence α = q0a1q1a2q2 · · ·
of alternating states and actions, starting with a state
and, if the sequence finite, ending in a state, where for
each i, there exists a measure µ such that (qi, ai+1, µ) ∈
D and µ(qi+1) > 0. State q0 is called the first state of
α and is denoted by fstate (α). If α is a finite sequence,
then the last state of α is denoted by lstate (α). De-
note by frags (P) the set of execution fragments of P
and by frags ∗(P) the set of finite execution fragments
of P. An execution is an execution fragment whose first
state is a start state. Denote by execs (P) the set of ex-
ecutions of P and by execs ∗(P) the set of finite execu-
tions of P.

An execution fragment α is a prefix of an execution
fragment α′, denoted by α ≤ α′ if the sequence α is a
prefix of the sequence α′. A finite execution fragment
α1 = q0a1q1 · · · akqk and an execution fragment α2 can
be concatenated if fstate (α2) = qk. In such case the
concatenation of α1 and α2, denoted by α1

_ α2, is the
execution fragment q0a1q1 · · · akα2.

Execution fragments and executions are the result of
the resolution of both probabilistic and nondeterminis-
tic choices. If we resolve nondeterministic choices only,
then we obtain a structure on which we can study prob-
ability measures over executions. We use the notion of
a scheduler to resolve the nondeterministic choices.

A scheduler for a probabilistic automaton P is
a function σ : frags ∗(P) → SubDisc (D) such that
σ(α)(q, a, µ) > 0 implies q = lstate (α). A scheduler in-
duces a probability measure over executions on a σ-field
whose construction is standard. Specifically, we con-
sider the σ-field generated by cones, where the cone of

a finite execution α, denoted by Cα, is the set of ex-
ecutions that have α as a prefix, that is, Cα = {α′ ∈
frags(P) | α ≤ α′}. Fixed a starting state q0 and a fi-
nite execution fragment α = q0a1q1 · · · qk, the measure
µ(Cα) of the cone Cα is defined as

∏
i∈{0,...,k−1}

 ∑
(qi,ai+1,µ′)∈D

σ(α≤i)(qi, ai+1, µ
′)µ′(qi+1)

 ,

where α≤i denotes the prefix q0a1 · · · aiqi of α.
Standard measure theoretical arguments ensure that

the measure defined on cones extends uniquely to a
measure defined on the generated σ-field. The measure
µ is called a probabilistic execution fragment of P, and
state q0 is said to be the first state of µ. If q0 is the
start state of P, then µ is called a probabilistic execu-
tion of P.

2.3. Relation between the models

The alternating and non-alternating models are re-
lated by folklore transformations that convert one
model to the other. In this section we define the trans-
formations formally.

The conversion of a probabilistic automaton to an
alternating probabilistic automaton consists of split-
ting each transition into two parts. Formally, given a
probabilistic automaton P, define the alternating ver-
sion of P, denoted by Ap (P), to be the following al-
ternating probabilistic automaton P ′:

• N ′ = Q;

• P ′ = {µ | ∃q,a(q, a, µ) ∈ D};
• q̄′ = q̄;

• Act ′ = Act ;

• D′
n = {(q, a, µ) | (q, a, µ) ∈ D};

• D′
p = {(µ, µ) | µ ∈ P ′}.

Note the double use of µ as the name of a probabilistic
state and as a probability measure over nondeterminis-
tic states. For this reason we have not written D′

n = D
in the definition above.

The conversion of an alternating probabilistic au-
tomaton to a probabilistic automaton consists of merg-
ing transitions from nondeterministic states with the
following transitions from probabilistic states. For-
mally, given an alternating probabilistic automaton P,
define the non-alternating version of P, denoted by
Np (P), to be the following probabilistic automaton P ′:

• Q′ = N ;

• q̄′ = q̄;

• Act ′ = Act ;

• D′ = {(q, a, µ) | ∃s(q, a, s) ∈ Dn, (s, µ) ∈ Dp}.

2.4. Composition

In this section we define parallel composition for
probabilistic automata. Although composition is not
used explicitly in this paper, we need to be aware of
this operator because it is the main cause of difficul-
ties in the extension of language inclusion to proba-
bilistic automata.

Two probabilistic automata P1 and P2 are compat-
ible if the set of internal actions of P1 and the set of
external actions of P2 are disjoint, and vice versa. The
parallel composition of two compatible probabilistic au-
tomata P1,P2 is a probabilistic automaton P, denoted
by P1 ‖ P2, such that

• Q = Q1 ×Q2,

• q̄ = (q̄1, q̄2),

• Act = Act 1 ∪Act 2,

• The transition relation D is the set of triplets
((q1, q2), a, µ1 × µ2) such that, for each i ∈ {1, 2},
qi ∈ Qi, and either

– (qi, a, µi) ∈ Di, or

– a 6∈ Act i and µi = δ(qi).

The expression µ1 × µ2 denotes the independent prod-
uct of µ1 and µ2, that is, for each pair of states q1, q2,
(µ1 × µ2)(q1, q2) = µ1(q1)µ2(q2).

A similar definition of composition can be given for
alternating probabilistic automata. In this case we con-
sider only pairs consisting of nondeterministic states
only or probabilistic states only.

3. Simulation Relations

In this section we introduce some of the simulation
relations of [28] that are used in the paper. We use a
notation along the lines of [17], and we start with some
preliminary concepts.

First we define combined transitions, weak transi-
tions, and hyper-transitions [31]. Let {q a−→ µi}i∈I be
a collection of transitions of a probabilistic automa-
ton P, and let {pi}i∈I be a collection of probabilities
such that

∑
i∈I pi = 1. Then the triple (q, a,

∑
i∈I piµi)

is called a combined transition of P.
Let ε be a probabilistic execution fragment that as-

signs probability 1 to the set of all finite execution frag-
ments with trace a. Let µ be the measure defined by
µ(q) = ε({α | lstate (α) = q}). Then fstate (ε) a=⇒ µ

is a weak combined transition of P. If ε can be gener-
ated by a deterministic scheduler, then fstate (ε) a=⇒ µ
is a weak transition.

Let µ ∈ Disc (Q), and for each q ∈ supp (µ) let
q

a−→ µq be a combined transition of P. Let µ′ be∑
q∈supp (µ) µ(q)µq. Then µ

a−→ µ′ is called a hyper-

transition of P. Also, for each q ∈ supp (µ), let q
a=⇒

µq be a weak combined transition of P. Let µ′ be∑
q∈supp (µ) µ(q)µq. Then µ

a=⇒ µ′ is called a weak
hyper-transition of P.

Second, we show how to lift a relation over sets to
a relation over discrete measures [13]. Let R ⊆ X × Y .
The lifting of R is a relation R′ ⊆ Disc (X)×Disc (Y)
such that µX R′ µY iff there is a function w : X×Y →
[0, 1] that satisfies:

1. If w(x, y) > 0 then x R y.

2. For each x ∈ X,
∑

y∈Y w(x, y) = µX(x).

3. For each y ∈ Y ,
∑

x∈X w(x, y) = µY (y).

We abuse notation slightly and denote the lifting of a
relation R by R as well.

Third, we define a flattening operation that converts
a measure µ in Disc (Disc (X)) into a measure [(µ) in
Disc (X). Namely, we define [(µ) =

∑
ρ∈supp (µ) µ(ρ)ρ.

We are now ready to define simulations for proba-
bilistic automata. A relation R ⊆ Q1 × Disc (Q2) is a
probabilistic forward simulation (resp., weak probabilis-
tic forward simulation) from probabilistic automaton
P1 to probabilistic automaton P2 iff P1 and P2 have
the same external actions and both of the following
hold:

1. q̄1 R δ(q̄2).

2. For each pair q1, µ2 such that q1 R µ2 and each
transition q1

a−→ µ′1, there exists a measure µ′2 ∈
Disc (Disc (Q2)) such that µ′1 R µ′2 and such that
µ2

a−→ [(µ′2) (resp., µ2
a=⇒ [(µ′2)) is a hyper-

transition (resp., a weak hyper-transition) of D2.

We write P1 vpF P2 (resp., P1 vwpF P2) whenever
there is a probabilistic forward simulation (resp., a
weak probabilistic forward simulation) from P1 to P2.
We remove the suffix p whenever there exists a proba-
bilistic (weak) forward simulation that relates states to
Dirac measures. In particular, if we consider ordinary
automata, that is probabilistic automata whose transi-
tions lead to Dirac measures, then vpF coincides with
vF and vwpF coincides with vwF .

4. Trace Distribution Precongruence

In this section we extend the trace semantics to
probabilistic automata according to [25]. We start with

the notion of trace, extend it to trace distributions, and
define the trace distribution preorder and trace distri-
bution precongruence. We also state some useful re-
sults about trace distribution precongruence.

The trace of an execution fragment α of a probabilis-
tic automaton P, written traceP(α), or just trace (α)
when P is clear from context, is the list obtained by re-
stricting α to the set of external actions of A. For a set
S of executions of a probabilistic automaton P, de-
note by tracesP(S), or just traces (S) when P is clear
from context, the set of traces of the executions in S.
We say that β is a trace of a probabilistic automaton P
if there is an execution α of P with trace (α) = β. De-
note by traces (P) the set of traces of P.

The trace function is measurable from the σ-field
generated by cones of executions to the σ-field gener-
ated by cones of traces. Thus, given a probabilistic exe-
cution µ, the image measure under trace of µ, denoted
by tdist (µ), is well defined and is called the trace dis-
tribution of µ. Denote the set of trace distributions of
a probabilistic automaton P by tdists (P). By analogy
with the notion of language (trace) inclusion for ordi-
nary automata, we define the trace distribution preorder
as inclusion of trace distributions, that is, P1 vD P2

iff tdists (P1) ⊆ tdists (P2).

While trace inclusion is a precongruence for ordi-
nary automata (it is preserved by composition), the
trace distribution preorder is not a precongruence (see
[25] for counterexample and motivations). A solution
proposed in [25] defines the trace distribution precon-
gruence, denoted by vDC , as the coarsest precongru-
ence that is contained in the trace distribution pre-
order. An alternative approach consists of modifying
appropriately the notion of composition by restricting
the power of schedulers [5].

Since the definition of trace distribution precongru-
ence is not explicit, there have been several attempts to
provide alternative characterizations of trace distribu-
tion precongruence. In [25] a principal context is iden-
tified, which is an elementary probabilistic automaton
that can be used as a distinguishing context for any pair
of probabilistic automata that are not in the trace dis-
tribution precongruence relation. Two alternative char-
acterizations in terms of testing theory are given in
[27, 32]. Finally, a characterization in terms of simu-
lation relations and their probabilistic extensions [28]
is given in [17]. In summary, trace distribution precon-
gruence coincides with appropriate notions of simula-
tion relations. The proof of completeness of our axiom-
atizations is based on the characterization of [17]; here
we state the key results of [17] that are needed.

Proposition 1 The following statements hold.

1. Two ordinary automata P1 and P2 with no internal
actions are in the trace distribution precongruence
relation iff there exists a forward simulation fromP1

to P2. That is, P1 vDC P2 iff P1 vF P2.

2. Two probabilistic automata P1 and P2 with no in-
ternal actions are in the trace distribution precon-
gruence relation iff there exists a probabilistic for-
ward simulation fromP1 toP2. That is,P1 vDC P2

iff P1 vpF P2.

3. Two probabilistic automata P1 and P2 are in the
trace distributionprecongruence relation iff there ex-
ists a weak probabilistic forward simulation from P1

to P2. That is, P1 vDC P2 iff P1 vwpF P2.

Proposition 1 can be used to establish that the
folklore conversions between the alternating and non-
alternating models preserve the kernel ≡DC of trace
distribution precongruence.

Proposition 2 The the following statements hold.

1. For every probabilistic automaton P,
P ≡DC Ap (P);

2. For every alternating probabilistic automaton P,
Np (P) ≡DC P.

Proof outline. It is sufficient to exhibit appropriate
simulation relation between the involved probabilistic
automata after viewing an alternating probabilistic au-
tomaton as a special case of a probabilistic automaton
according to Remark 1.

Specifically, for Item 1 the forward simulation from
P to Ap (P) is R1= {(q, q) | q ∈ Q} and the proba-
bilistic forward simulation from Ap (P) to P is R2=
{(q, δ(q)) | q ∈ Q} ∪ {(µ, µ) | ∃q,a(q, a, µ) ∈ D}; for
Item 2 the forward simulation from Np (P) to P is
R1= {(q, q) | q ∈ N} and the probabilistic forward
simulation from P to Np (P) is R2= {(q, δ(q)) | q ∈
N} ∪ {(s, µ) | (s, µ) ∈ Dp}.

5. Probabilistic Process Algebra

In this section we define our probabilistic process al-
gebra (PPA) as an extension of the process algebra of
[3] with recursion. We provide it with a non-alternating
as well as an alternating semantics and show that the
two semantics are related by the folklore transforma-
tion between the models.

Denote by Act = L ∪ {τ} the set of actions, where
τ is the silent action. We let a range over Act .

Let NProc denote the set of nondeterministic pro-
cesses, ranged over by E, and PProc denote the set
of probabilistic processes, ranged over by P . Finally, let

Proc , NProc ∪PProc denote the set of processes. The
syntax of our Probabilistic Process Algebra is given by
the following rules:

E ::= 0 | X | E + E | a.P | recX.E
P ::= ∆(E) | P ⊕p P

Our probabilistic process algebra extends the algebra
of [3] by adding the variable operator X and the recur-
sion operator recX.E. Table 1 contains the operational
semantics of PPA, where E

a−→ µ describes a transi-
tion labeled by a that leaves from E and leads to a
measure µ over processes, while P 7−→ µ denotes the
fact that the probability measure over nondeterminis-
tic processes associated with P is µ.

The alternating and non-alternating semantics dif-
fer only in the rule for prefixing: in the non-alternating
semantics process a.P moves to the measure denoted
by P , while in the alternating semantics process a.P
moves to process P with probability 1. It is easy to
show the following result.

Proposition 3 Let E be a process, P be its non-
alternating semantics, and P ′ be its alternating seman-
tics. Then

• P and Ap (P) are strongly bisimilar;

• P ′ and Np (P ′) are the same.

Proof outline. The bisimulation relation for Item 1 is
the symmetric closure of NProc×NProc ∪{(P, µ) | P ∈
PProc , P 7→ µ}, where the µ related to P is viewed as
a state of Ap (P). The equality of P ′ and Np (P ′) fol-
lows from the fact that rule NA - prefix collapses
a.P

a−→ P
τ−→ µ into a.P

a−→ µ in the same way as
the construction of Np (P ′).

The first item of Proposition 3 states that P and
Ap (P) are strongly bisimilar, and not the same, be-
cause the probabilistic states of P are probabilistic pro-
cesses, while the corresponding states of Ap (P) are the
probability measures denoted by the probabilistic pro-
cesses of P: several syntactically different probabilistic
processes denote the same probability measure.

6. Axiomatizations

In this section we give our complete axioma-
tization of the trace distribution precongruence
relation. We provide several complete axiomatiza-
tions for different fragments of PPA. Specifically, we
consider non-recursive τ -free nondeterministic pro-
cesses, where we obtain a classical axiomatization
for simulation relations, non-recursive τ -free proba-
bilistic processes, where the axioms are enriched by

Nondeterministic

lchoice
E1

a−→ µ

E1 + E2
a−→ µ

rchoice
E2

a−→ µ

E1 + E2
a−→ µ

Probabilistic

idle
·

∆(E) 7−→ δ(E)

P - idle
P 7−→ µ

P
τ−→ µ

pchoice
P1 7−→ µ1 P2 7−→ µ2

P1 ⊕p P2 7−→ pµ1 + (1− p)µ2

Non-alternating

NA - prefix
P 7−→ µ

a.P
a−→ µ

Alternating

A - prefix
·

a.P
a−→ δ(P)

Recursion

Rec
E{recX.E/X} a−→ µ

recX.E
a−→ µ

Table 1. Operational semantics of PPA

properties of ⊕, recursive τ -free probabilistic pro-
cesses, where the axioms are enriched with classical
axioms for simulation relations, and recursive prob-
abilistic processes, where the axioms are enriched
by three rules to deal with τ ’s. Our analysis is car-
ried out in the non-alternating semantics only, but it
applies to the alternating semantics as well given The-
orems 2 and 3.

6.1. Non-Recursive τ-free Nondeterminis-
tic Processes

We consider the non-recursive fragment of PPA
where no probabilistic choice is possible. This means
that probabilistic processes can be only of the form
∆(E). Processes are derived according to the follow-
ing grammar.

E ::= 0 | E + E | a.P
P ::= ∆(E)

In this case the equivalence results of [17] (cf. Propo-
sition 1) state that two processes are in the trace dis-
tribution precongruence relation iff there exists a sim-
ulation from one process to the other. Thus, it is suf-
ficient to consider a complete axiomatization for simu-
lation relations. We refer the reader to [8] for a treat-
ment of complete axiomatizations for simulation rela-
tions.

A1 E + F = F + E
A2 E + (F + G) = (E + F) + G
A3 E + E = E
A4 E + 0 = E

DE E = ∆(E)
DC E ≤ E + F

Table 2. Axioms for non-recursive τ -free nonde-
terministic processes.

Table 2 contains the complete axioms for non-
recursive nondeterministic processes. The first four
axioms A1-4 are the classical axioms for bisimula-
tion equivalence, while Axiom DC is the key axiom for
simulation relations stating that in a process that sim-
ulates there can be more options than in the process
that is simulated. Axiom DE is the only axiom that re-
lates nondeterministic and probabilistic processes.
It states that a Dirac choice over a single nondeter-
ministic process is equivalent to the nondeterministic
process.

Theorem 1 The axioms of Table 2 are sound and com-
plete for trace distribution precongruence in the non-
recursive τ -free nondeterministic fragment of PPA.

Proof outline. The result follows from [8] after using
Proposition 1 to reduce the problem to completeness
for vF and Axiom DE to treat ∆(E) as E.

Remark 2 A derived rule from the axioms of Table 2 is

A5 a.∆(E) + a.∆(F) ≤ a.∆(E + F).

This follows by congruence and A3 after applying DC
andA1 to show that E ≤ E+F and F ≤ E+F . RuleA5
states the key property of forward simulations that non-
deterministic choice can be moved forward when moving
from a simulated process to a simulating process.

6.2. Non-recursive τ-free Probabilistic
Processes

We now consider the non-recursive τ -free fragment
of PPA where also the probabilistic choice operator is
allowed. In this case we simply need to add the com-
mutativity, associativity and idempotence axioms for
⊕ (axioms P1-3 of Table 3) and an axiom that relates

P1 P ⊕p Q = Q⊕1−p P

P2 P ⊕p1 (Q⊕ p2
1−p1

R) = (P ⊕ p1
p1+p2

Q)⊕(p1+p2) R)

P3 P ⊕p P = P

P4 a.(P ⊕p Q) ≤ ∆(a.P)⊕p ∆(a.Q)

Table 3. Axioms for non-recursive τ -free pro-
cesses.

probabilistic choice with prefixing. Axiom P4 states
that probabilistic choice can be moved backward when
moving from a simulated process to a simulating pro-
cess. This is the counterpart of derived rule A5, where
nondeterministic choice can be moved forward.

The key observation about the axiomatization de-
rived so far is that the rules for nondeterministic and
probabilistic choices are completely separated, each ax-
iom has a simple structure, and the number of axioms
is small.

Theorem 2 The axioms of Tables 2 and 3 are sound
and complete for trace distribution precongruence in the
non-recursive τ -free fragment of PPA.

Proof outline. The proof follows the structure of
the completeness proof for simulations [8]; however,
since the target of a transition is a probability mea-
sure, and since the definition of probabilistic forward
simulation requires to relate probability measures over
states to probability measures over probability mea-
sures over states, Axioms P1-3 are used heavily to re-
arrange terms so that an expression is decomposed into

the correct measure over measures over states. Axiom
P4 is used to move probabilistic choices backward.

More precisely, by associativity, nondeterminis-
tic processes can be represented in the form

∑
I ai.Pi

where the Pi’s are probabilistic processes, and prob-
abilistic processes can be represented in the form∑
• J [pj]Ej where the Ej ’s are nondeterministic pro-
cesses and

∑
J pj = 1. The proof shows by induc-

tion on the complexity of the processes that for
every nondeterministic process E and probabilis-
tic process Q such that E vwpF Q (we use weak
simulations because the first transition from Q is la-
beled by τ) it is the case that the axioms of Tables 2
and 3 prove E ≤ Q. Since every nondeterministic pro-
cess can be seen as the ∆ of a probabilistic process,
Axiom DE suffices to complete the proof.

Indeed, if E ≡
∑

I ai.Pi and Q ≡
∑

J [pj]Fj , we
prove that for each i ∈ I, ai.Pi ≤ Q and then we use
the congruence rules to combine all the summands of
E. By definition of forward simulation, we know that
for each j there is a combined transition of Fj labeled
by ai to a measure µj such that

∑
J pjµj is the flat-

tening of some measure µ such that ρ vwpF µ, where ρ
is the measure associated with Pi. We first use repeat-
edly Axiom C from Remark 3 below to add to each
of the Fj ’s a term ai.Qj such that Qj 7→ µj ; then we
use Axiom P4 to extract from Q a provably smaller
term ai.

∑
• J [pj]Qj . Then we use the axioms for ⊕ to

rearrange the terms of
∑
• J [pj]Qj to describe the mea-

sure µ. That is,
∑
• J [pj]Qj is rewritten into

∑
• K [rk]Rk,

where each Rk denotes a measure whose µ probability
is rk. Finally we use induction to show that all the el-
ements in the support of ρ are provably related to the
appropriate processes among the Rk’s, and we use the
congruence rules to combine all pieces together.

Remark 3 A derived rule from the axioms of Tables 2
and 3 is

P5 a.P1 ⊕p a.P2 ≤ a.P1 + a.P2.

This follows by applying axiom DC to a.P1, axioms DC
and A1 to a.P2, and then applying axiom A3 to the re-
sulting expression. Rule P5 can be used together with ax-
iom DC to derive

C a.P1 + a.P2 = a.P1 + a.P2 + a.(P1 ⊕p P2)

stating that it is always possible to combine transitions
arbitrarily within a process.

6.3. Recursive τ-free Processes

The addition of recursion to our fragments of PPA
does not cause any problem. Indeed, the axioms for

recursion of [8], listed in Table 4, continue to work.
The expression F 6B X in Table 4 means that vari-

R1 recX.E = E{recX.E/X}

RL1 if F 6B X and E ≤ F{E/X} then E ≤ recX.F

RL2 if F{E/X} ≤ E then recX.F ≤ E

Table 4. Axioms for recursive processes

able X is guarded in process F , that is, it occurs al-
ways within the scope of some prefix operator, while
the expression F{E/X} is the result of replacing ev-
ery occurrence of X by E in F after renaming some
of the bound variables of F to avoid capturing of free
variables. In summary, our axiomatization ends up to
be the axiomatization for simulation relation of nonde-
terministic processes plus four axioms that deal with
probabilistic choice and one axiom that relates proba-
bilistic and nondeterministic processes. This is remark-
ably simple.

Theorem 3 The axioms of Tables 2, 3, 4, and 5 are
sound and complete for trace distribution precongruence
in PPA.

The proof of Theorem 3 follows the lines of the cor-
responding proof of [8]. Once again the main technical
difficulty is the handling of probabilities on every tran-
sition. In particular we need to extend to the proba-
bilistic case the notion of simulation up to.

6.4. Processes with τ actions

The final step to axiomatize PPA is the handling of
internal actions. In this case we introduce a variation
of the τ -laws of Milner [19] as proposed in [3], which
allow us to saturate a process and then prove com-
pleteness following the same approach as for the τ -free
case. Axioms A5 and A6 from Table 5 are taken di-
rectly from [3] and are the key axioms for the satu-
ration process. Axiom A5 is a stronger version than
the corresponding axiom A5 of [3]. Indeed, by apply-
ing the congruence rules and Axiom DE it is possible
to derive a.(∆(τ.∆(E))⊕p P) = a.(∆(E)⊕p P).

Theorem 4 The axioms of Tables 2, 3, 4, and 5 are
sound and complete for trace distribution precongruence
in PPA.

A5 P = τ.P

A6 τ.
∑
• i∈I [pi](Ei + a.Pi) + a.

∑
• i∈I [pi]Pi

= τ.
∑
• i∈I [pi](Ei + a.Pi)

A7 a.
∑
• i∈I [pi](Ei + τ.Pi) + a.

∑
• i∈I [pi]Pi

= a.
∑
• i∈I [pi](Ei + τ.Pi)

Table 5. Axiom for τ -elimination.

7. Concluding Remarks

We have provided sound and complete axiomatiza-
tions for trace distribution precongruence on several
fragments of a probabilistic process algebra for an al-
ternating as well as a non-alternating semantic model.
We have also shown that the alternating and non-
alternating semantics of our process terms, which re-
spect folklore transformations between the two models,
are equivalent according to the kernel of trace distri-
bution precongruence.

The axioms are remarkably simple in that they con-
sist of complete axioms for the probability-free frag-
ment of our process algebra plus four axioms that deal
with probabilistic choice and one axiom that relates
probabilistic and nondeterministic processes. These re-
sults support the fact that both the alternating and
non-alternating models of concurrent probabilistic sys-
tems are conservative extensions of ordinary nonde-
terministic systems and continue to respect the well
known rules of nondeterminism.

References

[1] L. de Alfaro. Formal Verification of Probabilistic Sys-
tems. PhD thesis, Stanford University, 1997. Available
as Technical report STAN-CS-TR-98-1601.

[2] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Ax-
iomatizing probabilistic processes:ACPwith generative
probabilities. Information and Computation, 122:234–
255, 1995.

[3] E. Bandini and R. Segala. Axiomatizations for prob-
abilistic bisimulation. In J. van Leeuwen F. Orejas,
P.G. Spirakis, editor, Proceedings 28th ICALP, Crete,
Greece, volume 2076 of Lecture Notes in Computer Sci-
ence, pages 370–381. Springer-Verlag, 2001.

[4] S. Cattani andR. Segala. Decision algorithms for proba-
bilistic bisimulation. In P. Jankar and M. Kretinsky, ed-
itors, Proceedings of CONCUR 2002, Brno, Czech Re-
public, volume 2421 of Lecture Notes in Computer Sci-
ence, pages 371–385. Springer-Verlag, 2002.

[5] L. de Alfaro, T.A. Henzinger, and R. Jhala. Composi-
tionalmethods for probabilistic systems. InK.G.Larsen
and M. Nielsen, editors, Proceedings of CONCUR 2001,

Aalborg, Denmark, volume 2154 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[6] C. Derman. Finite State Markovian Decision Processes.
Acedemic Press, 1970.

[7] Y.A. Feldman and D. Harel. A probabilistic dy-
namic logic. Journal of Computer and System Sciences,
28(2):193–215, 1984.

[8] U. Frendrup and J.N. Jensen. A complete axiomatiza-
tion of simulation for regular ccs expressions. Techni-
cal report, BRICS, Aalborg University, department of
Computer science, Denmark, 2001.

[9] R.J. van Glabbeek, S.A. Smolka, B. Steffen, and C.M.N.
Tofts. Reactive, generative, and stratified models of
probabilistic processes. In Proceedings 5th Annual Sym-
posium on Logic in Computer Science, Philadelphia,
USA, pages 130–141. IEEE Computer Society Press,
1990.

[10] H. Hansson. Time and Probability in Formal Design of
Distributed Systems. PhD thesis, Department of Com-
puter Science, Uppsala University, 1991.

[11] S. Hart, M. Sharir, and A. Pnueli. Termination of
probabilistic concurrent programs. ACM Transactions
on Programming Languages and Systems, 5(3):356–380,
1983.

[12] C. Jones and G. Plotkin. A probabilistic powerdomain
of evaluations. InProceedings 4th Annual Symposium on
Logic in Computer Science, Asilomar, California, pages
186–195. IEEE Computer Society Press, 1989.

[13] B. Jonsson and K.G. Larsen. Specification and refine-
ment of probabilistic processes. InProceedings of the 6th
IEEE Symposium on Logic in Computer Science, pages
266–277, Amsterdam, July 1991.

[14] C.C. Jou and S.A. Smolka. Equivalences, congru-
ences, and complete axiomatizations for probabilistic
processes. In J.C.M. Baeten and J.W. Klop, editors,
Proceedings of CONCUR 90, Amsterdam, volume 458
of Lecture Notes in Computer Science, pages 367–383.
Springer-Verlag, 1990.

[15] R. Keller. Formal verification of parallel programs.
Communications of the ACM, 7(19):561–572, 1976.

[16] G. Lowe. Representing nondeterminism and proba-
bilistic behavior in reactive proceses. Technical Report
PRG-TR-11-93, Oxford University Computing Labora-
tory - Programming Research Group, 1993.

[17] N. Lynch, R. Segala, and F. Vaandrager. Composition-
ality for probabilistic automata. In D. Lugiez R. Ama-
dio, editor, Proceedings of CONCUR 2003, Marseille,
France, volume 2761 of Lecture Notes in Computer Sci-
ence, pages 208–221. Springer-Verlag, 2003.

[18] R.Milner. A complete inference system for a class of reg-
ular behaviours. Journal of Computer and System Sci-
ences, 28:439–466, 1984.

[19] R. Milner. Communication and Concurrency. Prentice-
Hall International, Englewood Cliffs, 1989.

[20] Carroll Morgan, Annabelle McIver, and Karen Sei-
del. Probabilistic predicate transformers. ACM
Transactions on Programming Languages and Systems,
18(3):325–353, May 1996.

[21] M. Nunez. An axiomatization of probabilistic testing.
In Proceedings of 5th AMAST Workshop on Real-Time
and Probabilistic Systems, Lecture Notes in Computer
Science, pages 130–150, 1999.

[22] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimula-
tion for probabilistic systems. In C. Palamidessi, ed-
itor, Proceedings of CONCUR 2000, University Park,
PA, USA, volume 1877 of Lecture Notes in Computer
Science, pages 334–349. Springer-Verlag, 2000.

[23] A.Pnueli andL.Zuck. Verification ofmultiprocess prob-
abilistic protocols. Distributed Computing, 1(1):53–72,
1986.

[24] J.R. Rao. Reasoning about probabilistic algorithms. In
Proceedings of the 9th AnnualACMSymposiumonPrin-
ciples of Distributed Computing, Quebec, Canada, Au-
gust 1990.

[25] R. Segala. A compositional trace-based semantics for
probabilistic automata. In I. Lee and S.A. Smolka, ed-
itors, Proceedings of CONCUR 95, Philadelphia, PA,
USA, volume 962 of Lecture Notes in Computer Science,
pages 234–248. Springer-Verlag, 1995.

[26] R.Segala. Modeling andVerification ofRandomizedDis-
tributed Real-Time Systems. PhD thesis, MIT, Dept.
of Electrical Engineering and Computer Science, 1995.
Also appears as technical report MIT/LCS/TR-676.

[27] R. Segala. Testing probabilistic automata. In U. Mon-
tanari and V. Sassone, editors,Proceedings of CONCUR
95, Pisa, Italy, volume 1119 of Lecture Notes in Com-
puter Science, pages 299–314. Springer-Verlag, 1996.

[28] R. Segala and N.A. Lynch. Probabilistic simulations for
probabilistic processes. Nordic Journal of Computing,
2(2):250–273, 1995.

[29] K.Seidel. Probabilistic communicatingprocesses. Tech-
nical Report PRG-102, Ph.D. Thesis, Programming Re-
search Group, Oxford University Computing Labora-
tory, 1992.

[30] E.W. Stark and S.A. Smolka. A complete axiom system
for finite-state probabilistic processes. In G. Plotkin,
C.P. Stirling, and M. Tofte, editors, Proof, Language
and Interaction: Essays inHonour ofRobinMilner.MIT
Press, 1999.

[31] M.I.A. Stoelinga. Alea jacta est: Verification of Proba-
bilistic, Real-Time and Parametric Systems. PhD the-
sis, University of Nijmegen, 2002.

[32] M.I.A. Stoelinga and F.W. Vaandrager. A testing
scenario for probabilistic automata. In J. Parrow
In J.C.M. Baeten, J.K. Lenstra and G.J. Woeginger, ed-
itors, Proceedings 30th ICALP, Crete, Greece, volume
2719 of Lecture Notes in Computer Science. Springer-
Verlag, 2003.

[33] M.Y. Vardi. Automatic verification of probabilistic con-
current finite-state programs. In Proceedings of 26th
IEEE Symposium on Foundations of Computer Science,
pages 327–338, Portland, OR, 1985.

