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Abstract

This paper presents the framework of switched probabilistic input/output au-
tomata (or switched PIOA), augmenting the original PIOA framework with an
explicit control exchange mechanism. Using this mechanism, we model a network
of processes passing a single token among them, so that the location of this token
determines which process is scheduled to make the next move. This token struc-
ture therefore implements a distributed scheduling scheme: scheduling decisions are
always made by the (unique) active component.

Distributed scheduling allows us to draw a clear line between local and global
nondeterministic choices. We then require that local nondeterministic choices are
resolved using strictly local information. This eliminates unrealistic schedules that
arise under the more common centralized scheduling scheme. As a result, we are
able to prove that our trace-style semantics is compositional.
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1 Introduction

Over the past few decades, a large number of modeling frameworks have been
adopted for the purpose of verifying and analyzing stochastic systems. Some
of these frameworks, for example, continuous-time Markov chains [Ste94] and
labeled Markov processes [DEP02], are designed to handle continuous prob-
ability distributions, thus finding many applications in the area of perfor-
mance and reliability analysis [Hav98]. Others, such as discrete-time Markov
chains [KS76] and probabilistic automata [Seg95], deal with discrete probabil-
ity distributions and are popular in the verification of distributed algorithms
and communication protocols [Agg94,LSS94,PSL00,SV99].

Designers of such frameworks are often presented with two challenges:

(i) defining a sensible notion of parallel composition;
(ii) defining a sensible notion of semantic equivalence (or preorder) that is

compositional with respect to the proposed parallel operator.

Both notions are important tools for verification. Parallel composition under-
lies the so-called modular approaches to system development and analysis,
where large and complex systems are decomposed into smaller and more tan-
gible subsystems. Semantic equivalence, on the other hand, allows us to move
across different levels of abstraction, from high-level abstract specifications to
low-level detailed implementations. A successful combination of parallel com-
position and process semantics provides great flexibility in model construction
and correctness analysis, thus increasing the appeal of the particular modeling
framework.

In this paper, we focus on systems that exhibit both nondeterministic behavior
and stochastic behavior, while the latter is restricted to discrete probability
distributions. Our goal is to develop a compositional framework for modeling
these systems. In particular, we are interested in compositionality of trace-style
semantics, which has proven to be a surprisingly difficult problem. Resorting
to distributed scheduling among parallel components, we offer a solution quite
unlike most existing proposals.

? Preliminary versions of this paper appeared as [CLSV04a] and [CLSV04b].
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A good part of this introduction is devoted to discussions of related litera-
ture (Sections 1.1 and 1.2). A disinterested reader may wish to begin with
Section 1.3, where we illustrate via a simple example the difficulty with trace-
style semantics.

1.1 Process Semantics

We focus on systems with both nondeterministic and probabilistic choices, as
opposed to purely probabilistic systems. This is because nondeterminism is
essential in modeling lack of information in either the object system or the
external environment. Moreover, as we shall discuss shortly, the interleaving
interpretation of parallel composition relies on the presence of nondeterminis-
tic choices. Finally, nondeterministic choices can be used to model implemen-
tation freedom, making our framework more widely applicable.

In the literature, one can find a great variety of probabilistic process semantics,
most of which are extensions of familiar semantic notions for labeled transi-
tion systems. Earlier proposals include probabilistic bisimulation [LS91] and
testing preorder [YL92], followed by probabilistic simulation [SL95,LSV03],
observational testing preorder [SV03,CSV06] and many others.

Overall, semantics of a branching character, such as bisimulation and simu-
lation, have been more common than their linear counterparts, such as trace
distribution preorder [Seg95]. One likely reason is that a trace-style semantics
requires one to resolve all nondeterministic choices, usually by means of the
so-called adversaries 1 . Once coupled with an adversary, a system becomes
purely probabilistic and can be analyzed as a discrete-time Markov chain.
Process behavior is then defined by quantifying over all possible adversaries.

In comparison, branching-style semantics are easier to define and more pleas-
ant to work with. For instance, in order to establish bisimilarity between two
processes, one simply defines a binary relation on states (or probability dis-
tributions on states) and proves that the proposed relation satisfies certain
transfer properties. Most importantly, these transfer properties are typically
local, concerning only the states in relation and their near successors.

Despite the apparent advantages of branching-style semantics, we remain in-
terested in trace-style semantics for a number of reasons. First, many fun-
damental questions in verification are posed in terms of probabilities of ob-
servable events. For example, in a consensus algorithm, we may wish to cal-
culate a lower bound for the probability of reaching agreement during the

1 These are called policies in the setting of Markov decision processes, as studied
in planning and optimization.
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first round. Questions such as this can be answered very naturally in a trace-
style semantics, where we reason directly with probability distributions on
traces. In contrast, a branching-style semantics only allows us to establish
correspondences between specifications, without reference to probabilities of
complex events (e.g., those that express causal dependencies between different
actions). Indeed, branching-style semantics are often used as proof tools for
trace-style semantics. For instance, a common technique for proving trace dis-
tribution inclusion is to establish the existence of a probabilistic simulation.
In this sense, trace-style semantics are more fundamental compared to their
branching counterparts.

Moreover, we believe that trace-style semantics capture more closely the idea
of externally visible behavior, because they abstract away from state informa-
tion. This is important in, for example, the setting of black-box testing, where
we often have no convenient access to the actual architecture of a system and
hence no state information is available.

Finally, as shown in [SAGG+93,DGRV00], we are often willing to say that
a low-level automaton implements a high-level one, even if there exists no
bisimulation relation between them. In other words, trace-style equivalence is
useful when bisimilarity is considered too fine.

1.2 Parallel Composition

A fundamental idea in concurrency theory is the interleaving interpretation
of parallel composition:

(i) every atomic step of a composite system is an atomic step of one of its
components (more in case of synchronization);

(ii) the scheduling among components is arbitrary, up to some appropriate
fairness constraints.

In particular, the parallel composition of two independent actions is inter-
preted as a nondeterministic choice between the two possible interleavings of
these actions. This interpretation is generally regarded as a simplifying as-
sumption, reducing the complexity of single-step evolution.

Most existing proposals of parallel composition for stochastic processes adopt
the interleaving assumption, thereby necessitating the use of (some form of)
adversaries to resolve nondeterministic choices among parallel components.
Below we attempt to summarize a few prominent approaches.

• Parameterized composition [JLY01,DHK98]. Each (binary) composition
operator ‖p is parameterized with a real number p ∈ [0, 1], indicating the
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bias towards the left process. Sometimes a family of such operators are
considered, with p ranging over some subset of [0, 1]. Each ‖p is essentially
a static adversary, resolving the choice between two processes in the same
manner at every step.
• Real-time delay [WSS94]. Each state s of a process is associated with a

delay parameter δs. Upon entering a state, every process draws a real-
time delay from an exponential distribution with parameter δs. Among
a group of parallel processes, the process with the shortest delay per-
forms the next move. Given delay parameters of all components, one can
use specific properties of exponential distributions to calculate the bias
towards each component. Therefore, this approach essentially uses state-
dependent adversaries to resolve nondeterministic choices arising from
parallel composition.
• Compose-and-schedule [DHK98,Seg95]. Nondeterministic choices remain

unresolved in the composition of parallel processes. Eventually, a possible
behavior of the composite is obtained by specifying a history-dependent
adversary, which has access to internal history of every component and is
responsible for resolving local nondeterministic choices (i.e., those within
each component) as well as global ones (i.e., those between parallel com-
ponents).

Clearly, the last approach is the most robust, in that scheduling decisions may
depend on dynamic behaviors of the entire system. Here we pay a hefty price
for such expressivity: trace-style semantics is not compositional [Seg95]. Put
simply, trace-style semantics abstracts away from internal branching struc-
tures of processes. Yet a powerful adversary can observe differences in internal
branching and is therefore capable of exposing these differences when equiva-
lent processes are composed in parallel with the same probabilistic context. We
shall return to this point in Section 1.3 and give a concrete example (Figures 1
and 2).

Moving to the less robust approach of real-time delay, one can in fact achieve
compositionality for trace-style semantics [WSS94]. However, this approach
relies on the assumption that delay patterns of processes can be universally
characterized by exponential distributions. In the end, it is unclear whether
the theory is applicable outside specific areas such as hybrid systems and
queuing networks.

Finally, we mention an approach that takes us away from the realm of inter-
leaving semantics. In the models of [dAHJ01,vGSS95], components may make
simultaneous moves, even if they are not involved in action synchronization.
Assuming independence of coin tosses, the probability of a composite move
can be calculated by simply multiplying the probabilities of all atomic moves
involved. In this setting, it is also possible to obtain a compositional trace-
style semantics [dAHJ01]. Nonetheless, synchronous models are not suitable
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for a large class of problems in which simultaneous executions are not pos-
sible. Obvious examples include mutual exclusion and distributed consensus
algorithms. This takes us back to the challenge of scheduling via adversaries.

1.3 Observational Powers of Adversaries

As promised, we give a simple example in which a trace-style semantics fails
to be compositional. In particular, we take the trace distribution semantics
of [Seg95], where each possible behavior is a probability space on the set of
traces and is induced by a history-dependent adversary.
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Fig. 1. Probabilistic automata Early, Late and Coin

Consider the three automata shown in Figure 1. As its name suggests, au-
tomaton Early forces the adversary to choose between b and c at the beginning
of each execution, as it chooses one of the two available a-transitions. On the
other hand, in automaton Late, the adversary may postpone this decision until
after the a-transition. Clearly, these two automata have the same set of trace
distributions, but they can be distinguished by composing with the context
Coin. This context has a probabilistic a-transition leading to a uniform dis-
tribution on two states, one of which enables a d-transition while the other
enables an e-transition.
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Fig. 2. Non-substitutivity of trace distribution equivalence

The composed system Late ‖Coin has a trace distribution that assigns prob-
ability 1

2
to each of these traces: adb and aec (Figure 2). This is induced by

an adversary that chooses the b-transition in Late if and only if the random
choice in Coin results in the left state. Such total correlations between actions
d and b, and between actions e and c, cannot be achieved by the composite
Early ‖Coin. This is because the adversary must resolve the choice between
b and c (equivalently, the choice between the two distinct a-transitions) at

6



the beginning of each execution, before the random outcome in Coin is avail-
able. Therefore, the two composites Early ‖Coin and Late ‖Coin are not trace
distribution equivalent.

Inspired by this example, we showed that the coarsest pre-congruence refining
trace distribution preorder coincides with the probabilistic simulation pre-
order [LSV03]. In other words, the observational power given to adversaries
forces us into the realm of branching-style semantics, where internal branching
structures can be used to distinguish processes.

In the present paper, we follow a different direction: rather than taking the
largest pre-congruence induced by trace distribution preorder, we attempt
to weaken the observational power of adversaries. Notice, in the composition
mechanism of probabilistic automata, nondeterministic choices are resolved af-
ter the two automata are composed, allowing the adversary to make decisions
in one component using state information of the other. This sort of “informa-
tion leakage” is precisely the source of difficulty in compositionality. We there-
fore aim at a framework in which global nondeterminism is clearly separated
from local nondeterminism. (Recall that the former arises from uncertainty in
a distributed environment, while the latter from uncertainty within compo-
nents.) The challenge is then to achieve this separation without sacrificing the
flexibility to treat a composite of multiple components as a single component.

In fact, adversary models of various strengths have been studied in the set-
ting of randomized distributed algorithms [Asp03,AB04], where correctness
and complexity of algorithms depend crucially upon the particular choice of
adversary model. In the formal methods community, however, this issue has
not received much attention. Some initial steps along these lines can be found
in [CH05].

1.4 Distributed Scheduling

We propose a composition mechanism where local scheduling decisions are
based on strictly local information, while global scheduling conflicts are elim-
inated using a control-passage mechanism. Note that the term control is used
here in the spirit of “control flow” in sequential programming: a component
is said to possess the control of a system if it is scheduled to perform actively
the next action. This should not be confused with the notion of controllers for
plants, as in control theory.

Intuitively, we model a network of processes passing a single token among
them, with the property that a process enables a locally controlled transi-
tion (i.e., non-input) only if it possesses the token. Thus, the location of this
unique token determines which process is scheduled to make the next move.
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We call this model switched probabilistic input/output automata (or switched
PIOA for short). It augments the probabilistic input/output automata (PIOA)
model [WSS94,PSL00,BPW04] with additional structures and axioms for con-
trol exchange. In particular, we add a predicate active on the set of states,
indicating whether an automaton is active or inactive. We require that locally
controlled actions are enabled only if the automaton is active. In other words,
an inactive automaton must be quiescent and can only accept inputs from the
environment.

This activity status can be changed only by performing special control input
and control output actions. Control inputs correspond to an incoming token,
thus switching the automaton from inactive mode to active mode; and vice
versa for control outputs. We make sure that all such control synchronizations
are “handshakes”: at most two components may participate in a transition
labeled by a control action. Together with an appropriate initialization con-
dition, this ensures that at most one component is active at any point of an
execution.

In this framework, scheduling decisions are always made locally: each process
is equipped with a local scheduler, which has access to local history and is
responsible for resolving local nondeterministic choices. Among other things,
the local scheduler chooses when to give up the activity token and to whom
the token is sent. This is precisely the sense in which our scheduling scheme is
distributed : global scheduling is performed collectively by all local schedulers.
This scheme eliminates the need for adversaries such as the one in Figure 2
and allows us to give a compositional trace-style semantics (Definition 16 and
Theorem 33).

Distributed scheduling (as opposed to centralized scheduling) has been a main-
stream approach in the area of security analysis [BPW04,Can01], where in-
formation flow is a sensitive issue. Compared with the interactive Turing ma-
chines of [Can01] and asynchronous reactive systems of [BPW04], our frame-
work provides much better modeling flexibility, as we allow local nondetermin-
istic choices to account for lack of information and to allow implementation
freedom. However, we must admit this is an unfair comparison, because the
two frameworks mentioned above are highly specialized for delicate reasoning
in computational cryptography. Distributed scheduling also arises in practical
settings, for example, token ring or token bus networks. In such a network,
a token is passed among network nodes and the unique node possessing the
token may transmit data.

For those who may still be skeptical of distributed scheduling, we argue that
centralized scheduling can be implemented in our framework by modeling
adversaries explicitly via an arbiter automaton. In other words, processes do
not exchange control among each others directly, but they do so via the arbiter.
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This arbiter observes the whole system by way of action synchronization and
it makes scheduling decisions accordingly. Since the input signature of such
an arbiter is completely flexible, we have a convenient means to specify what
information is available for inter-component scheduling. This will be further
discussed in Section 7.

1.5 Overview

This introduction is followed by Section 2, which contains basic mathematical
preliminaries. Section 3 presents a new formulation of the PIOA framework,
combining reactive and generative system types [DHK98,vGSS95,SdV04] in
the presence of input/output (I/O) distinction. We also define I/O schedulers
for PIOAs and the notion of execution trees induced by I/O schedulers.

Starting from Section 4, we focus on distributed scheduling. Switched PIOAs
are defined as PIOAs satisfying a set of switch axioms, which formalize the
idea of control exchange. A switched probabilistic system is then given by a
switched PIOA and a set of I/O schedulers. Using a trace-style abstraction
on execution trees, we define an external behavior semantics for switched
probabilistic systems.

In Section 5, we define parallel composition for PIOAs, switched PIOAs and
switched probabilistic systems. Section 6 then presents the main technical
contribution of this paper: the external behavior semantics for switched prob-
abilistic systems is compositional (Theorem 33).

Finally, Section 7 describes controllable PIOAs and arbiters, which can be used
to implement various centralized scheduling schemes. Concluding discussions
follow in Section 8.

2 Preliminaries

Let two sets X and Y be given. A function µ : X → [0, 1] is called a discrete
probability distribution on X if

∑
x∈X µ(x) = 1. Similarly, µ is said to be

a discrete sub-probability distribution if
∑
x∈X µ(x) ≤ 1. The support of µ,

denoted Supp(µ), is the set {x ∈ X | µ(x) > 0}. We write Disc(X) for the set
of all discrete distributions on X. Given x ∈ X, the Dirac distribution on x,
denoted Dirac(x), assigns probability 1 to x. If µ is a discrete distribution on
X and Y is a superset of X, we shall freely regard µ as a discrete distribution
on Y , where µ(y) := 0 for all y ∈ Y \X.

We write X × Y for the Cartesian product of X and Y , where the projection
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maps are denoted πL and πR, respectively. The product of an indexed family
{Xi | i ∈ I} of sets is denoted

∏
i∈I Xi, with projection maps πi. Throughout

this paper, we assume that the index set I is non-empty and finite. Also, when
I is clear from context, we write ~x for a typical member of

∏
i∈I Xi.

Given a family {µi | i ∈ I} where each µi is a discrete distribution on Xi, we
form the product distribution, denoted

∏
i∈I µi, as follows:

(
∏

i∈I
µi)(~s) :=

∏

i∈I
µi(si).

This is easily shown to be a discrete distribution on
∏
i∈I Xi. Conversely, given

any distribution µ on
∏
i∈I Xi and i ∈ I, one can form the ith-projection of µ,

denoted πi(µ), by:
πi(µ)(s) :=

∑

~t:ti=s

µ(~t).

We have the obvious identity: πi(
∏
j∈I µj) = µi.

Finally, the set of all partial functions from X to Y is denoted X ⇀ Y .
For each f ∈ X ⇀ Y , we write dom(f) for the domain of f and f(x) = ⊥
whenever x 6∈ dom(f). The symbol ∅ denotes the empty function, as well as
the empty set.

3 Probabilistic Input/Output Automata

In this section, we define the basic framework of probabilistic input/output
automata, following the tradition of Input/Output Automata (IOA) of Lynch
and Tuttle [LT89]. Variations of this framework have appeared in many places
(e.g., [BPW04,PSL00,WSS94]), yet the actual definitions diverge significantly.
Among other goals, this paper aims to provide a concise and unifying formu-
lation.

We assume a fixed, countably infinite alphabet Act of action symbols. The set
of finite (resp., infinite) sequences over Act is denoted by Act<ω (resp., Actω).
The set of all sequences over Act is Act≤ω. A similar convention applies to
other sets of sequences.

3.1 Reactive and Generative Transition Structures

Inspired by [vGSS95], we define reactive and generative transition structures
as follows.

Definition 1 Let S be a set of states and let X ⊆ Act be given.
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(i) A reactive transition structure on 〈S, X〉 is a function R : S × X →
P(Disc(S)).

(ii) A generative transition structure on 〈S, X〉 is a function G : S →
P(Disc(X × S)).

A state s ∈ S blocks action a ∈ X if R(s, a) = ∅. It is said to be quiescent if
G(s) = ∅.

A reactive transition structure R describes a system that reacts to input sig-
nals. Given a state s and an action a, R(s, a) yields a set of discrete distribu-
tions on S. Thus we allow nondeterministic choices over possible distributions
on end states, while each such distribution specifies an effect of randomization
on system evolution. We use variables µ, ν, etc., for these state distributions.
Figure 3 below illustrates two such reactive systems.
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Fig. 3. Examples of Reactive Transition Systems

On the other hand, a generative transition structure G describes a system
that evolves in an active fashion. That is, every state s enables a (possibly
empty) set of transition bundles, where each bundle is a discrete distribution
on Act×S. Again, we have nondeterministic choices over bundles, while each
bundle specifies a random choice over next transitions. We use variables f, g,
etc., for these transition bundles. Figure 4 below illustrates two such generative
systems.
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Fig. 4. Examples of Generative Transition Systems

3.2 PIOAs

Now we introduce the notion of probabilistic I/O automata as a combination
of reactive and generative system types, in the presence of I/O distinction.
Notice that, we impose I/O distinction not only on the action signature, but
also on the transition structure.
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Definition 2 A probabilistic I/O automaton (PIOA) A is a tuple

〈SA, s0
A, IA, OA, HA, RA,GA〉

where:

(1) SA is a set of states with initial state s0
A ∈ SA;

(2) {IA, OA, HA} are pairwise disjoint subsets of Act, referred to as: input,
output and hidden actions, respectively;

(3) RA is a reactive transition structure on 〈SA, IA〉 and GA is a generative
transition structure on 〈SA, OA ∪HA〉.

The automaton A is said to be closed if IA is empty and open otherwise. As
usual, input and output actions are visible, while output and hidden actions
are locally controlled. The union IA∪OA∪HA is often denoted by ActA. Notice
that we omit the input enabling axiom of IOA (i.e., all inputs are accepted at
every state). This flexibility facilitates our introduction of switched PIOAs in
Section 4.

For simplicity, we will assume that SA is countable. Also we assume that
RA(〈s, a〉) and GA(s) are countable for all s ∈ SA and a ∈ IA.

In a typical automata-theoretic setting, an execution (or a path) is a sequence
of states and actions in alternating fashion satisfying the obvious reachability
condition. Our version, called an execution branch, is enriched with additional
information from the reactive and generative transition structures.

Definition 3 Let A be a PIOA and let s ∈ SA be given. We use joint recursion
to define the set of execution branches from s, denoted Bran(s), together with
the function last : Bran(s)→ SA.

• The length-one sequence containing s (written s) is in Bran(s) and is
called the empty branch, where last(s) := s.

• For all r ∈ Bran(s), a ∈ IA, µ ∈ RA(last(r), a) and s′ ∈ Supp(µ), we have
r.a.µ.s′ ∈ Bran(s). Moreover, last(r.a.µ.s′) := s′.

• For all r ∈ Bran(s), f ∈ GA(last(r)) and 〈a, s′〉 ∈ Supp(f), we have
r.f.a.s′ ∈ Bran(s). Moreover, last(r.f.a.s′) := s′.

We write Bran(A) for Bran(s0
A).

Notice that execution branches are always finite, because Bran(s) is given by a
recursive definition. Since we assume that SA, RA and GA are all countable, we
may infer that Bran(A) is also countable. An infinite branch from s is simply
an infinite subset of Bran(s) that is linearly ordered by the prefix ordering on
sequences, which is denoted v. We write Bran≤ω(s) for the set of finite and
infinite branches from s. Similarly, Bran≤ω(A) := Bran≤ω(s0

A).
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The trace of a branch r ∈ Bran(s) is defined in the usual way:

• tr(s) := ε,
• tr(r.a.µ.s′) := tr(r).a (in this case a ∈ IA), and
• tr(r.f.a.s′) is tr(r).a if a ∈ OA and tr(r) if a ∈ HA.

Given a finite trace α ∈ (IA ∪ OA)<ω, we write tr-1(α) for the set of branches
r in Bran(A) with tr(r) = α.

It is often convenient to speak of reachability with non-zero probability, ab-
stracting way from the actual probability distributions. Given s, s′ ∈ SA and
a ∈ ActA, we say that s′ is reachable (in one step) from s via action a, denoted
s

a−→ s′, just in case:

• s.a.µ.s′ ∈ Bran(s) for some µ, or
• s.f.a.s′ ∈ Bran(s) for some f .

Similarly, a state s is reachable if there exists r ∈ Bran(A) such that last(r) = s.

Given two PIOAs A and B with the same action signature, one can speak
of A being a sub-automaton of B. Intuitively, it means A can be obtained
from B by removing certain states and/or transitions. This is made precise in
Definition 4 below.

Definition 4 Suppose A and B are PIOAs with the same action signature
{I, O,H}. We say that A is a sub-automaton of B, denoted A ⊆ B, if

• SA ⊆ SB and s0
A = s0

B;
• for all s ∈ SA and a ∈ I, RA(s, a) ⊆ RB(s, a) and GA(s) ⊆ GB(s).

3.3 I/O Schedulers and Execution Trees

As we saw in Section 1.3, the full observational power of history-dependent ad-
versaries leads to unrealistic correlations in a parallel composition (Figure 2).
To exclude these correlations from our semantics, we pair a PIOA with a set
of acceptable schedulers, forming a probabilistic system (Definition 8 below).

We first make explicit the notion of schedulers in an I/O setting.

Definition 5 Let A be a PIOA. An input scheduler σ for A is a partial
function

σ : Bran(A)× I ⇀ Disc(SA)

such that: for all 〈r, a〉 ∈ Bran(A) × I, if RA(last(r), a) is non-empty, then
σ(r, a) is defined and is in RA(last(r), a). An output scheduler ρ for A is a
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partial function
ρ : Bran(A) ⇀ Disc((OA ∪HA)× SA)

such that: for all r ∈ Bran(A), if ρ(r) is defined, then ρ(r) ∈ GA(last(r)). An
I/O scheduler for A is then a pair 〈σ, ρ〉 where σ is an input scheduler for A
and ρ is an output scheduler for A.

I/O schedulers remove nondeterministic choices in A. The input scheduler σ
specifies the reactive schedule: given a finite history r and an input signal
a that is not blocked by last(r), σ selects a distribution from RA(last(r), a).
Similarly, the output scheduler ρ specifies the generative schedule: given a
finite history r, ρ selects a bundle from GA(last(r)) if last(r) is not quiescent.
Notice that the output scheduler has slightly more freedom compared to its
input counterpart: it may halt the execution by setting ρ(r) to ⊥, even if
GA(last(r)) is non-empty.

In the rest of this section, we define the execution tree induced by a triple
〈A, σ, ρ〉. This is analogous to a probabilistic execution in the probabilistic
automata framework [Seg95].

Definition 6 Let A be a PIOA and let 〈σ, ρ〉 be an I/O scheduler for A. The
execution tree generated by 〈A, σ, ρ〉 is the function Qσ,ρ : Bran(A) → [0, 1]
defined recursively by:

• Qσ,ρ(s
0
A) = 1;

• given r′ of the form r.a.µ.s′,
· Qσ,ρ(r

′) := Qσ,ρ(r) · µ(s′), if µ = σ(r, a);
· Qσ,ρ(r

′) := 0, otherwise;
• given r′ of the form r.f.a.s′,

· Qσ,ρ(r
′) := Qσ,ρ(r) · f(〈a, s′〉), if f = ρ(r);

· Qσ,ρ(r
′) := 0, otherwise.

If A is closed, then the input scheduler σ must be the empty function. In that
case, we write Qρ for Qσ,ρ. We claim that Qρ induces a probability space over
the sample space ΩA := Bran≤ω(A). The construction is completely standard,
so we provide an outline below and refer the reader to [Seg95] for details.

(i) Each r ∈ Bran(A) generates a cone of executions as follows: Cr := {r′ ∈
Bran≤ω(A) | r v r′}.

(ii) Let FA denote the smallest σ-field on ΩA generated by the collection
{Cr | r ∈ Bran(A)}.

(iii) Construct a (unique) probability measure mρ on FA such that mρ[Cr] =
Qρ(r) for all r in Bran(A).

In this way, Qρ gives rise to the probability space (ΩA,FA,mρ), which is
called a probabilistic execution in [Seg95]. Notice, for every r ∈ Bran(A), the
singleton set {r} is measurable (i.e., {r} ∈ FA). By countable additivity, we
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may conclude that Qρ also induces a discrete sub-probability distribution on
Bran(A), namely, Pρ(r) := mρ({r}).

In case A is open, an execution tree does not always induce a probability mea-
sure. This is because I/O schedulers do not resolve nondeterministic choices
that are external to A (i.e., those controlled by the computation environment).
For example, given a branch r′ of the form r.a.σ(r, a).s′, the value Qσ,ρ(r

′) is
computed from Qσ,ρ(r) and σ(r, a)(s′), neither of which contains information
about the probability of a being provided as an input by the environment.

As we introduce switched PIOAs in Section 4, the token structure eliminates
nondeterministic choices between input events and locally controlled activities.
In that setting, execution trees acquire better structural properties, because
all remaining nondeterministic choices are those among different inputs. This
allows us to construct conditional probability distributions as follows: given
a finite trace α, an execution tree induces a sub-probability distribution on
the set of branches with trace α. (Proposition 10 is a discrete version of this
claim). This holds even for switched PIOAs that are open. As a result, our
trace-style abstraction of execution trees is well-defined.

Overall, the notion of execution trees plays an important role in our technical
development. It gives great flexibility in manipulating open components, which
are typically part of a parallel composition forming a closed PIOA. In the
end, we are assured that any probabilistic statement about the final, closed
composite is meaningful; that is, it is based on a well-defined (unconditional)
probability measure.

4 Switched PIOAs

We now augment the PIOA model of Section 3 with additional structures and
axioms, yielding the notion of switched PIOAs. These changes are prompted
by our proposal to use distributed scheduling (cf. Section 1.4). Namely, we use
a token structure to eliminate global scheduling conflicts, ensuring that

(i) at any point of an execution, at most one component is active;
(ii) the currently active component always selects the next active component.

In order to implement this token structure, we must distinguish between active
and inactive states of an automaton. Moreover, we designate special control
actions and impose five switch axioms, formalizing our intuitions about control
passage among components. This leads to Definition 7 below. For technical
simplicity, we assume that Act is partitioned into two sets: BAct (basic actions)
and CAct (control actions). Both sets are assumed to be countably infinite.
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Definition 7 A switched PIOA is given by a PIOA A, together with a func-
tion activeA : SA → {0, 1} and a set SyncA ⊆ OA ∩ CAct of synchronized
control actions such that the following (universally quantified) axioms are sat-
isfied.

(S1) activeA(s) = 0 ⇒ (GA(s) = ∅ ∧ ∀a ∈ IA. RA(s, a) 6= ∅)
(S2) activeA(s) = 1 ⇒ ∀a ∈ IA. RA(s, a) = ∅
(S3) (s

a−→ s′ ∧ a ∈ IA ∩ CAct) ⇒ activeA(s′) = 1
(S4) (s

a−→ s′ ∧ a ∈ (OA ∩ CAct) \ SyncA) ⇒ activeA(s′) = 0
(S5) (s

a−→ s′ ∧ a ∈ BAct∪HA ∪ SyncA) ⇒ activeA(s) = activeA(s′)

Definition 8 A switched probabilistic system A is a pair 〈A, S〉, where A is
a PIOA and S is a set of I/O schedulers for A in the sense of Definition 5.
Such a system is full if S is the set of all I/O schedulers for A.

For better readability, we classify the action symbols of A as follows:

• BIA := IA ∩ BAct (basic inputs);
• BOA := OA ∩ BAct (basic outputs);
• CIA := IA ∩ CAct (control inputs);
• COA := (OA ∩ CAct) \ SyncA (control outputs).

Essentially, we have a partition {BIA,BOA, HA,CIA,COA, SyncA} of ActA. We
say that A is initially active if activeA(s0

A) = 1. Otherwise, it is initially inac-
tive.

The first two axioms constrain the behavior of A based on its activity status.
Essentially, Axiom (S1) says that an inactive automaton is a reactive machine,
therefore all inactive states of A must be quiescent and satisfy the usual input
enabling assumption. On the other hand, an active automaton is a generative
machine, therefore Axiom (S2) requires all active states of A to be input
blocking.

The last three axioms specify how the various types of actions change the
activity status of an automaton. Axioms (S3) and (S4) say that control inputs
lead to active states and control outputs to inactive states. Axiom (S5) says
that no other actions may change the activity status.

Together, these five axioms describe an “activity cycle” for the automaton A:

(i) while in inactive mode, A does not enable locally controlled transitions,
although it may still receive inputs from its environment;

(ii) when A receives a control input it moves into active mode, where it
may perform hidden or output transitions, possibly followed by a control
output;

(iii) via this control output A returns to inactive mode.
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This is captured in Lemma 9 below.

Lemma 9 Let A be a switched PIOA and let s, s′ in SA and a ∈ ActA be
given. Suppose that s

a−→ s′.

(1) If a ∈ BIA, then activeA(s) = activeA(s′) = 0.
(2) If a ∈ CIA, then activeA(s) = 0 and activeA(s′) = 1.
(3) If a ∈ BOA ∪HA ∪ SyncA, then activeA(s) = activeA(s′) = 1.
(4) If a ∈ COA, then activeA(s) = 1 and activeA(s′) = 0.

PROOF. For Item (1), note that a ∈ IA. By the definition of s
a−→ s′, we

may choose distribution µ ∈ RA(s, a) such that s′ ∈ Supp(µ). Therefore, by
Axiom (S2), we know that that activeA(s) = 0. Applying Axiom (S5) we have
activeA(s) = activeA(s′) = 0. Item (3) follows similarly from Axioms (S1)
and (S5).

For Item (2), we first use Axiom (S2) to argue that activeA(s) = 0. More-
over, Axiom (S3) implies activeA(s′) = 1. Item (4) follows similarly from Ax-
ioms (S1), (S4). 2

To give some concrete examples of switched PIOAs, we return to automata
Early, Late and Coin of Figure 1. Their adaptations to the switched PIOA
framework are illustrated in Figure 5 below. We have chosen to assign actions
b and c to the basic output signature of Early′ and Late′, whereas a, d and e
are basic outputs of Coin′. Following conventions in process algebra, we use ?
to indicate input actions and ! to indicate output actions.
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Fig. 5. Adaptations of Early, Late and Coin

Due to the additional predicate active, the state spaces have been doubled.
Active states are drawn in the foreground and inactive ones in the background.
Thus, Early′ and Late′ are initially inactive and Coin′ is initially active. Each
two-headed arrow indicates a control output from active to inactive and a
control input from inactive to active. We assume that Early′ and Late′ have a
sole control input go and a sole control output done; and vice versa for Coin′.
For a clearer picture, we have omitted the names of control actions, as well as
non-essential input loops.
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4.1 Conditional Probability Distributions

Recall from Section 3.3 that each I/O scheduler 〈σ, ρ〉 for a PIOA A induces
an execution tree Qσ,ρ : Bran(A) → [0, 1]. Also, an execution tree in an open
PIOA does not always induce a probability measure, because it does not take
into account input probabilities. We now demonstrate the fact that, in the case
of switched PIOAs, one can in fact make meaningful probabilistic statements
based on execution trees, as long as these statements are conditioned upon
occurrences of inputs. This claim is formalized in Proposition 10 below.

First, we need the notion of minimal branches: a branch r ∈ Bran(s) is said to
be minimal if every proper prefix of r in Bran(s) has a strictly shorter trace.
Notice, the empty branch is minimal. For non-empty r, it is minimal if and
only if its last action label is visible. We write Branmin(s) for the set of minimal
branches in Bran(s). For each α ∈ (IA ∪ OA)<ω, let tr-1

min(α) denote the set of
minimal branches of A with trace α.

Minimality is important because distinct minimal branches always represent
mutually exclusive events, even if these branches have the same trace. In con-
trast, if we drop the minimality requirement, distinct branches with the same
trace may be prefix-related; that is, one event may be strictly included in the
other. Restricting our attention to minimal branches, we are able to define dis-
crete probability distributions directly, bypassing the usual cone construction
(cf. Section 3.3).

Proposition 10 Let A be a switched PIOA and let 〈σ, ρ〉 be an I/O scheduler
for A. Let α ∈ (IA∪OA)<ω be given and assume that tr-1(α) is nonempty. Then
the restriction of Qσ,ρ to tr-1

min(α) is a discrete sub-probability distribution.

The proof of Proposition 10 relies on some auxiliary lemmas. First we show
that every non-minimal branch ends in an active state. This is essentially a
corollary of Lemma 9.

Lemma 11 Let A be any switched PIOA and let s be a state in A. For every
non-minimal branch r in Bran(s), activeA(last(r)) = 1.

PROOF. Since r is non-minimal, it must be non-empty and of the form
q.f.a.t where a ∈ HA. Then we have last(q)

a−→ t. By Lemma 9, we know that
activeA(last(r)) = activeA(t) = 1. 2

Extending Lemma 11, we show that inputs transitions are never preceded by
hidden transitions.
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Lemma 12 Let A be any switched PIOA and let s be a state in A. Let r, r′ ∈
Bran(s) be given and suppose r′ is of the form r.a.µ.s′. Then r is minimal.

PROOF. By the structure of r′ we know that a ∈ IA. Lemma 9 guarantees
that activeA(last(r)) = 0. Thus, by Lemma 11, r must be minimal. 2

Next we consider a situation in which an output action a takes place after a
trace α. Observe that Lemma 13 applies to PIOAs in general (i.e., it does not
require switch axioms).

Lemma 13 Let A be a PIOA and let 〈σ, ρ〉 be an I/O scheduler for A. Let
α ∈ (IA∪OA)<ω and a ∈ OA be given. Suppose that tr-1(αa) in A is nonempty.
The following hold for every r ∈ tr-1

min(α).

(i) Let C denote the set of branches r′ ∈ tr-1(α) such that r v r′ v r′′ for
some r′′ ∈ tr-1

min(αa). For each k ∈ N, let Ck denote the set of r′ ∈ C
such that r′ extends r with k transitions. Then

∑
r′∈Ck

Qσ,ρ(r
′) ≤ Qσ,ρ(r).

(ii)
∑
r′′∈tr-1

min(αa), rvr′′ Qσ,ρ(r
′′) ≤ Qσ,ρ(r).

PROOF. Observe that all of the infinite sums above are countable, since the
state space and transition structures of A are countable.

We prove Item (i) by induction on k. The base case is trivial since r is the
unique element in C0. Consider r′′ ∈ Ck+1. Since the last transition in r′′ is a
hidden transition, r′′ must be of the form r′.f.b.s′′ where r′ ∈ Ck and b ∈ HA.
By the definition of Qσ,ρ, we know that Qσ,ρ(r

′′) 6= 0 implies f = ρ(r′) and
〈b, s′′〉 ∈ Supp(f). Therefore we have the following.

∑

r′′∈Ck+1

Qσ,ρ(r
′′)

=
∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{〈b, t〉∈Supp(ρ(r′)) | r′.ρ(r′).b.t∈Ck+1}
Qσ,ρ(r

′) · ρ(r′)(〈b, t〉)

=
∑

{r′∈Ck | ρ(r′)6=⊥}
(Qσ,ρ(r

′) ·
∑

{〈b, t〉∈Supp(ρ(r′)) | r′.ρ(r′).b.t∈Ck+1}
ρ(r′)(〈b, t〉))

≤
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) · 1

≤
∑

r′∈Ck

Qσ,ρ(r
′)

By the induction hypothesis, this is at most Qσ,ρ(r).

We move on to Item (ii). By the definition of minimality, every r′′ ∈ tr-1
min(αa)

is of the from r′.f.a.s′′ with r′ ∈ Ck for some k. Again, by the definition of
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Qσ,ρ, we have Qσ,ρ(r
′′) 6= 0 implies f = ρ(r) and 〈a, s′′〉 ∈ Supp(f). This

implies:

∑

r′′∈tr-1min(αa), rvr′′
Qσ,ρ(r

′′)

=
∞∑

k=0

∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
Qσ,ρ(r

′) · ρ(r′)(〈a, s′′〉).

Therefore, it suffices to show that all partial sums are less than or equal to
Qσ,ρ(r). To save space, let Lr′ denote

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
ρ(r′)(〈a, s′′〉),

and let Mr′ denote

∑

{〈b, t〉∈Supp(ρ(r′)) | r′.ρ(r′).b.t∈Ck+1}
ρ(r′)(〈b, t〉)).

For each k ∈ N, we have

∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
Qσ,ρ(r

′) · ρ(r′)(〈a, s′′〉)

=
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) · Lr′

≤
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) · (1−Mr′)

=
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′)−
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) ·Mr′

≤
∑

r′∈Ck

Qσ,ρ(r
′) −

∑

r′∈Ck+1

Qσ,ρ(r
′),

where the last inequality follows from the proof of Item (i). Now, for all K ∈ N,

K∑

k=0

∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
Qσ,ρ(r

′) · ρ(r′)(〈a, s′′〉)

≤
K∑

k=0

(
∑

r′∈Ck

Qσ,ρ(r
′) −

∑

r′∈Ck+1

Qσ,ρ(r
′))

=
∑

r′∈C0

Qσ,ρ(r
′) −

∑

r′∈CK+1

Qσ,ρ(r
′))

≤
∑

r′∈C0

Qσ,ρ(r
′) = Qσ,ρ(r). 2

We are now ready to prove Proposition 10.
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PROOF. [Proposition 10] We proceed by induction on the length of α. If
α is empty, then tr-1

min(α) contains a unique element, namely, s0
A. Our claim

holds because by definition Qσ,ρ(s
0
A) = 1.

Consider α′ of the form αa. We have two cases.

• a ∈ IA. Let r′ ∈ tr-1
min(α′) be given. By the definition of minimality, r′

must be of the form r.a.µ.s′. By Lemma 12, r is minimal and hence in
tr-1

min(α). Moreover, by the definition of Qσ,ρ, we know that Qσ,ρ(r
′) 6= 0

implies µ = σ(r, a). Therefore,

∑

r′∈tr-1
min(α′)

Qσ,ρ(r
′)

=
∑

{r∈tr-1
min(α) | σ(r,a)6=⊥}

∑

s′∈Supp(σ(r,a))

Qσ,ρ(r) · σ(r, a)(s′)

=
∑

{r∈tr-1
min(α) | σ(r,a)6=⊥}

(Qσ,ρ(r) ·
∑

s′∈Supp(σ(r,a))

σ(r, a)(s′))

≤
∑

{r∈tr-1
min(α) | σ(r,a)6=⊥}

Qσ,ρ(r)

≤
∑

r∈tr-1
min(α)

Qσ,ρ(r) ≤ 1,

where the last inequality follows from the induction hypothesis.
• a ∈ OA. By Lemma 13, we have

∑

r′∈tr-1min(α′)

Qσ,ρ(r
′) =

∑

r∈tr-1min(α)

∑

r′′∈tr-1
min(αa), rvr′′

Qσ,ρ(r
′′)

≤
∑

r∈tr-1
min(α)

Qσ,ρ(r) ≤ 1.

Again, the last inequality follows from the induction hypothesis. 2

4.2 Likelihood Assignments

We are now ready to define a notion of external behavior for switched prob-
abilistic systems. In particular, we derive a likelihood assignment from each
triple 〈A, σ, ρ〉, where A is a switched PIOA and 〈σ, ρ〉 is an I/O scheduler
for A. This is analogous to the notion of trace distributions in [Seg95], where
a trace distribution is obtained from a probabilistic automaton (without I/O
distinction) together with a randomized, history-dependent scheduler.

Just as trace distributions are behavioral abstractions of probabilistic exe-
cutions, likelihood assignments are behavioral abstractions of execution trees.
Roughly speaking, the probability of observing a certain trace α ∈ Act<ω is the
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probability of the automaton executing any branch with trace α. This can be
computed by summing the probabilities of all such branches in the execution
tree. Since execution trees of open PIOAs do not always induce probabil-
ity measures, we opt for the term “likelihood”, as opposed to “probability”.
Nonetheless, the method of abstraction is completely analogous; namely, it is
done via a lifting of the trace operator tr : Bran(A)→ (IA ∪OA)<ω.

Definition 14 Let A be a switched PIOA and let 〈σ, ρ〉 be an I/O scheduler
for A. The likelihood assignment induced by 〈A, σ, ρ〉, denoted Lσ,ρ, is the
function tr(Qσ,ρ) : (IA ∪OA)<ω → [0, 1] given as follows.

tr(Qσ,ρ)(α) :=
∑

r∈tr-1min(α)

Qσ,ρ(r).

This is well-defined by virtue of Proposition 10.

As with execution trees, we omit the input scheduler σ whenever A is closed.
In that case, each Lρ induces a probability measure on the sample space Ω :=
O≤ωA . The σ-field F on Ω is generated by the collection {Cα | α ∈ O<ω

A }, where
Cα := {α′ ∈ Ω | α v α′}. The measure mρ on F is uniquely determined by
the equations mρ[Cα] = Lρ(α) for all α ∈ O<ω

A . This yields a probability space
〈ΩA, FA, mρ〉, which is called a trace distribution in [Seg95].

Thus, our notions of execution trees and likelihood assignments can be seen
as generalizations of probabilistic executions and trace distributions, respec-
tively. Since the latter are not well-defined in the presence of inputs, we have
traditionally relied on closing contexts in order to define the behavior of open
automata [CLSV04a,CLSV04b]. Under that approach, a possible behavior of
an open automaton A is a trace distribution of A‖C, where C is any closing
context for A (i.e., C is compatible with A and every input action of A is an
output of C). This cumbersome step often complicates our proofs of behavioral
inclusion, obscuring ideas that are more fundamental.

In contrast, there is no need to quantify over closing contexts under the cur-
rent setup, because execution trees and likelihood assignments are well-defined
for open automata. The quantification is implicit in our definitions, since an
execution tree can be seen as a collection of conditional sub-probability dis-
tributions (cf. Proposition 10). This leads to a very simple and natural notion
of external behavior.

Definition 15 Let A = 〈A, S〉 be a switched probabilistic system. An external
behavior of A is a likelihood assignment Lσ,ρ induced by some 〈σ, ρ〉 ∈ S. We
write ExtBeh(A) for the set of all external behaviors of A.

As usual, implementation is given by behavioral inclusion.
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Definition 16 Switched probabilistic systems A = 〈A, S〉 and B = 〈B, T 〉
are said to be comparable if:

• activeA(s0
A) = activeB(s0

B) and
• IA = IB, OA = OB, and SyncA = SyncB.

Given such comparable A and B, we say that A implements B if ExtBeh(A) ⊆
ExtBeh(B).

5 Parallel Composition

In this section, we define parallel composition in an incremental fashion. First
we do so for PIOAs (Section 5.1), specifying the composite transition struc-
tures. As usual, this definition is based on action synchronization and does
not attempt to resolve nondeterministic choices among parallel components.
In Section 5.2, we extend this composition operator to switched PIOAs, taking
care that the composite still satisfies all switch axioms.

Then, departing from the “compose-and-schedule” approach (cf. Section 1.2),
we describe how to compose I/O schedulers for compatible switched PIOAs
to form a single I/O scheduler for their composite (Section 5.3). This extends
easily to parallel composition for probabilistic systems. Thus, our approach
can be described as “schedule-and-compose”, where parallel composition is
imposed after local schedules have been completely specified.

Unlike most composition operators in the literature, our definitions do not
involve normalization mechanisms, which collect and redistribute deadlock
probabilities. Instead, we take advantage of I/O distinction and use proba-
bilistic input enabling to make sure that deadlocks never occurs.

5.1 Composing PIOAs

Let us begin with an example to illustrate how we intend to compose reac-
tive and generative transition structures. Consider automata A, B and C in
Figure 6 and assume that action a is in the signatures of all three automata,
while b is in the signatures of B and C only.

First we consider A‖B. Here both A and B are reactive, therefore their com-
posite is constructed in a straightforward manner via synchronization of shared
actions. In particular, if input a is provided, then both A and B react and
move to corresponding new states. If, on the other hand, b is provided, then
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Fig. 6. Automata A, B and C

only B reacts and A simply stutters (i.e., no transition takes place). This is
illustrated in Figure 7 on the left.
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Fig. 7. Parallel Composites A‖B and A‖B‖C

Next we add C to the parallel composition. Now the composite exhibits gen-
erative behavior, because both actions a and b are locally controlled by C. In
A‖B‖C, these action each take place with probability 1

2
, just as in C. If a is

chosen, then all three components participate in the transition. Otherwise, b
is chosen and only B and C participate. This is illustrated in Figure 7 on the
right.

Despite its simplicity, Figure 7 demonstrates our basic idea of parallel compo-
sition: in each step of the composite, at most one component behaves actively,
while all others react to the action performed by the active component. In the
rest of this section, we try to formalize this simple idea in the general setting
of PIOAs, where components may exhibit nondeterministic behavior.

We start with the notion of compatibility: two PIOAs A and B are said to be
compatible if OA ∩ OB = ActA ∩HB = ActB ∩HA = ∅.

Let {Ai | 1 ≤ i ≤ n} denote a set of pairwise compatible PIOAs and, for
readability, we replace all subscripts Ai with i. (The same convention will be
adopted throughout this paper.) The parallel composite, denoted �n

i=1 Ai, is
the PIOA D with the following state space and action signature:

(1) SD :=
∏n
i=1 Si with s0

D := 〈s0
1, . . . , s

0
n〉;

(2) ID :=
⋃n
i=1 Ii \

⋃n
i=1 Oi, OD :=

⋃n
i=1 Oi, and HD :=

⋃n
i=1 Hi;

The reactive transition structure RD and the generative transition structure
GD are given in Definition 17 and Definition 18, respectively.
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Definition 17 Let ~s ∈ SD and a ∈ ID be given. We define RD(~s, a) ⊆
Disc(SD) to be the set of all discrete distributions of the form

∏n
i=1 µi for

some family ~µ ∈ ∏n
i=1 Disc(Si) satisfying:

• if a 6∈ Ii, then µi = Dirac(si);
• otherwise, µi ∈ Ri(si, a).

In other words, each process Ai stutters if the given input a is not in the
signature of Ai. Otherwise, Ai reacts to this input by

(i) first choosing nondeterministically a distribution µi from Ri(si, a);
(ii) then choosing randomly a state ti according to µi.

We assume that processes evolve independently, therefore a product construc-
tion on state distributions µi yields a typical member of RD(~s, a).

The definition of GD for D =�n
i=1 Ai is slightly more complicated, where

exactly one component Dj is generative and all others are reactive.

Definition 18 Let ~s ∈ SD and 1 ≤ j ≤ n be given. Let Nj denote the index
set (OD ∪HD)× {i | 1 ≤ i ≤ n, i 6= j}. Suppose we have a transition bundle
gj ∈ Gj(sj) and a family ~µ ∈ ∏〈a, i〉∈Nj Disc(Si) of state distributions so that:
for all 〈a, i〉 ∈ Nj,

• if a 6∈ Ii, then µa,i = Dirac(si);
• otherwise, µa,i ∈ Ri(si, a).

Then gj and ~µ are said to generate the following distribution f on (OD ∪
HD)× SD: for all 〈a, ~t〉,

f(〈a, ~t〉) := gj(〈a, tj〉) ·
∏

i6=j
µa,i(ti).

With slight abuse of notation, we write f = gj ×
∏
〈a, i〉∈Nj µa,i.

We define Gj
D(~s) ⊆ Disc((OD∪HD)×SD) to be the set of all bundles f so that

f is generated by some gj ∈ Gj(sj) and some ~µ ∈ ∏〈a, i〉∈Nj Disc(Si) satisfying

the conditions above. Then GD(~s) :=
⋃

1≤j≤n Gj
D(~s).

Here the unique active component Aj chooses nondeterministically a transition
bundle gj enabled from sj. Once gj is specified, a pair 〈a, tj〉 is chosen randomly
according to gj. The other processes Ai either stutter or react to the action
performed by Aj, whichever is dictated by their action signatures. Note that
the choice of the family ~µ is nondeterministic and is independent from the
particular pair 〈a, tj〉 drawn from gj.

Lemma 19 below shows that the new bundles f constructed in Definition 18
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are in fact well-defined discrete distributions.

Lemma 19 The bundle f in Definition 18 is well-defined.

PROOF. We need to verify that f is a discrete distribution on (OD ∪HD)×
SD. First consider fixed a ∈ Oj ∪Hj. By the definition of f , we have

∑

~t∈SD
f(〈a, ~t〉) =

∑

t1∈S1

. . .
∑

tn∈Sn
gj(〈a, tj〉) ·

∏

i6=j
µa,i(ti).

We can rearrange the sums and factor out gj(〈a, tj〉) to obtain:

∑

tj∈Sj
gj(〈a, tj〉) · (

∑

t1∈S1

. . .
∑

tj−1∈Sj−1

∑

tj+1∈Sj+1

. . .
∑

tn∈Sn

∏

i6=j
µa,i(ti)).

Since each µa,i is a discrete distribution on Si, an easy inductive argument
shows that

∑

t1∈S1

. . .
∑

tj−1∈Sj−1

∑

tj+1∈Sj+1

. . .
∑

tn∈Sn

∏

i6=j
µa,i(ti) = 1.

Then we have
∑
~t∈SD f(〈a, ~t〉) =

∑
tj∈Sj gj(〈a, tj〉).

Now notice that f(〈a, ~t〉) = 0 whenever a 6∈ Oj ∪Hj. Therefore,

∑

〈a,~t〉∈(OD∪HD)×SD
f(〈a, ~t〉) =

∑

a∈Oj∪Hj

∑

~t∈SD
f(〈a, ~t〉)

=
∑

a∈Oj∪Hj

∑

tj∈Sj
gj(〈a, tj〉) calculation above

= 1 gj discrete distribution

Therefore f is a discrete distribution on (OD ∪HD)× SD. 2

This completes the definition of parallel composition for PIOAs. We write �n

for the n-ary composition operator and, when n = 2, we omit the superscript
and use infix notation. Due to symmetries in our definitions, it is easy to see
that � is commutative. We claim that � is also associative, because both
(A � B) � C and A � (B � C) are isomorphic to �3 {A,B,C}. We omit
the details.

5.2 Composing Switched PIOAs

As usual, we need an appropriate notion of compatibility: switched PIOAs A
and B are said to be compatible if
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• they are compatible as PIOAs;
• ActA ∩ SyncB = ActB ∩ SyncA = CIA ∩CIB = ∅;
• at most one of them is initially active.

Since switched PIOAs are special instances of PIOAs, one may apply the
operator � of Section 5.1 to compatible switched PIOAs. Unfortunately, the
result does not always satisfy all switch axioms. We give a simple example.

Consider automata D and E in Figure 8 below and assume that all actions
shown are control actions.

s0
D

D

a?

55 s1

c!tt
GF ED@A BC s0

E

E

b?

55 s2

d!tt
GF ED@A BC

Fig. 8. Automata D and E

If from the initial state the composite D � E receives an input signal a,
then D moves into an active state, s1, and E remains at its initial state. This
is shown in Figure 9. In state 〈s1, s

0
E〉, the composite is considered active,

because D is. However, an input transition with label b is still enabled, violat-
ing Axiom (S2). Moreover, suppose in fact an input signal b is received from
state 〈s1, s

0
E〉. Then in the resulting state 〈s1, s2〉 both D and E are active.

This state violates Axiom (S4), because a single control output (say c) is not
sufficient to deactivate both components (Figure 9).

〈s0
D, s

0
E〉 a? // 〈s1, s

0
E〉 b? // 〈s1, s2〉 c! // 〈s0

D, s2〉

Fig. 9. A Potential Execution of D � E

This is a counterintuitive scenario: if the environment of D � E is itself a
switched PIOA, then it should have become inactive after providing the first
control input a, thus unable to provide the second control input b. In fact, it is
shown in [CLSV04b] that any state with more than one active components is
unreachable, provided the closing environment is also a switched PIOA. (The
proof involves lengthy inductive arguments and is omitted here.)

This example suggests that, when switched PIOAs are composed using the
PIOA parallel operator �, the resulting state space and reactive transition
structure both contain too many elements. Therefore, we are prompted to
consider an appropriate sub-automaton with fewer states and fewer input
transitions. This is done in Definition 20 below.

Definition 20 Let {Ai | i ∈ I} be a set of pairwise compatible switched
PIOAs. The parallel composite ‖ni=1 Ai is the sub-automaton E of �n

i=1 Ai
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obtained by

(i) removing all states in which more than one Ai’s are active;
(ii) removing all input transitions from states in which at least one Si is

active.

Moreover, SyncE :=
⋃

1≤i≤n Synci ∪
⋃

1≤i,j≤n(CIi ∩COj), and activeE(~s) := 0 if
and only if activei(si) = 0 for all i.

Although the signature of E =‖ni=1 Ai is completely specified in Definition 20,
it is instructive to provide a list of explicit identities.

Lemma 21 The following equalities hold:

• BIE =
⋃

1≤i≤n BIi \
⋃

1≤i≤n BOi;
• CIE =

⋃
1≤i≤n CIi \

⋃
1≤i≤n COi;

• BOE =
⋃

1≤i≤n BOi;
• COE =

⋃
1≤i≤n COi \

⋃
1≤i≤n CIi.

PROOF. By definition, IE =
⋃

1≤i≤n Ii \
⋃

1≤i≤nOi. Since BAct and CAct are
disjoint, we have the desired properties about BIE and CIE.

Similarly, OE =
⋃

1≤i≤nOi, therefore BOE =
⋃

1≤i≤n BOi and OE ∩ CAct =⋃
1≤i≤n COi. Applying the definitions of COE and SyncE, we have

COE =
⋃

1≤i≤n COi \
⋃

1≤i≤n CIi. 2

To show that such E is a well-defined PIOA, we need to verify (i) s0
E ∈ SE,

and (ii) SE is closed under the transition structures RE and GE. Clearly, the
first claim holds by the definition of compatibility. The second is confirmed
by Lemmas 22 and 23 below.

For convenience, we partition SE into two sets:

• SE,0 is the set of all ~s such that activei(si) = 0 for all i;
• SE,1 is the set of all ~s such that activei(si) = 1 for exactly one i.

Lemma 22 Let ~s ∈ SE and a ∈ IE be given. For all µ ∈ RE(~s, a):

• a ∈ BIE implies Supp(µ) ⊆ SE,0;
• a ∈ CIE implies Supp(µ) ⊆ SE,1.

PROOF. By Definition 20, RE(~s, a) is empty whenever ~s ∈ SE,1. Therefore
we may assume that ~s ∈ SE,0. Let µ ∈ RE(~s, a) and ~s ′ ∈ Supp(µ) be given.
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First assume a ∈ BIE. For every i, if a 6∈ Acti, it must be the case that si = s′i
and hence activei(si) = activei(s

′
i) = 0. Otherwise, we have a ∈ BIi and we

may apply Lemma 9 to conclude that activei(s
′
i) = 0. Therefore ~s ′ ∈ SE,0.

Now assume a ∈ CIE. By compatibility, a ∈ Actj for exactly one j. Choose
such j. By Lemma 9, we know activej(s

′
j) = 1. For all other i, a 6∈ Acti and

hence activei(si) = activei(s
′
i) = 0. This proves ~s ′ ∈ SE,1. 2

Lemma 23 Let ~s ∈ SE and f ∈ GE(~s) be given. For every 〈a, ~s ′〉 ∈ Supp(f);

• If a ∈ BOE ∪ SyncE ∪HE, then ~s ′ ∈ SE,1;
• If a ∈ COE, then ~s ′ ∈ SE,0.

PROOF. By Axiom (1), we know that Gi(si) is empty for every i with
activei(si) = 0. This implies s ∈ SE,1, because otherwise GE(~s) would be
empty. Let j be the unique index with activej(sj) = 1 and choose gj ∈ Gj(sj)
such that f is generated by gj. By Definition 18, a must be in Oj ∪ Hj. We
have the following cases.

(1) a ∈ Hj ∪ Syncj. Compatibility of switched PIOAs requires that a 6∈ Acti
for all i 6= j. This implies, for all i 6= j, si = s′i and hence activei(s

′
i) =

activei(si) = 0. On the other hand, we may apply Lemma 9 to Aj and
conclude that activei(s

′
j) = activei(sj) = 1. Therefore, ~s ′ ∈ SE,1.

(2) a ∈ BOj. For every i such that a 6∈ Acti, we know that si = s′i and hence
activei(si) = activei(s

′
i) = 0. For every i such that i 6= j and a ∈ Acti,

it must be the case that a ∈ BIi, so we apply Lemma 9 to conclude
that activei(s

′
i) = 0. As in the previous case, we know activei(s

′
j) = 1.

Therefore, ~s ′ ∈ SE,1.
(3) a ∈ COj ∩CIk for some k 6= j. By Lemma 9, we have activej(s

′
j) = 0 and

activek(s
′
k) = 1. By the compatibility of switched PIOAs, there is at most

one such k. For all other indices i, activei(si) = activei(s
′
i) = 0. Again we

conclude ~s ′ ∈ SE,1.
(4) a ∈ COE. By the definition of COE, we know that a 6∈ Acti for all i 6= j.

Hence activei(si) = activei(s
′
i) = 0 for all i 6= j. By Lemma 9, we have

activej(s
′
j) = 0. Thus, ~s ′ ∈ SE,0. 2

It remains to show that E satisfies all switch axioms.

Lemma 24 The PIOA E, together with activeE and SyncE, satisfies Ax-
ioms (S1) through (S5) in Definition 7.

PROOF. Note that activeE(~s) = 0 if and only if ~s ∈ SE,0. For Axiom (S1),
let ~s ∈ SE,0 and a ∈ IE be given. Applying Axiom (S1) on each component,
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we know that Gi(si) is empty for every i and hence GE(~s) = ∅. On the other
hand, for all i with a ∈ Ii, Axiom (S2) requires Ri(si, a) is non-empty. Hence
RE(~s, a) is non-empty. This proves that E satisfies Axiom (S1).

Axiom (S2) follows from the definition of RE. Axioms (S3) through (S5) follow
from Lemmas 22 and 23. 2

We adopt the same notational conventions as with �. Namely, ‖n denotes the
n-ary operator and ‖ denotes the (infix) binary operator. Again commutativity
is trivial. For associativity, it is easy to see that (A ‖ B) ‖ C has the same state
space as ‖3 {A,B,C}. Similarly for A ‖ (B ‖ C). The transition structures are
isomorphic because they are based on parallel composition of PIOAs, which
is associative.

5.3 Composing I/O Schedulers

The goal of this section is to extend the parallel operator ‖ to probabilistic
systems, therefore we consider composition of I/O schedulers. For that end,
we need some basic notions of projection. Notice, these projection operators
apply to PIOAs in general, not just switched PIOAs.

In Section 2, we described projection operators for discrete distributions on a
product space. Extending the same idea, we define projection on composite
transition bundles.

Definition 25 Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible PIOAs
and let D denote �n

i=1 Ai. Let ~s ∈ SD and f ∈ GD(~s) be given. Let j be the
unique index such that πL(Supp(f)) ⊆ Oj∪Hj (equivalently, f ∈ Gj

D(~s)). The
jth-projection of f , denoted πj(f), is the discrete distribution on (Oj∪Hj)×Sj
given by:

πj(f)(〈a, t〉) :=
∑

~t∈SD : tj=t

f(〈a, ~t〉).

For every a ∈ πL(Supp(f)) and i 6= j, the 〈a, i〉th-projection of f , denoted
πa,i(f), is the discrete distribution on Si given by:

πa,i(f)(t) :=

∑
~t∈SD : ti=t, tj=u

f(〈a, ~t〉)
πj(f)(〈a, u〉) ,

where u is any state in Sj such that πj(f)(〈a, u〉) 6= 0.

Lemmas 26 and 27 below show that these projection operators are in fact
well-defined.
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Lemma 26 The distribution πj(f) in Definition 25 is well-defined and is in
Gj(sj).

PROOF. By the definition of GD(~s), we may choose gj ∈ Gj(sj) such that
f is generated by gj. It suffices to show πj(f) = gj. Let 〈a, t〉 ∈ (Oj ∪Hj)×Sj
be given. By definition,

πj(f)(〈a, t〉) =
∑

~t∈SD : tj=t

f(〈a, ~t〉) =
∑

~t∈SD : tj=t

gj(〈a, tj〉) ·
∏

i6=j
µa,i(ti).

We can rearrange the sums and factor out gj(〈a, tj〉) to obtain:

πj(f)(〈a, t〉) = gj(〈a, t〉) · (
∑

t1∈S1

. . .
∑

tj−1∈Sj−1

∑

tj+1∈Sj+1

. . .
∑

tn∈Sn

∏

i6=j
µa,i(ti)).

Since every µa,i is a discrete distribution on Si, the second factor equals 1.
Hence πj(f)(〈a, t〉) = gj(〈a, t〉). 2

Lemma 27 The distribution πa,i(f) in Definition 25 is well-defined. More-
over, if a ∈ Ii, then πa,i(f) ∈ Ri(si, a); otherwise, πai(f) = Dirac(si).

PROOF. By the definition of GD(~s), we may choose µa,i ∈ Disc(Si) and
gj ∈ Gj(sj) such that f is generated (in part) by µa,i and gj. It suffices to
show πa,i(f) = µa,i. Let t ∈ Si be given. By definition, πa,i(f)(t) equals

∑
~t∈SD : ti=t, tj=u

f(〈a, ~t〉)
πj(f)(〈a, u〉) =

∑
~t∈SD : ti=t, tj=u

(gj(〈a, tj〉) ·
∏
k 6=j µa,k(tk))

πj(f)(〈a, u〉) .

Factoring out gj(〈a, u〉) and µa,i(t), the numerator becomes

gj(〈a, u〉) · µa,i(t) ·
∑

~t∈SD : ti=t, tj=u

∏

k 6=i,j
µa,k(tk)).

Again the third factor is easily seen to be 1 and hence the numerator equals
gj(〈a, u〉) ·µa,i(t). Moreover, we saw in the proof of Lemma 26 that πj(f) = gj,
therefore the denominator equals gj(〈a, u〉). Now we have

πa,i(f)(t) =
gj(〈a, u〉) · µa,i(t)

gj(〈a, u〉)
= µa,i(t).

Notice we have not used any additional assumption on u, therefore the equality
holds regardless of the choice of u. 2

Given these projection operators on transition bundles, it is straightforward
to define projection on execution branches.
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Definition 28 Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible PIOAs
and let D denote �n

i=1 Ai. Let ~s ∈ SD and 1 ≤ i ≤ n be given. We define,
recursively, the i-th projection operator on Bran(~s) as follows:

• πi(〈s0
1, . . . , s

0
n〉) := s0

i ;

• πi(r.a.µ.~t) equals
· πi(r).a.πi(µ).ti, if a ∈ Ii;
· πi(r), otherwise;

• πi(r.f.a.~t) equals
· πi(r).πi(f).a.ti, if i is the unique index with πL(Supp(f)) ⊆ Oi ∪Hi;
· πi(r).a.πa,i(f).ti, if a ∈ Ii;
· πi(r), otherwise.

These projected branches are well-defined by virtue of Lemma 29 below.

Lemma 29 Let 1 ≤ i ≤ n be given. For all q ∈ Bran(~s), we have

(1) πi(last(q)) = last(πi(q));
(2) if q is of the form r.a.µ.~t and a ∈ Ii, then πi(µ) ∈ Ri(last(πi(r)), a) and

ti ∈ Supp(πi(µ));
(3) if q is of the form r.f.a.~t and a ∈ Oi ∪ Hi, then πi(f) ∈ Gi(last(πi(r)))

and 〈a, ti〉 ∈ Supp(πi(f));
(4) if q is of the form r.f.a.~t and a ∈ Ii, then πa,i(f) ∈ Ri(last(πi(r)), a) and

ti ∈ Supp(πa,i(f));

PROOF. We proceed by induction on the length of r. The base case is trivial.

Consider a branch of the form r.a.µ.~t and let ~u denote last(r). By the induction
hypothesis, we have πi(last(r)) = ui = last(πi(r)). Recall that µ is of the form∏n
i=1 πi(µi). We have two cases.

• a ∈ Ii. Then by Definition 17 we have πi(µ) ∈ Ri(ui, a). Since ~t ∈
Supp(µ), it must be that ti ∈ Supp(πi(µ)). Moreover, πi(last(q)) = ti =
last(πi(q)).
• a 6∈ Ii. Then by Definition 17 we have πi(µ) = Dirac(ui). Since ~t ∈

Supp(µ), it must be that ti = ui. Therefore πi(last(q)) = ti = ui =
last(πi(r)) = last(πi(q)).

Now we consider a branch of the form r.f.a.~t. Again, let ~u denote last(r)
and we have πi(last(r)) = ui = last(πi(r)) by the induction hypothesis. By
Definition 18 we may choose unique j such that f = gj ×

∏
〈a, i〉∈Nj µa,i for

some gj ∈ Gj(uj) and family {µa,i}〈a, i〉∈Nj ∈
∏
〈a, i〉∈Nj Disc(Si). We have three

cases.

• i = j. Then we have πi(f) = gi ∈ Gi(ui). Since 〈a, ~t〉 ∈ Supp(f), it must
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be that 〈a, ti〉 ∈ Supp(gi) = Supp(πi(f)). Moreover, πi(last(q)) = ti =
last(πi(q)).
• i 6= j and a ∈ Ii. Then by Definition 18 we have πa,i(f) ∈ Ri(ui, a).

Since 〈a, ~t〉 ∈ Supp(f), it must be that ti ∈ Supp(πa,i(f)). Moreover,
πi(last(q)) = ti = last(πi(q)).
• i 6= j and a 6∈ Ii. Then by Definition 18 we have πa,i(f) = Dirac(ui). Since
〈a, ~t〉 ∈ Supp(µ), it must be that ti = ui. Then πi(last(q)) = ti = ui =
last(πi(r)) = last(πi(q)). 2

We are now ready to consider composition of I/O schedulers for switched
PIOAs.

Definition 30 Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible switched
PIOAs and let E denote ‖ni=1 Ai. Suppose we have, for each i, an I/O scheduler
〈σi, ρi〉 for Ai. These I/O schedulers are said to generate the following I/O
scheduler 〈σ, ρ〉 for E. Let r ∈ Bran(E) be given and let ~s denote last(r).

• If activeE(~s) = 1, then σ(r, a) := ⊥ for all a ∈ IE.
• If activeE(~s) = 0, then for all a ∈ IE, σ(r, a) :=

∏n
i=1 µi, where µi equals

Dirac(si) whenever a 6∈ Ii and σi(πi(r), a) otherwise.
• If activeE(~s) = 0, then ρ(r) := ⊥.
• If activeE(~s) = 1, then ρ(r) 6= ⊥ if and only ρj(πj(r)) 6= ⊥, where j is

the unique index with activej(sj) = 1. In that case, ρ(r) is the bundle
f = ρj(πj(r))×

∏
〈a, i〉∈Nj µa,i, where µa,i equals Dirac(si) whenever a 6∈ Ii

and σi(πi(r), a) otherwise.

Lemma 31 The I/O scheduler 〈σ, ρ〉 in Definition 30 is well-defined.

PROOF. Let r ∈ Bran(E) and a ∈ IE be given. Let ~s denote last(r).

First we consider the case where RE(last(r), a) is non-empty. Since E satisfies
Axiom (S2), it must be the case that activeE(~s) = 0 and hence activei(si) = 0
for all i.

By Axiom (S1), Ri(si, a) is non-empty for all a ∈ Ii. By the definition of
input schedulers, this implies σi(πi(r), a) is defined and is in Ri(si, a). By the
definition of RE, we have that

∏n
i=1 µi is in RE(~s, a). This proves that σ(r, a)

is in RE(last(r), a) whenever RE(last(r), a) is non-empty.

Now assume that RE(last(r), a) is empty. By Axiom (S1), we may conclude
that activeE(~s) = 1, in which case σ(r, a) is by definition undefined for all
a ∈ IE. This completes the proof that σ is a well-defined input scheduler for
E.
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For the output scheduler ρ, we need to show that ρ(r) ∈ GE(last(r)) whenever
ρ(r) is defined. Therefore, we may focus on the case in which activeE(~s) =
1. By the definition of SE, there is unique j with activej(sj) = 1. Assume
without loss that ρj(πj(r)) is defined. By the definition of output schedulers,
ρj(πj(r)) ∈ Gj(sj).

Moreover, we know that activei(si) = 0 for all i 6= j. Fix a ∈ OE ∪ HE

and i 6= j. By Axiom (S1), Ri(si, a) is non-empty whenever a ∈ Ii. This
implies that σi(πi(r), a) is defined and is in Ri(si, a). Therefore, the family
{µa,i}〈a, i〉∈Nj satisfies the conditions in Definition 18 and thus the bundle f
generated by ρj(πj(r)) and {µa,i}〈a, i〉∈Nj is in GE(last(r)). This completes the
proof that ρ is a well-defined input scheduler for E. 2

Notice that Definition 30 and the proof of Lemma 31 rely on the definition of ‖
and switch axioms, therefore they do not apply to PIOAs in general. Roughly
speaking, the parallel composition mechanism for PIOAs does not attempt to
resolve global nondeterminism, therefore it is not possible to combine two local
schedules to form a single global schedule. The token structure of switched
PIOAs serves precisely the purpose of eliminating such global nondeterminism.

Extending Definition 30, we have a very natural notion of composition for
switched probabilistic systems.

Definition 32 Let {Ai | 1 ≤ i ≤ n} be a set of probabilistic systems where
Ai = 〈Ai, Si〉 and {Ai | 1 ≤ i ≤ n} are pairwise compatible switched PIOAs.
The parallel composite, denoted ‖ni=1 Ai, is the probabilistic system E =
〈E, T 〉 defined as follows:

• the underlying switched PIOA is E =‖ni=1 Ai;
• the set T of I/O schedulers contains precisely those 〈σ, ρ〉 generated by

some family {〈σi, ρi〉}1≤i≤n ∈
∏n
i=1 Si.

Again, we adopt notational conventions as in the case of ‖ for switched PIOAs.
Commutativity and associativity follow similarly.

Before ending this section, let us briefly revisit automata Early′, Late′ and Coin′

of Figure 5. Consider the full probabilistic systems induced by these automata
(i.e., each automaton is paired with all possible local I/O schedulers). We claim
that, when Late′ and Coin′ are composed using Definition 32, it is no longer
possible to obtain the schedule depicted in Figure 2. This is because the local
output scheduler of Late′ must choose between b and c without “knowing”
the random outcome in Coin′. Extending this intuition, it is not hard to show
that Early′ ‖ Coin′ and Late′ ‖ Coin′ are equivalent in our external behavior
semantics.
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6 Compositionality

We proceed to state and prove our main theorem: the external behavior se-
mantics for switched probabilistic systems (Definition 16) is compositional
with respect to the composition operator introduced in Definition 32.

Theorem 33 Let A = 〈A, S〉, C = 〈C, U〉 and D = 〈D, V〉 be switched
probabilistic systems. Assume that A and D are comparable and ExtBeh(A) ⊆
ExtBeh(D). Moreover, assume that C is compatible with both A and D. Then
ExtBeh(A ‖ C) ⊆ ExtBeh(D ‖ C).

To prove this theorem, we need quite a few auxiliary results. Recall from
Definition 14 that likelihood assignments are defined in terms of minimal ex-
ecution branches. We will start with a pasting result on minimal branches
in a parallel composition of switched PIOAs (Section 6.1, Lemma 36). Then,
in Section 6.2, we consider pasting results for execution trees and likelihood
assignments. That lays sufficient ground for the proof of Theorem 33 in Sec-
tion 6.3.

Throughout the rest of this section, let A1 and A2 be compatible switched
PIOAs and define B := A1 ‖ A2. Moreover, let 〈σ1, ρ1〉 and 〈σ2, ρ2〉 be I/O
schedulers for A1 and A2, respectively, and let 〈σ, ρ〉 denote the I/O scheduler
for B generated by 〈σ1, ρ1〉 and 〈σ2, ρ2〉 (cf. Definition 30).

6.1 Minimal Execution Branches

Lemma 34 below says, when we project a minimal branch in B onto one of its
components, the result is always minimal.

Lemma 34 For every minimal branch r in Bran(B), both π1(r) and π2(r) are
minimal.

PROOF. Without loss of generality, we consider only π1(r). Recall that
empty branches are always minimal, so we may focus on non-empty branches.

Consider a minimal branch of the form r.a.µ.~t and let ~s denote last(r). Notice
that, a must be in IB, hence in I1 ∪ I2. There are two cases:

• a ∈ I1. Then π1(r.a.µ.~t) = π1(r).a.π1(µ).t1, which is minimal because a
is visible.
• a 6∈ I1. Then π1(r.a.µ.~t) = π1(r). Moreover, note that µ ∈ RB(~s, a).

Therefore, by Axiom (2), we know that activeB(~s) = 0. This implies
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active1(last(π1(r))) = active1(s1) = 0. Therefore by Lemma 11 we know
π1(r) is minimal.

Now we consider a minimal branch of the form r.f.a.~t and again let ~s denote
last(r). In this case, a must be in OB, hence in O1 ∪ O2. Here we have three
cases.

• a ∈ O1. Then π1(r.f.a.~t) = π1(r).π1(f).a.t1, which is minimal because a
is visible.
• a ∈ I1. Then π1(r.f.a.~t) = π1(r).a.πa,1(f).t1, which is minimal because a

is visible.
• a 6∈ I1. Then π1(r.f.a.~t) = π1(r). Moreover, note that f must be generated

by some g2 ∈ G2(s2). Therefore, by Axiom (2), we know that active2(s2) =
1. By the definition of SB, we have active1(last(π1(r))) = active1(s1) = 0.
Again, by Lemma 11, we know π1(r) is minimal. 2

Lemma 35 states that, given r1 ∈ Branmin(A1) and r2 ∈ Branmin(A2) with
matching traces, we can “zip” them together in a unique way to form a minimal
branch in B.

Lemma 35 Let α ∈ (IB ∪ OB)<ω be given. Let p be a minimal branch of A1

such that tr(p) = π1(α). Similarly for q in A2. There is a unique minimal
branch r of B such that π1(r) = p, π2(r) = q, and tr(r) = α.

PROOF. We proceed by induction on the length of α. If α is empty, then,
by minimality, p and q are both empty. Take r to be the empty branch in B.

Consider αa. Let p′ be a minimal branch of A1 with trace π1(αa) and let p
denote the unique minimal prefix of p′ with trace π1(α). Similarly for q v q′

in A2. By induction hypothesis, choose a unique minimal branch r such that
π1(r) = p, π2(r) = q, and tr(r) = α.

First assume that a is in O1 ∪H1. We have two cases.

• a 6∈ I2. Then π2(α) = π2(αa). Therefore q = q′ and we take r′ to be the
unique extension of r in which A follows p′ and B idles after q.
• a ∈ I2. Then q′ ends with an a-transition. Let q0 be the one-step prefix of
q′. By Lemma 9, we know that active2(last(q0)) = 0. By Lemma 11, q0 is
minimal and hence coincides with q. Take r′ to be the unique extension
of r, in which A1 follows p′ and A2 idles after r until the last step (i.e.,
the a-step).

The case in which a is locally controlled by A2 is symmetric. It remains to
consider the case where a is an input of B. Again, if a is not in the signature
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of A1, then p = p′; otherwise, a ∈ I1 and we apply Lemma 9 and Lemma 11 to
conclude that p is the one-step prefix of p′. Similarly for q and q′. Take r′ to
be the unique (one-step) extension of r in which (1) Ai takes an a-step after
r, if a ∈ Ii; (2) Ai idles after r otherwise. 2

Finally, Lemma 36 says, given a fixed trace α, there is a bijective correspon-
dence between tr-1

min(α) in B and the Cartesian product of tr-1
min(π1(α)) in A1

and tr-1
min(π2(α)) in A2.

Lemma 36 Let X denote tr-1
min(α) in B. Let Y and Z denote tr-1

min(π1(α))
in A1 and tr-1

min(π2(α)) in A2, respectively. There exists an isomorphism zip :
Y × Z → X whose inverse is 〈π1, π2〉.

PROOF. By Lemma 34 and Lemma 35. 2

6.2 Execution Trees and Likelihood Assignments

For the rest of this section, let Q,Q1 and Q2 be abbreviations for the execution
trees Qσ,ρ, Qσ1,ρ1 and Qσ2,ρ2 , respectively. Similarly, let L,L1 and L2 denote
the likelihood assignments Lσ,ρ,Lσ1,ρ1 and Lσ2,ρ2, respectively. Lemma 37 be-
low says an execution tree of the parallel composite can be obtained as a
pointwise product of the execution trees of the components. Lemma 38 then
combines Lemma 36 and Lemma 37 to show the analogous result for likelihood
assignments.

Lemma 37 For every r in Bran(B), we have Q(r) = Q1(π1(r)) ·Q2(π2(r)).

PROOF. If r is empty, Q(r) = 1 = Q1(π1(r)) ·Q2(π2(r)).

Consider r′ = r.a.µ.~t and let ~s denote last(r). By Definition 17, µ is of the
form µ1× µ2, where µi = Dirac(si) whenever a 6∈ Ii. Define ci to be 0 if a ∈ Ii
but µi 6= σi(πi(r), a). Otherwise, ci is 1. Then we have

Q(r′) = Q(r) · µ(~t) · c1 · c2 definitions σ,Q

= Q1(π1(r)) ·Q2(π2(r)) · c1 · µ1(t1) · c2 · µ2(t2) I.H.

= Q1(π1(r′)) ·Q2(π2(r′)) definitions Q1, Q2

Next we consider r′ = r.f.a.~t and also let ~s denote last(r). Without loss of
generality, assume that f is generated by some g1 and {µb,2}〈b, 2〉∈N1

. Notice
that, if b 6∈ I2, then µb,2 must be Dirac(s2).
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Now define c1 to be 0 if g1 6= ρ1(π1(r)) and 1 otherwise. Similarly, define c2

to be 0 if a ∈ I2 but µa,2 6= σ2(π2(r), a). Otherwise, c2 is 1. Similar to the
previous case, we have

Q(r′)

= Q(r) · f(〈a, ~t〉) · c1 · c2 definitions ρ,Q

= Q1(π1(r)) ·Q2(π2(r)) · c1 · g1(〈a, t1〉) · c2 · µa,2(t2) definition f and I.H.

= Q1(π1(r′)) ·Q2(π2(r′)) definitions Q1, Q2

2

Lemma 38 Let α ∈ (IB ∪ OB)<ω be given. We have L(α) = L1(π1(α)) ·
L2(π2(α)).

PROOF. Let X denote tr-1
min(α) in B. Let Y and Z denote tr-1

min(π1(α)) in
A1 and tr-1

min(π2(α)) in A2, respectively. We have

L(α) =
∑

r∈X
Q(r) definition of L

=
∑

r∈X
Q1(π1(r)) ·Q2(π2(r)) Lemma 37

=
∑

p∈Y,q∈Z
Q1(p) ·Q2(q) Lemma 36

= (
∑

p∈Y
Q1(p)) · (

∑

q∈Z
Q2(q)) factorization

= L1(π1(α)) · L2(π2(α)). definition of L1 and L2

2

6.3 Main Proof

PROOF. [Theorem 33] First note that, if A and D are comparable and C is
compatible with both A and D, then A ‖ C is comparable to D ‖ C.

Let L ∈ ExtBeh(A ‖ C) be given. We need to show that L is also in ExtBeh(D ‖
C). Let 〈σ, ρ〉 be an I/O scheduler for A ‖ C such that L = tr(Qσ,ρ). By the
definition of ‖ for probabilistic systems, we may choose 〈σA, ρA〉 ∈ S and
〈σC , ρC〉 ∈ U so that they generate 〈σ, ρ〉. Let LA and LC denote tr(QσA,ρA)
and tr(QσC ,ρC), respectively.

On the other hand, we know that LA ∈ ExtBeh(A) ⊆ ExtBeh(D). Therefore,
we may choose 〈σD, ρD〉 ∈ V such that LD := tr(QσD ,ρD) = LA. Let 〈σ′, ρ′〉
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denote the I/O scheduler generated by 〈σD, ρD〉 and 〈σC , ρC〉 and write L′ for
tr(Qσ′,ρ′).

Now, let I denote IA‖C = ID‖C and O denote OA‖C = OD‖C . Applying
Lemma 38, we have for all α ∈ (I ∪ O)<ω, L(α) = LA(πA(α)) · LC(πC(α)).
SinceA andD have the same external signature, we know that πA(α) = πD(α).
Moreover, by the choice of 〈σD, ρD〉, we have LA = LD. Hence LA(πA(α)) =
LD(πD(α)).

Applying Lemma 38 again, we have

L(α) = LA(πA(α)) · LC(πC(α)) = LD(πD(α)) · LC(πC(α)) = L′(α).

This proves that L = L′ ∈ ExtBeh(D ‖ C). 2

7 Centralized Scheduling with Arbiters

Our switched PIOA framework implements a distributed scheduling scheme:
components rely on a token structure to avoid conflicts and scheduling deci-
sions are always made by the (unique) active component. Some may argue
that such a scheduling scheme does not realistically represent situations such
as asynchronous message passing via an unpredictable network. In response,
we outline a setting in which a designated component takes on the role of an
arbiter, which is responsible for all global scheduling decisions in the system. In
other words, we use our switched PIOA framework to recreate a centralized
interpretation of component scheduling. The obvious advantage is that our
external behavior semantics is compositional and hence we can freely replace
components with others that are behaviorally equivalent.

First, we fix a nonempty, finite index set I and assume that the universal
set CAct of control actions is

⋃
i∈I{goi, donei}. We restrict our attention to

controllable automata, defined as follows.

Definition 39 Let A be a switched PIOA and let i ∈ I be given. We say that
A is controllable for i provided:

(1) A is initially inactive;
(2) CIA = {goi} and COA = {donei}.

In other words, A has a limited control interface, {goi, donei}, and must wait
for an activation signal at the beginning of each execution. Aside from these
restrictions, A is free to communicate with other components (not necessarily
the arbiter) via synchronization of basic actions.
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Various requirements can be placed on the I/O schedulers for A. For exam-
ple, we may require that A performs at most one locally controlled action
during each activation. Or A may take a finite number of internal steps, pos-
sibly followed by a visible action, and then it must return the activity token
by executing a control output action. These can be seen as fairness condi-
tions, so that none of the components are allowed to retain the activity token
indefinitely.

To compose a set of (pairwise compatible) controllable automata, we use an
arbiter automaton, which models either uncertainties in the parallel environ-
ment or low-level protocols that specify the exact ordering of events.

Definition 40 Let X ⊆ BAct be given. An arbiter for 〈I, X〉 is a switched
PIOA Arb satisfying the following:

(1) IArb = {donei | i ∈ I} ∪X and OArb = {goi | i ∈ I};
(2) activeArb(s0

Arb) = 1.

Such an arbiter manages the flow of the activity token among components, so
that token exchange does not take place directly between components. This
is depicted in Figure 10 below.�� ���� ��A

doneA

22

�� ���� ��Arb
goB ,,

goArr
�� ���� ��B

doneB

ll

Fig. 10. Arbitrated Composition

Different notions of parallel composition can be obtained by varying the choice
of local I/O schedulers as well as arbiters. A simple example is the param-
eterized composition operator (cf. Section 1.2), which can be implemented
with

• local I/O schedulers that always return control after one locally controlled
move and
• an arbiter that schedules goA with probability p and goB with probability

1− p.

More complex examples can be obtained by varying the parameter X in Defi-
nition 40. This determines the observational power of the arbiter, that is, the
amount of information which can be used by the arbiter to make scheduling
decisions. Such flexibility can be very useful when we wish to limit schedul-
ing freedom in order to improve performance of algorithms. For example, the
write-oblivious adversary model of [Cha96] requires that random outcomes
cannot be used by adversaries until they are read by at least one process. This
can be modeled by arbiters that ignore parameters of write-related actions.
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8 Conclusions and Future Work

We have presented the switched PIOA framework, which is designed for the
purpose of modeling and analyzing stochastic systems. This framework accom-
modates both nondeterministic and probabilistic choices within components,
and the associated notion of parallel composition is based on asynchronous
communication under a distributed scheduling scheme. We define a trace-style
semantics for this framework and prove it is compositional.

Throughout our development, a main focus is the notion of scheduling, that is,
the mechanism with which nondeterministic choices are eliminated. Since the
choices between parallel components are often considered nondeterministic,
scheduling directly affects the semantics of composite systems. However, in our
experience with the literature, scheduling mechanisms are often just mentioned
in passing, without due justification. Therefore, we provide a summary of some
common scheduling schemes and try to compare them against our distributed
scheduling scheme.

Compared to earlier versions [CLSV04a] and [CLSV04b], the current paper
presents several technical improvements. First of all, we introduce a new for-
mulation of PIOAs, applying I/O distinction to reactive and generative system
types. Moreover, we have modified some of the defining axioms for switched
PIOAs, simplifying the definition of external behavior. Finally, we provide a
more flexible mechanism for reasoning with systems with open inputs. In par-
ticular, the notions of execution trees and likelihood assignments are directly
defined for open components, without reference to closing contexts. This al-
lows us to eliminate some of the cumbersome proofs involving renaming and
hiding.

As for future research, we see much potential in the proposal of arbiters
and controllable automata. We believe it can serve as a theoretical founda-
tion in many application areas, including distributed consensus and process
coordination. In particular, we would like to explore possibilities in model-
ing noisy scheduling [Asp00], as well as quantum-based and priority-based
scheduling [AM99]. We are also interested in adapting the testing scenario
of [SV03,CSV06] to switched PIOAs. Since our semantics focuses on exter-
nally visible behavior, we expect to be able to derive a characterization based
on frequencies of external observations.
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