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Abstract

Let G be an undirected graph. The Chinese Postman Problem (CPP) asks for a
shortest postman tour in G, i.e. a closed walk using each edge at least once. The Shortest
Cycle Cover Problem (SCC) asks for a family C of circuits of G such that each edge is in
some circuit of C and the total length of all circuits in C is as small as possible. Clearly,
an optimal solution of C PP can not be greater than a solution of SCC. A graph G has
the CPP = SCC property when the solutions to the two problems have the same value.

Graph G is said to have the cycle cover property if for every Eulerian 1, 2-weighting
w : E(G) — {1,2} there exists a family C of circuits of G such that every edge e is in
precisely w, circuits of C. The cycle cover property implies the CPP = SCC property.

We give a counterexample to a conjecture of Zhang [8, 9, 2, 10] stating the equivalence
of the cycle cover property and the CPP = SCC property for 3-connected graphs. This
is also a counterexample to the stronger conjecture of Lai and Zhang, stating that every
3-connected graph with the CPP = SCC property has a nowhere-zero 4-flow. We actu-
ally obtain infinitely many cyclically 4-connected counterexamples to both conjectures.
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1 Introduction

Let G = (V, E) be an undirected graph, possibly with parallel edges. A postman tour (Euler
tour) in G is a closed walk using each edge at least (exactly) once. The Chinese Postman
Problem (CPP) asks for a shortest postman tour in G. We denote by V,(G) the set of nodes
with odd degree in G. Mei Gu Guan [4] observed that C PP is equivalent to the problem of
finding a minimum V,(G)-join in G, i.e. a subgraph J of G with V,(J) = V,(G), since the
graph obtained by G duplicating the edges in J will be Eulerian, hence will admit an Euler
tour. The first to efficiently solve C PP were Edmonds and Johnson [3]. (See [1] for a simpler
method inspired by results of Sebé [7]).
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A cycle is a closed walk C' where repetition of nodes is forbidden. Denote by |C| the
length of C, i.e. the number of nodes in C. The Shortest Cycle Cover Problem (SCC) asks
for a family C of cycles of G with } ¢ |C| as small as possible and such that each edge of
G is in some cycle of C. An optimal solution of CPP can not be greater than a solution of
SCC, since, when G is connected, it is always possible to read out a postman tour of G from
a cycle cover of G. A graph G has the CPP = SCC property when the solutions to the two
problems have the same value. A well known graph without the CPP = SCC property is the
Petersen graph P, shown in Figure 1 on the left. Indeed, the 1-factors of P are the minimum
Vo(P)-joins in P and, since they are all isomorphic, we essentially have to consider only the
1-factor shown in Figure 1 in the middle. To do so, just check that the edge weighting shown
in Figure 1 on the right is bad in the sense that no family C of cycles exists in P such that
every edge is taken precisely the indicated number of times.

LEFT: The Petersen graph. MIDDLE: A 1-factor. RIGHT: A bad weighting.

Figure 1: The Petersen graph does not have the CPP = SCC property.

A weight function w : E(G) — {1,2} is called Eulerian if 3~ c4(5) we is even for every cut
d(S) of G. Denote by W¢ the set of all Eulerian weight functions for G. A w € Wy is said to
be bad when there exists no family C of cycles of G such that each edge e of GG is in precisely
w, cycles of C. When no w € Wg is bad then G is said to have the cycle cover property. Note
that the cycle cover property implies the CPP = SCC property.

In Section 2, we give a counterexample to the following conjecture of Zhang [8, 9, 2, 10].

Conjecture 1 The cycle cover property and the CPP = SCC property are equivalent for
3-connected graphs.

This will also be a counterexample to the stronger conjecture of Lai and Zhang stating
that every 3-connected graph with the CPP = SCC property has a nowhere-zero 4-flow.
In Section 3, we derive infinitely many cyclically 4-connected counterexamples to both con-
jectures. Since the cycle cover property implies the CPP = SCC property, the following
conjecture of Jackson [6] would eventually come into play when one is willing to consider
graphs with higher connectivity.

Conjecture 2 The Petersen graph is the only cyclically 5-connected cubic graph without the
cycle cover property.



2 A first counterexample

In Figure 2, a first counterexample to Conjecture 1 is given.

LEFT: A counterexample. MIDDLE: CPP = SCC. RIGHT: A bad w € Wg.

Figure 2: A graph G with the CPP = SCC property but without the cycle cover property.

Graph G, given in Figure 2 on the left, is indeed 3-connected. Let C be the family of cycles
shown in Figure 2 in the middle. Every edge of G belongs to either 1 or 2 of the cycles in C.
Moreover the edges of G belonging to 2 cycles in C' give a 1-factor of G and hence a minimum
Vo(G)-join of G. Hence G has the CPP = SCC property. Consider now the weighting w
indicated in Figure 2 on the right. Note that w € Wg. We will show that w is bad, hence G
does not have the cycle cover property. Assume on the contrary that there exists a family of
cycles C such that every edge e is in precisely w, cycles of C. Let e, f, g be the three edges of
G indicated in Figure 2 on the left. Let C; and Cs be the two cycles of C containing f. We
can assume w.l.o.g. that e belongs to C; and g belongs to Cy. Let G4 and Gp be the two
connected components of G\ {e, f,g}. Now C\ {C1,C>} can be partitioned into C4 and Cp,
where C4 is the set of those cycles in C which are cycles of G4 and Cp is the set of those cycles
in C which are cycles of Gg. Consider the Petersen graph P obtained from G by identifying
all nodes in V(Gp) into a single node. Here C4 U {C1 \ E(Gg),C2 \ E(Gp)} would be a cycle
cover of P contradicting the fact that the edge weighting shown in Figure 1 on the right is
bad for P.

3 Infinitely many cyclically 4-connected counterexamples

Although the original conjectures were about 3-connected graphs, it is now pertinent to in-
vestigate what happens for higher connectivity values. In this section, we show that infinitely
many cyclically 4-connected counterexamples exist. To do so, we consider an operation that
merges two cubic graphs, endowed by Eulerian 1, 2-weightings, into a single cubic graph, en-
dowed by a corresponding Eulerian 1, 2-weighting. This operation is called dot product, since
it is a natural extension of the celebrated operation introduced by Isaacs in [5] to generate
new snarks by combining old ones.
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Figure 3: The dot product (G,w) = (G1,w) - (G2, ws).

We are given two pairs (G1,w;) and (G2, ws), with G; cubic and w; € Wg;, for i = 1, 2.
Let hk and zy be two edges of G1 and assume wi(hk) = wy(zy) = 1. Let uv, uua, vug,
vv4, VUB, be edges of Gy and assume wq(uv) = 2, whereas wo(uua) = wa(uup) = wo(vva) =
wo(vvg) = 1. Then the dot product (G1,w1) - (G2, ws) is the pair (G,w) obtained from
(G1,w1) and (G2, w2) by removing nodes u and v and removing edges hk, zy, uv, uua, uug,
vv4, and vvg and adding edges vz, upy, vah and vk with w(uaz) = w(upy) = w(vah) =
w(vpk) = 1. Every other edge e of G either belongs to G; or to G5 and we set w(e) = w(e)
or w(e) = wa(e), accordingly. The operation is shown in Figure 3 and had been introduced
by Jackson in [6] for the special case when the edges of weight 2 form a 1-factor. In [6], the
following lemma had also been given.

Lemma 3 If w; € Wg, and wy € Wg, are bad, and (G,w) = (G1,w1) - (G2, w2), then w is
bad for G.

Proof: Assume w is not bad for G. Let C be a family of cycles of G such that each edge e of
G is in precisely w, cycles of C. Let C' be the unique cycle in C containing edge usz. If C
contains also edge upy then we have a contradiction with the fact that w; was bad for G;.
Otherwise we have a contradiction with the fact that wy was bad for Gs. O

Let G be a cubic graph with the CPP = SCC property but without the cycle cover
property. If G is 3-connected, then G is bridgeless and hence, by Petersen’s theorem, G has a
1-factor. Therefore, when C is a shortest cycle cover of G, and since G has the CPP = SCC
property, then the edges of G which are contained in two cycles of C form a 1-factor of G,
denoted by F(C). Let hk and zy be any two edges of G. Graph G is called an hk,zy-
counterexample if there exists a shortest cycle cover C of G with hk,zy ¢ Fg(C) and a bad
wg € Wg with w(hk) = w(zy) = 1. Note that the graph G given in Figure 2 is an hk, zy-
counterexample. Denote by wp the bad weighting of P given in Figure 1 on the right. When
G is an hk, zy-counterexample, then in the dot product (H,wg) = (G,wg) - (P, wp), graph
H has the CPP = SCC property, as shown in Figure 4. Moreover, by Lemma 3, wp is a bad
weighting for H. Hence, H too is a cubic graph with the CPP = SCC property but without
the cycle cover property. Moreover many choices for hk and zy are possible in H so that
H is actually an hk,zy-counterexample. (One such choice is indicated in Figure 4). This
means that the above operation can be repeated indefinitely many times, and in several ways.



For the graph G, the choice of hk and zy indicated in Figure 2 was particularly fortunate:
under this choice, the graph H = G - P, also displayed in Figure 4, is cyclically 4-connected.
Finally, the property of being cyclically 4-connected is maintained when further dot product
operations are performed.

Figure 4: A cyclically 4-connected graph with the CPP = SCC but without the cycle cover
property.
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