Complexity of Context-free Grammars with Exceptions
and the inadequacy of grammars as models for XML and SGML

Romeo Rizzi

April 26, 2002

ITC-Irst
Via Sommarive, 18
1-38050 Trento-Povo, Italy
rizzi@irst.itc.it

Abstract

The Standard Generalized Markup Language (SGML) and the Extensible Markup
Language (XML) allow authors to better transmit the semantics in their documents by
explicitly specifying the relevant structures in a document or class of documents by means
of document type definitions (DTDs). Several authors have proposed to regard DTDs
as extended context-free grammars expressed in a notation similar to extended Backus—
Naur form. In addition, the SGML standard allows the semantics of content models
(the right-hand side of productions) to be modified by exceptions. Inclusion exceptions
allow named elements to appear anywhere within the content of a content model, and
exclusion exceptions preclude named elements from appearing in the content of a con-
tent model. Since XML does not allow exceptions, the problem of exception removal has
received much interest recently. Motivated by this, Kilpeldinen and Wood have proved
that exceptions do not increase the expressive power of extended context-free grammars
and that for each DTD with exceptions, we can obtain a structurally equivalent extended
context-free grammar. Since their argument was based on an exponential simulation, they
also conjectured that an exponential blow-up in the size of the grammar is a necessary
devil when purging exceptions away. We prove their conjecture under the most realistic
assumption that NP-complete problems do not admit non-uniform polynomial-time al-
gorithms. Kilpeldinen and Wood also asked whether the parsing problem for extended
context-free grammars with exceptions admits efficient algorithmic solution. We show the
NP-completeness of the very basic problem: given a string w and a context-free grammar
G (not even extended) with exclusion exceptions (no inclusion exceptions needed), decide
whether w belongs to the language generated by G. Our results and arguments point up
the limitations of using extended context-free grammars as a model of SGML, especially
when one is interested in understanding issues related to exceptions.

Key words: exceptions, context-free grammars, computational complexity, exponential
blow-up, XML, SGML.

1 Introduction

The Standard Generalized Markup Language (SGML) [7, 8] is an international standard
(ISO 8879) for document definition and interchange. SGML has been proposed to promote

the interchangeability and application-independent management of electronic documents by
providing a syntactic metalanguage for the definition of textual markup systems. SGML
is widely used in government and industry, and it has received increased attention from
academia since HTML evolved to a formal application of SGML. The Extensible Markup
Language (XML) [3] is, essentially, a simplified and more restrictive version of SGML. The
role of XML is to allow SGML documents to be served, received, and processed on the Web.
XML is the proposed syntactic metalanguage for the specification of document grammars
for W3 documents. A main goal and driving rationale behind the design of SGML and
XML is to allow authors to better transmit the semantics in their documents by explicitly
specifying the relevant structures in a document or class of documents by means of document
type definitions (DTDs). In spite of a warning by Prescod (see the document “Formalizing
XML and SGML Instances with Forest Automata Theory” [13], available at [17]), several
authors [9, 11, 2, 5, 1] model DTDs as extended context-free grammars expressed in a notation
that is similar to extended Backus—Naur form. In addition, the SGML standard allows the
semantics of content models (the right-hand side of productions) to be modified by exceptions.
In SGML there are two kinds of exceptions: inclusion exceptions allow named elements to
appear anywhere within the content of a content model, and ezclusion exceptions preclude
named elements from appearing in the content of a content model. Exceptions provide
a powerful shorthand notation for DTD authors and thus are used in most industry and
government standard DTDs. Unlike SGML DTDs, XML DTDs do not allow exceptions but
proposals to incorporate some exception mechanisms in XML also are still somewhat under
debate as a means of reducing the difficulty of translating SGML DTDs into XML DTDs.
Indeed, the problem of how to remove exceptions from a given DTD has until now defeated
attempts to obtain a general solution, in spite of the strong interest and commitment involved
on this front (see e.g. [9, 11, 10, 18]). Motivated by this, Kilpeldinen and Wood [1] proved that
exceptions do not increase the expressive power of extended context-free grammars and that
for each DTD with exceptions, we can obtain a structurally equivalent extended context-free
grammar. Since their argument was based on an exponential simulation, they also conjectured
that an exponential blow-up in the size of the grammar is a necessary devil when purging
exceptions away. We prove their conjecture under the most realistic assumption that NP-
complete problems do not admit non-uniform polynomial-time algorithms. In [1], Kilpel4inen
and Wood also posed the following question: does an extended context-free grammar with
exceptions allow efficient algorithmic solutions of the most common language recognition
problems associated with it? We give a strong negative answer to this question by showing
the NP-completeness of the very basic problem: given a string w and a context-free grammar
G (not even extended) with exclusion exceptions (no inclusion exceptions needed), decide
whether w belongs to the language generated by G. Our results and arguments point up the
limitations of taking extended context-free grammars as a model of SGML, especially when
one is interested in understanding issues related to exceptions. In the document “Formalizing
XML and SGML Instances with Forest Automata Theory” [13], available at [17]), Prescod
spent a word of warning on the fact that extended context-free grammars do not provide a
faithful formalization of the way SGML and XML parsing actually works in practice. Our
negative results show that this dichotomy is not just a matter of current technology, since
there would be intrinsic drawbacks in treating DTDs as grammars when parsing.

2 Background and notation

A context-free grammar is a rewriting system in which the left-hand side of each rule must be
a single symbol, so that symbols are rewritten “context-freely”. More formally, a context-free
grammar G = (N, X, P, S) is made of two disjoint finite alphabets N (the set of nonterminal
symbols) and X (the set of terminal symbols), of a sentence symbol S and of a finite set P of
production schemas. Every production schema 7 in P has the form A — w, where A € N and
w € V* is a string over the alphabet V := NU3X. The string w is called the content model of
and denoted by w(7). As usual, capital letters denote nonterminals, lowercase letters denote
terminals, Greek letters are for strings, € for the empty string, |w| stands for the length of
string w and G :=) . p(|lw(m)|+ 1) expresses the length of a reasonable encoding of G. The
language L generated by G is the set of those strings w € ¥* which can be derived from S
through a sequence of applications of production schemas in P. The following result [14] is
fundamental in parsing theory.

Theorem 2.1 Given a context-free grammar G = (N,%,P,S) and a string w, deciding
whether w € Lg can be done in O(|G| x |w|?) deterministic time and O(|G| x |w|?) space.

Extended context-free grammars are context-free grammars in which the right-hand sides
of productions, also called content models, are regular expressions. A regular expression over
V is a special string on V U {0, ¢,U,*, (,)} which is used to describe a language on V, i.e. a
subset of V*. Nothing but what we list here below is a regular expression:

e () is a regular expression and describes the empty language Ly = 0;
e ¢ is a regular expression and describes the void string language £, = {¢};
e for each v € V, v is a regular expression and describes the language £, = {v};

e when F' and G are regular expressions, then F'UG is a regular expression and describes
the language Lrug = Lr U Lg;

e when F' and G are regular expressions, then F'G is a regular expression and describes
the language Lrg = {wrwg |wr € Lr,welg};

e when F' is a regular expression, then F* is a regular expression and describes the
language L« = LF*, where the star denotes the Kleene operator, that is, language £*
is made of those strings which are concatenations of any number of strings in L;

e parenthesis are used just for grouping: when F is a regular expressions, then (F) is a
regular expression and describes the language L) = Lp-

An extended contezt-free grammar G = (N, 3, P, S) is defined the same as a context-free
grammar except that each production schema 7 € P has the form A — exp, where ezp is a
regular expression over V. When w = wjAwy € V*, m = A+ exp € P and o € L¢p, then
the string wiaws can be derived from the string w.

Every context-free language (one for which there exists a context-free grammar which
generates it) is clearly an extended context-free language. To see the contrary, first note

that we can always assume that does not appear in any production (unless L; = (), and
then replace all productions A — ezp; U exps with productions A — ezp; and A — expo,
all productions A — ezxpiexrps with productions A — EXP,EXP,, EXP, — exp; and
EXP, — expo, all productions A +— exp* with productions A — EXPx, EXPx +— €
and EX P* — erpEX Px, and, for the sake of precision, all productions A — (exp) with
productions A — exp. This construction is actually polynomial (and in fact linear), hence
Theorem 2.1 above leads to the following well known result (see [16]).

Theorem 2.2 Given an extended context-free grammar G = (N,%, P, S) and a string w,
deciding whether w € Lg can be done in O(|G| x |w|®) deterministic time and O(|G| x |w|?)
space.

An extended context-free grammar G = (N,X,P,S) with exceptions is similar to an
extended context-free grammar except that the production schemas in P have the form
A — exp[+I][—X], where A is in N, exp is a regular expression over V, and I and X are
subsets of N. The intuitive idea is that a derivation of a string w from the nonterminal A and
started using the production schema A — exp[+I][—X] must not involve any nonterminal
in X, yet w may contain, in any position, strings that are derivable from nonterminals in I.
When a nonterminal is both included and excluded, its exclusion overrides its inclusion.

More formally, where I, X C V, a language £ with inclusions I, denoted by £+ (I), is the
language that consists of the strings in £ with arbitrary strings from I* inserted into them.
The language £ with exclusions X, denoted by £ — (X), is the language of those strings in £
which do not contain any symbol in X. Notice that (£ + (I)) — (X) C (£ — (X)) + (I), but
the converse does not hold in general. In the sequel, £+ (I) — (X) stands for (£L+ (I)) — (X).
Following Kilpel4inen and Wood [1], we formally describe the global effect of exceptions by
attaching exceptions to nonterminals and by defining derivations from nonterminals with
exceptions. We denote a nonterminal A with inclusions I and exclusions X by Ap p—x-
When w is a string of a regular expression over V, we denote by w(r,x) the string obtained
from w by replacing every appearance of every nonterminals A in w with Ay p_x). Let w =
w1 A[4 - x]w2 be a string over terminal symbols and nonterminal symbols with exceptions.
Then the string wia’ws can be derived from w whenever the following two conditions hold:

1. A exp[+I4][—X4] is a production schema in P;

2. o = aqur,;xux,) for some string a0 € Legp + (I U La) — (X U Xa).

Observe that the second condition reflects the idea that exceptions are propagated and
cumulated by derivations. Finally, the language L5 of an extended context-free grammar G
with exceptions consists of the strings in ¥* derivable from the sentence symbol with empty
inclusions and exclusions.

Although exceptions seem to be a context-dependent feature in that legal expansions of
a nonterminal depend on the context in which the nonterminal appears, Kilpeldinen and
Wood [1] showed that exceptions do not extend the descriptive power of extended context-
free grammars (and hence of context-free grammars); they did so by giving a transformation
that produces an extended context-free grammar which is structurally equivalent to an ex-
tended context-free grammar with exceptions. The transformation propagates exceptions to

production schemas and modifies their associated regular expressions to capture the effect of
exceptions. We refer to their paper [1] for more details but recall that, as they observed, their
transformation may increase the number of productions by a factor which is exponential in
the number of the exceptions. They conjectured that this exponential blow-up is unavoidable.
We show this to be the case, unless the whole of problems in NP can be solved non-uniformly
in polynomial time, contrary to the common belief. They also explicitly posed the practical
question whether the recognition problem for a generic extended context-free grammar with
exceptions is efficiently solvable by other means, like parsing on the fly. (Indeed, existing
SGML parsers like the Amsterdam SGML parser [15] handle exceptions in an interpretive
manner. The names of excluded elements are kept in a stack, which is consulted whenever
the parser encounters a new element.)

We show that a quite restricted form (context-free grammars with only exclusion excep-
tions in input) of this parsing problem is already NP-complete. This is sufficient to conclude
(under the weaker and more popular assumption that P# NP) that no efficient procedure can
translate a context-free grammar with (only exclusion) exceptions Ggxc¢ into an equivalent
extended context-free grammar Gxo gxc, since otherwise, by combining such a procedure
with the one whose existence is stated in Theorem 2.1, we would get an efficient algorithm for
a problem which captures the whole complexity of NP (in jargon, NP-complete). However,
a compact grammar Gno gxc could still exist, even if we are not provided effective means
to derive a description of Gxo gxc from a description of Ggxc. To deny this possibility we
have to rely on the somewhat stronger assumptions as mentioned above and as expressed
more precisely in Theorem 3.3.

3 Two negative results

Let B be a boolean formula in conjunctive normal form. Let X = {z1,...,z,} be the set of
variables and C = {ci, ..., ¢y} be the set of clauses in B. The following problem is perhaps
the most famous among the NP-complete [6] ones.

Problem 3.1 (3SAT) Given a boolean formula B in conjunctive normal form and with
precisely three literals per clause, is there a satisfying truth assignment for B?

To face a 3SAT instance on n variables, consider the context-free grammar G,, with ex-

clusion exceptions, over alphabet ¥ = {z1,...,z,,Z1,...,%n, V, (,), A} and with nonterminal
symbols S, L, X1,...,X,,X1,...,X,. To specify G,, we take S as the sentence symbol of
Gy, and, for i = 1,...,n, provide a bunch of “clause-generating” productions

S— (LVLVX;)AS[-X]] S—(LVLVX;)AS [-X]]

S+— (LVX;VL)AS [-X]] S— (LVX;VL)AS [-X;]

S— (X;VLVL)AS [-X]] S (X;VLVL)AS [-X]]

a bunch of “last-clause-generating” productions

S+ (LVLVX;) S (LVLVX);)
S+ (LVX;VL) S (LVX;VL)
S+ (X;VLVL) S (X;VLVL)

and a bunch of “literal-generating” productions

L— x; L

Note that G,, depends solely on n, the number of boolean variables occurring in the input
boolean formula B.

Theorem 3.2 Given a context-free grammar G with exclusion exceptions and a string w,
deciding whether w € Lg in NP-complete.

Proof: Clearly, the problem is in NP, since one can always guess a derivation, and derivations
of w have length at most linear in |w|. Let B = (£t v ab2vab3) AL A (8™ v g™2 v 3™3)
be a given instance of 3SAT, where, for h =1,...m and k = 1,...3, the k-th literal in clause
h (i.e. £"*) stands either for z; or for Z;, for some i = 1,...n. For example, a given instance
B could be represented by the string op = (z2 V 23 VT1) A (z1 VT3 V T3). To prove the
theorem, it suffices to prove the following claim.

Claim: B admits a satisfying truth assignment if and only if o € Lg,,.

only if. If B admits a satisfying truth assignment f, then, under f, each clause contains
at least one true literal. Associate one such literal Z. to each clause c. Generate the clauses
from left to right, using a production out of the second bunch of productions (the bunch of
“last-clause-generating” productions) to generate the very last clause, after all the previous
clauses have already been generated using productions out of the first bunch (the bunch
of “clause-generating” productions). More precisely, if Z. is positive use one of the three
productions on the left, whereas if Z. is negative use one of the three productions on the
right. (Which one of the three productions to use is dictated by the position of Z. into c.)
Note that, for i = 1,...,n, the exclusion exception [—X;] ([—X;]) can be imposed somewhere
in the proposed derivation only if z; is false (true) under f. But then the proposed derivation
never uses the nonterminal —X; (X;), hence no conflict with an imposed exception occurs
along the proposed derivation.

if. Assume there exists a derivation of o in G,. Follow this derivation from left to
right, clause after clause. When rule B +— (L V LV X;) A B [—X;] is employed, then define
f(x;) = true. When rule B — (LV LV X;)AB [—X;] is employed, then define f(x;) = false.
Act analogously whenever other “clause-generating” rules from the first bunch are encoun-
tered and also when a “last-clause-generating” rule is eventually employed. In the end, when
each clause has been generated, complete the definition of assignment f arbitrarily. Note
that, thanks to the exclusion exceptions imposed, no inconsistency in the definition of f can
have occurred. Moreover, f is a truth assignment which makes at least one literal true for
every clause. O

We say that a language £ can be solved non-uniformly in polynomial-time when there
exist a polynomial p(.), and a family {4, |n € IN} of algorithms such that for every n € IN

e A, recognizes the language of the strings in £ of length n in time at most p(n);

e the length of the description of A, is at most p(n).

A common belief (in [12], at page 269, see the general discussion about Conjecture B and
follow the references given) quite close to the P# NP one, is that NP-complete problems can
not be solved non-uniformly in polynomial time.

Theorem 3.3 Unless all problems in NP can be solved non-uniformly in polynomial time,
there ezists a family {G, |n € IN} of context-free grammars with exclusion exceptions such
that for no polynomial p(.) and for no family {Hy |n € IN} of context-free grammars we have
both Lq, = Lu, and |Hy| < p(n) for all n € IN.

n

Proof: Combine the claim in the above proof with Theorem 2.1. O

Theorem 3.3 gives evidence that, for context-free grammars, exceptions are a powerful
shorthand notation, in that eliminating them may cause exponential growth in the size of
the grammar. Unfortunately, Theorem 3.3 does not actually address the motivation behind
the conjecture of Kilpeldinen and Wood [1]: it does not provide final evidence that such
exponential growth would also result from eliminating exceptions from SGML DTDs. Indeed,
Theorem 3.2 clearly indicates that extended context-free grammars with exceptions offer only
an imperfect match for SGML. (As pointed out by Prescod, SGML parsing is indeed efficient,
while our results suggest that no efficient parsing procedure exists for the general family of
extended context-free grammars with exceptions). In the following section, we list those key
points of distinction between the two classes of languages that we believe are most responsible
for the dramatic difference in complexity behavior. In this way, we hope to hint at some of
those aspects which possibly limit the validity and/or suitability of grammars with exceptions
as a model for SGML and XML.

4 SGML versus context free grammars with exceptions

In this section, we indicate what in our opinion are the two main reasons for the discrepancy
between SGML and its extended context-free grammar with exceptions model. In the attempt
to encode G, into SGML, one quickly realizes the following differences to be significant.

e whenever a production is applied, SGML gives trace of this event dropping a tag (to
be true, there are some rules to allow some tag omission, but indeed, the rules are just
there so that we can actually infer the missing tags);

e in SGML, for any non-terminal A there is a single production with A on the left-
hand side. This point of distinction becomes relevant when exceptions are kept under
consideration.

Of these elements of distinction, the first concerns both XML and SGML and had already
been indicated by Prescod in the document “Formalizing XML and SGML Instances with
Forest Automata Theory” [13], available at [17]. While we perceived as crucial also the second
element of distinction in the case of SGML, we do not believe the same to hold for XML,
since XML does not allow exceptions and hence a single legal rule A — wi|wy can often
express the rules A — w; and A — ws.

5 Final Remarks

The role of XML is to allow documents to be served, received, and processed on the Web.
Even though it is now clear that context-free grammars with exceptions have their limits in
modeling SGML, the ideas in the proof of Theorem 3.2 can possibly help in understanding
which aspects or ingredients of the exception mechanism should definitely not be included, for
efficiency reasons, into the XML standard. (Or, at least, we do not know of other formal steps
or partial results on this front.) Indeed, the use of exceptions begins to appear controversial
even for authors, in that, although exceptions are useful and even handy at first, they add
significantly to the complexity of authoring DTDs as their size and complexity grows. Even
if this phenomenon had been sometimes denied, or attributed to poor style in the use of
exceptions, it is shown in [9], on the basis of an empirical analysis, that the complexity
of some DTDs is approaching (or has exceeded) manageable limits given existing tools for
designing and understanding them, and it is nowadays commonly believed that only partial
solutions (see [9, 10, 11]) to this problem can be attempted. Our results now provide a formal
justification of the occurrence of these problems which are known to imply high costs for DTD
design and corresponding problems with quality.

Some links pointing to relevant material about SGML exceptions can be found in the
Web [18]. Forest-Regular Languages are the (partial) model proposed by Murata Makoto
and Paul Prescod to describe SGML. Their publications on this topic are collected by Robin
Cover in a web page [17].

Acknowledgments

Thanks are due to the anonymous referees. In particular, one of the two referees worked
out XML and SGML DTDs for 3SAT on 3 variables on the lines of the reduction given in
Section 3. I have made part of his original material available on the World Wide Web [19]
since it could help people from a different background in getting a grasp on the general
behavior of the reduction and some of its subtleties, but also in appreciating the vague points
of distinction suggested in Section 4.

References

[1] P. Kilpeldinen and D. Wood, SGML and XML Document Grammars and Exceptions,
Report HKUST-TCSC-99-01, January 25, 1999. To appear in Information and Compu-
tation, 2001.

[2] J. Albert, D. Giammarresi, and D. Wood. Extended context-free grammars and normal
form transformations. In Automata Implementation: Third International Workshop on
Implementing Automata, WIA ’98, Heidelberg, Germany, 1998. Springer-Verlag.

[3] T. Bray, J. Paoli, and C.M. Sperberg-McQueen, editors. Extensible Markup Language
(XML) 1.0. 1998. W3C Recommendation 10-February-1998. The latest version is available
at http://www.w3.org/TR/REC-xml.

[4] A. Briiggemann-Klein. Compiler-construction tools and techniques for SGML parsers:
Difficulties and solutions. Universitdt Freiburg, Institut fiir Informatik, May 1994.

[5] A. Briiggemann-Klein and D. Wood. The validation of SGML content models. Mathe-
matical and Computer Modelling, 25(4):73-84, February 1997.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of
NP-completeness, Freeman, San Francisco (1979).

[7] C.F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.

[8] International Organization for Standardization. ISO 8879: Information Processing—Text
and Office Systems—Standard Generalized Markup Language (SGML), October 1986.

[9] R.W. Matzen, A New Generation of Tools for SGML. In Markup Languages: Theory
and Practice 1/1 (Winter 1999) 47-74.

[10] R.W. Matzen and G.E. Hedrick, A New Tool for SGML with Applications for the World
Wide Web. Paper presented at SAC 98 - 1998 ACM Symposium on Applied Computing.
February 27 - March 1, 1998, Marriott Marquis, Atlanta, Georgia, U. S. A.

[11] R.W. Matzen and G.E. Hedrick, Unraveling Exceptions, Conference Proceedings:
SGML/XML 97, Washington D.C., December, 1997.

[12] C.H. Papadimitriou, Computational complezity EATCS Monographs on Theoretical
Computer Science. Addison-Wesley Publishing Company, Reading, MA, (1994).

[13] P. Prescod, Formalizing SGML and XML Instances and Schemata with Forest Automata
Theory. http://www.prescod.net/forest/shorttut/ 1998

[14] S. Sippu and E. Soisalon-Soininen, Parsing Theory Vol. 1: Languages and Parsing,
EATCS Monographs on Theoretical Computer Science. Springer-Verlang, Berlin, New
York, Tokyo, (1988).

[15] J. Warmer and S. van Egmond. The implementation of the Amsterdam SGML parser.
Electronic Publishing, 2(2):65-90, July 1989.

[16] D. Wood. Theory of Computation. John Wiley and Sons, Inc., 1987.

[17] SGML/XML and Forest/Hedge Automata Theory
http://www.oasis-open.org/cover /hedgeAutomata.html

[18] Some relevant URL’s concerning exceptions in SGML and XML
http://www.oasis-open.org/cover/topics.html

[19] URL to the examples provided by referee 2 and a comment which was common to both
referees
http://www-math.science.unitn.it/ rrizzi/refereeSGMLexc/

