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Abstract

Let G = (V, E) be an undirected graph with costs on the edges specified by w : E +—
IR+. A Steiner tree is any tree of G which spans all nodes in a given subset R of V.
When V' \ R is a stable set of G, then (G, R) is called quasi-bipartite. In [3], Rajagopalan
and Vazirani introduced the notion of quasi-bipartiteness and showed that the Iterated
1-Steiner heuristic always produces a Steiner tree of total cost at most % the optimal
when (G, R) is quasi-bipartite and w is a metric. In this paper, we give a more direct
and much simpler proof of this result. Next, we show how a bit scaling approach yields

3

a polynomial time implementation of the Iterated 1-Steiner heuristic. This gives a 3-

approximation algorithm for the problem considered by Rajagopalan and Vazirani. (We
refer however to the recent and independent developments in [4] for better bounds and
algorithms). Finally, our bit scaling arguments are not standard and we are the first to
adapt bit scaling techniques to the design of approximation algorithms.
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1 Introduction

Let G = (V, E) be an undirected graph with weights on the edges specified by a weighting
function w : E +— IR. A Steiner tree is any tree of G which spans all nodes in a given subset
R of V. The metric Steiner tree problem asks for a Steiner tree of minimum weight, given
that w is a metric. (The weight of a tree T is defined as w(T') = > .crw(e)). When V \ R
is a stable set of G, then (G, R) is called quasi-bipartite. In [3], Rajagopalan and Vazirani
introduced the notion of quasi-bipartiteness and gave a (% + €)-approximation algorithm for
the metric Steiner tree problem, when (G, R) is quasi-bipartite. As a byproduct of their
achievement, the Iterated 1-Steiner heuristic of Kahng and Robins [1, 2] always produces a
Steiner tree of total cost at most % the optimal when (G, R) is quasi-bipartite and w is a
metric. In this paper, we give a more direct and much simpler derivation of this result. Next,
we show how a bit scaling approach yields a polynomial time implementation of the Iterated
1-Steiner heuristic. This gives a %—approximation algorithm for the problem considered by
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Rajagopalan and Vazirani. We refer however to the recent and independent developments
in [4] for better bounds and algorithms. In [4], an independent proof of the 2 bound for the
Iterated 1-Steiner heuristic is also given in the context of a more general approach. Still, our
direct and simple proof remains of independent interest. Within this proof, we emphasize
the role of a fundamental lemma (Lemma 2) whose statement will be shortly introduced
just after first notation is given. We finally underline that our bit scaling arguments are not
standard and that we are actually the first to adapt bit scaling techniques to the design of
approximation algorithms. In particular, no polynomial time implementation of the Iterated
1-Steiner Heuristic of Kahng and Robins [1, 2] was previously known.

notation and key lemma. Denote by mst(G,w) the minimum weight of a spanning tree
for (G,w). Where S C V, the subgraph of G induced by S is the graph obtained from G by
discarding all nodes in S := V'\ S and all edges with at least one endnode in S. The subgraph
of G induced by S can be denoted either by G[S] or by G\ S. In the following, R C V and
X : =V \ R is assumed to be a stable set of G, that is, G[X] = G \ R has no edges.

Let T be a minimum weight spanning tree for (G[R],w). Our arguments are based on
the following simple and fundamental lemma: if mst(G[RU{z}],w) > w(T) for every z € X,
then mst(G[RU X'],w) > w(T) for every X' C X. Note that, for this lemma to hold, the
requirement that X is a stable set can not be omitted.

2 The Iterated 1-Steiner heuristic

Let (G, R,w) be a quasi-bipartite graph endowed by a metric. Let T be an optimal Steiner
tree for (G, R, w). If we knew which of the nodes of X, say I C X, are actually in V(T'), then
we could find an optimal Steiner tree by computing a minimum spanning tree of (G[RU I ], w).
Moreover, since w is a metric, there always exists an optimal solution T such that no node
in I is incident with less than 3 edges in T'. As observed by Rajagopalan and Vazirani in (3],

the following local search algorithm returns a %—optz'mal Steiner tree, i.e. a Steiner tree T'

A~

with w(T) < 3w(T). The algorithm was first introduced by Kahng and Robins [1, 2] as an
heuristic for the general Steiner tree problem and is nowadays considered as one of the most
popular benchmarks in the field.

Algorithm 1 ITERATED_1-STEINER (G, R, w)

1. I+ (; T + any minimum spanning tree of (G[R U I], w);

2. while 3z € X \ I such that mst(G[RUIU {z}],w) < w(T) do

3. I + IU{z}; T < any minimum spanning tree of (G[R U I], w);
4

remove from I all nodes with degree one in T'; update T accordingly;
(drop the corresponding leafs);

5. remove from I all nodes with degree two in T'; update T accordingly;
(shortcut the pairs of consecutive edges si and it with the single edges st);

6. return T}




We offer a direct and simple proof of the following result. The proof is based on Lemma 2.
The lemma is stated below the theorem and proven in the next section.

Theorem 1 The Steiner tree output by Algorithm 1 is within a factor of% from optimum.

Proof: Let T be the Steiner tree output by Algorithm 1 and let T be an optimal Steiner tree
for (G,R,w). Let I = V(T)\R and I = V(T')\ R. In T, consider the stars of the nodes in I.

Since (G, R) is quasi-bipartite, then these stars are all disjoint. Moreover, by steps 4 and 5,

each star contains at least three edges. For every z € I, let e, be any edge of T' incident with
r and with smallest possible weight. By the above remarks, >° _;w(es) < éw( )- Since for
every z € I one of the two endpoints of e, is in R, then there exists a spanning tree T' of
G[RU I U] with w( ) < w(T) + 3w(T) (Take any spanning tree in 7' U {e, :z € I}). B

step 3, mst(G[R U Iu {z}],w) > w(T) for every z € X \ I. By Lemma 2, w(T) > w(T)

Combining, w(T") + w(T) > w(T [). So, w(T) < gw(T) O

Lemma 2 Let X := V \ R be a stable set of G. Assume mst(G[RU{z}],w) > mst(G[R],w)
for every node x € X. Then mst(G[RU X'],w) > mst(G[R],w) for every X' C X.

Note that the assumption of X being stable can not be omitted in the above lemma.

3 A proof of Lemma 2

Let G = (V, E) be an undirected graph and w : E — IRy be a non-negative weighting of
the edges of G. To prove Lemma, 2, we do not need w to be a metric. Instead, we need to
introduce some further notation. In this section, it will be convenient to allow our graphs to
possess parallel edges. The operation of identifying a set of nodes S into a node s amounts
to: (1) remove all edges with both endnodes in S; (2) introduce a new node s; (3) for every
edge with one endnode s’ in S, move that endnode from s’ to s; (4) remove all nodes in S.
Where Vi, ...,V is a partition of V', then G < Vi,...,V} > denotes the graph obtained from
G by identifying all nodes of V; into v; (for i = 1,...,k). Usually, we consider a tree T to be
just a set of edges. Sometimes however, and depending on our convenience, a tree T will be
regarded as the graph (V(T'),T'), where V(T') is the set of endnodes of edges in T'.

Lemma 3 Let vy,...,vy the neighbors of a node x in G and C,...,Cy a partition of V\ {z}
such that v; € C; (for i =1,...,k). Assume w(é(z)) < mst(G[V \ {z}] < C1,...,Ck >, w).
Then mst(G,w) < mst(G\ {z},w).

Proof: Let T be any spanning tree for (G\ {z},w). It suffices to show that there always exists
a spanning tree F of T' < C4,...,Cy > such that 7'\ F U d(z) contains a spanning tree of G.
Let v be a leaf of T' and let vu be the edge of T incident with v. W.l.o.g. assume v € Cj.

Case 1: Assume that v # v;. Let 7" = T\ {vu} and G’ be the graph obtained from G by
identifying {u,v}. Note that T” is a spanning tree for G’ \ {z}. Let F be a spanning tree of
T < Cy\ {v},C4,...,Ck > such that 7"\ F Ud(z) contains a spanning tree of G'. But then,
F is a spanning tree of T' < C4,...,Cy > such that T\ F U §(z) contains a spanning tree of



G.

Case 2: Assume therefore that v = v;. This time G’ and T" are obtained from G and T as
follows. First remove edge vu from 7', and in G, remove zv and identify {u,v}. Next, as long
as T contains an edge ab with a € C}, then remove ab from T and in G identify {a,b}. Let
G'" and T be the graph and the tree so obtained. Note that 7" is a spanning tree for G’ \ {z}.
Let F be a spanning tree of T' < Cy,...,Cy > such that 7'\ F U é(z) contains a spanning
tree of G'. But then, F U {vu} is a spanning tree of T' < C1,...,Cy > such that T\ F U é(z)
contains a spanning tree of G. O

Proof of Lemma 2: It suffices to show that if mst(G[RU X'], w) < mst(G[R],w) for some
X' C X with |X'| > 2, then mst(G[R U X"],w) < mst(G[R],w) for some proper subset
X" of X'. Let T' be a spanning tree of G[R U X'] with w(T") < mst(G[R],w). In a min-
imal counterexample, we can always assume that X’ = X and that every edge of G with
an endpoint in X is contained in 7”. Let z be any node in X and X" = X \ {z}. Let
v1,...,V; be the neighbors of z in G. Consider the connected components Ci,...,Cy of
the graph obtained by removing node z from the graph 7'. (Assume w.l.o.g. that v; € Ci,
fori =1,...,k). If mst(G[RU X"],w) < w(T"), then mst(G[R U X"],w) < mst(G[R],w)
and the proof is complete. Assume therefore mst(G[R U X"],w) > w(T"), which implies
w(d(z)) < mst(G[V \ {z}] < C4,...,Cx >,w). Fori =1,...,k, let C; = C; N R. Since
X is a stable set of G, then v; € C; for i = 1,...,k. Clearly, G[R] < Cy,...,Cy >=
GV \{z}] < C4,...,C, >. Hence mst(G[R] < Ci,...,Ck >,w) > w(d(z)). By Lemma 3,
mst(G[RU {z}],w) < mst(G[R],w). O

4 Bit scaling and running time

In this section, we show how a bit-scaling technique can be employed to derive an implemen-
tation of Algorithm 1 with running time polynomial in the size of the input.

Consider the sequence of weightings w = wg, w1, ..., where, for ¢ > 0, w; is defined as
follows: w;(e) = LW‘TI(E)J Let k be the smallest index for which wg(e) < 1 for every edge
e of G. Therefore k < logy maxecp w(e). When Algorithm 1 is executed on (G, R, wy) as
input, then loop 2-5 will cycle at most n times, since wy, is a 0, 1-vector. The output will be
a tree T* 4px. Note that T* 4px is a 3-optimal Steiner tree for (G, R, wy,).

For i = 0,1,...,k, let T®opr be an optimal and T%4px be a %—optimal Steiner tree in
(G, w;). Hence,

. - . . 1 .
wi (T apx) — wi(T* topr) < wi(T apx) — wi(T opT) < Ewi(TZOPT)

Moreover, since every tree has less that n edges, we have:
wi—1 (T opr) — wis (T topr) < <2wi(Ti0PT) + n) —2w;(T" Yopr) <n

Therefore,



n+ 2 (wi(T" apx) — wi(T"opr)) <n+2 (%wi(TiOPT)) <n
n+3 ( wi—1 (T opr) + wi1 (T ropr) — Wi 1 (T LopT) ) <
n+ Swi 1 (Topr) + & ((wia(Tlopr) — wit (T opr) ) <
n+zwi—1(T" opr) + 3 (n) = 3n + w1 (T"'opr)

+2 (%wifl(TiOPT)) <

We conclude that w;_1 (T apx) < %n + %wi_l(Ti_lopT). Therefore, by executing loop
2-5 at most 3n times, then Algorithm 1 finds a 3-optimal Steiner tree in (G,w;_1) starting
from any 3-optimal Steiner tree in (G, w;).

The above analysis yields the following result.

Theorem 4 There is a %—approzimatz'on algorithm for the metric Steiner tree problem on
quasi-bipartite graphs. In a straight forward implementation, the running time is O(nkzT (n,m)),

where n := |V| is the number of nodes, m := |E| is the number of edges, T'(n,m) is the mazi-
mum time required by a minimum spanning tree computation on a graph with at most n nodes
and m edges, k := logo max.cg w(e), and z := |X| is the number of Steiner nodes.

No polynomial time implementation of the Iterated 1-Steiner Heuristic of Kahng and
Robins [1, 2] was previously known.
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