A Simple Minimum T-Cut Algorithm

Romeo Rizzi*

October 23, 2002

Dipartimento di Informatica e Telecomunicazioni, Universita di Trento
via Sommarive 14, 38050 Povo, Italy
romeo@science.unitn.it

Abstract

We give a simple algorithm for finding a minimum 7T'-cut. At present, all known ef-
ficient algorithms for this problem go through the computation of a Gomory-Hu tree.
While our algorithm bases on the same fundamental properties of uncrossing as the pre-
vious methods, still it provides an ad-hoc solution. This solution is easier to implement
and faster to run. Our results extend to the whole of symmetric submodular functions.

Key words: T-cut, minimum T'-cut, T-pairing, Gomory-Hu tree.

1 Introduction

Given a graph G = (V, E) and a node set S C V, the cut dg(S) (or more simply §(S), if no
confusion can arise) is the set of those edges in E with precisely one endnode in S.

A graft (G,T) is a connected graph G in which an even number of nodes 7' C V have
been distinguished as odd. The T-parity of a set of nodes S C V is the parity of |S N T].
When S C V is T-odd then §(S) is a T-odd cut or T-cut. Let Ry and N denote the set
of non-negative reals and the set of non-negative integers (i.e. naturals), respectively. Let
(G,T) be a graft and ¢ : E — R} be a cost function. A minimum 7-cut for (G,T,c) is a
T-cut §(X) of (G, T) for which:

c(0(X)) = Ag,r = min{c(6(S)) : 6(S) is a T-cut of (G,T)}

where the cost ¢(F') of a set F' of edges is defined as) . c(e).

The minimum 7T-cut problem is of both theoretical and practical significance. Efficient
algorithms for finding minimum 7-cuts are the means by which we can actually separate
blossom inequalities for the matching polytope. Moreover, minimum 7-cuts procedures are
at present employed in several “state of the art” branch and cut algorithms for different
and relevant problems, like TSP. To say more, such procedures are often among the most
expensive components of these branch and cut projects both in terms of programmer time
and resource usage.

In Section 3, we give a simple algorithm to find a minimum 7'-cut. At present, all known
efficient algorithms for this problem go through the computation of a Gomory-Hu tree. While

*Research carried out with financial support of the project TMR-DONET nr. ERB FMRX-CT98-0202 of
the European Community.

our algorithm bases on the same fundamental properties and techniques of submodularity and
uncrossing as the previous methods, still it provides an ad-hoc solution. This solution is easier
to implement and faster to run. In [4], we gave a min-max formula which links the minimum
T-cut problem to the problem of pairing up the nodes in 7" as T' = {s1,t1; S, t2; ...} so that
min{Ag (st 1 =1,..., @} is greatest possible. In Section 4, we show that our algorithm
also computes such an optimal pairing, hence providing an algorithmic proof of the min-max
formula. In Section 2, we point out the crucial properties of cuts in graphs which are needed
in the following. These properties state the cut function to be symmetric and submodular.
Therefore, even if we have decided to confine our exposition to cuts in graphs, our results and
arguments apply, without any modification, to the whole of symmetric submodular functions.

2 Basic facts: submodularity and uncrossing

The background and also the main ingredients and techniques of our simple solutions can be
found in [1, 3, 2]|. In this section, we recall the only basic facts which are needed. The reader
willing to accept Lemma 2.4 here below can skip this section altogether, and avoid getting in-
volved into our somewhat unconventional (but we believe convenient) view on submodularity.

The complement in V of § C V is denoted by S = V' \ S. Switching S means replacing S
by S. For example, if S = X, then after switching S we obtain that S = X and S = X.

Let (G,T) be a graft and S C V a set of nodes.
Observation 2.1. Switching S does not change the T-parity of S (nor of §(S)).

ezplanation: |S N'T| and |S N T| have the same parity since |T'| is even. O

Proposition 2.2. Let (G,T) be a graft and S, X C V. Then we have:
i) Switching S changes the T-parity of SN X if and only if X is T-odd.
it) SNX and SUX have the same T-parity if and only if S and X have the same T-parity.
i1i) Switching S changes the T-parity of SU X if and only if X is T-odd.

Proof: Note that |[(SNX)NT|=|SN (X NT)| whose parity is affected by switching S if
and only if | X NT| is odd, that is, if and only if X is T-odd. This gives 7).
To obtain 74) note that |(SNX)NT|+|(SUX)NT|=[SNT|+|XNT|.
Finally, 747) is a consequence of i) and 7). O

The following lemma, expresses a property of cuts known as submodularity.

Lemma 2.3. Let G be a graph with cost function c: E— Ry. Let 1,52, C V.

c(0(51 N 82)) + ¢(3(51 U S2)) < ¢(6(51)) + ¢(6(S2)) (1)

Proof: We claim that each edge uv contributes to the right at least as to the left side
of (1).

By Proposition 2.2, if S1 N Sy and S; U Sy have different {u, v}-parities, so do S1 and Ss.
Hence, had our claim to be false, then both S1 NS, and S; US2 would be {u, v}-odd. Assume
w.lo.g. that u € S1 NSy and v ¢ S; U S2. But then, u € S1,S2 and v ¢ S, Ss. O

If SN X # for every possible switching of S and X, then S and X are said to cross.
All what we will need about cut functions is that they obey to the following lemma.

Lemma 2.4. Let T1,T> be even cardinality subsets of V. Let 6(S1) be a minimum Ti-cut
and assume that Sy is Ty-even. Then there exists a minimum Ty-cut §(S2) such that S and
Sy do not cross.

Proof: Let 6(X) be a minimum 7T-cut. We remark that, by Proposition 2.2, switching S;
changes the Ts-parity of S1 U X whereas switching X changes the T7-parity of S1 N X leaving
the Th-parity of S1 U X unaffected. Therefore, by possibly switching 51, we can assume that
S1UX is Ty-odd. Afterwards, by possibly switching X, we can assume that S; N X is T7-odd
without affecting the Ts-parity of S; U X.

At this point, ¢(6(S1 N X)) > ¢(6(S1)) since 6(S1) is a minimum T3-cut. By submodu-
larity, c(6(S1 U X)) = ¢(6(X)). Thus §(S1 U X) is a minimum Th-cut. And clearly, S; and
S1 U X do not cross. O

3 Minimum 7T-cuts: a simple algorithm

Given a graft (G,T') and a T-even set S C V', denote by Gs the graph obtained from G by
identifying all nodes in S into a single node and letting T's := T'\ S. Note that (Gg,Ts) is a
graft. When S = {s,%} C T then we rely on a shorter notation G = G, and Ts; = T, -

Since node identification does not affect the edge set of a graph, a cost function ¢ for G
is also a cost function for G's and G ;.

The following algorithm computes Ag 7:

Algorithm 1 MIN_T-cut (G,T,c)

1. if T = then return oo; comment: (G,T) contains no T-cut

2. let s and t be any two different nodes in T';

3. let §(S) be a minimum {s,t}-cut;

4. if §is T-odd then return min{c(6(S)), MIN_T-cUT (G4, Ts4,¢)};
else return min{ MIN_T-cuT (Gs,Ts, c), MIN.T-cuT (Gg, Tg,c)}.

Correctness

For a given (G,T,c), let s and t be any two different nodes in 7" and let 6(S) be a minimum
{s,t}-cut. The correctness of the above procedure relies on the following two lemmas:

Lemma 3.1. If 6(S) is T-odd, then A\gr = min{c(6(S5)), Aa, 1., }-

Proof: Indeed, the T ;-cuts of G5 ; are precisely the T-cuts of G that are not {s,t}-odd. O

Lemma 3.2. If §(S) is T-even, then Ag,r = min{Agg 15, AG4,T5}-

Proof: First note that every Tg-cut in (Gg,Ts) and every Tg-cut in (Gg,Tg) is also a
T-cut in (G,T). This implies)\G,T < min{)\GsyTs, >\G§,T§}-

For the converse, let §(X) be any minimum 7-cut for (G, T,c¢). By Lemma 2.4, we can
assume that S and X do not cross. This means that the edge set dg(X) is either a Ts-cut in
Gs or a Tg-cut in Gg. O

Time Complexity

Each time § is T-odd the cardinality of T" is reduced by 2. Each time S is T-even the set T’
is partitioned into two non-empty subsets 7N S and 7'N S. Thus the number of recursions is
at least |T'|/2 and at most |T'| — 1. To conclude, the algorithm performs at least |T'|/2 and at
most |T'| — 1 max-flow min-cut computations. The algorithm based on the Gomory-Hu tree,
which is the pretty involved method employed until now to find minimum 7T-cuts, performs
always |T'| — 1 max-flow min-cut computations.

Call a pair {s,t} useful if there exists a minimum {s, ¢}-cut which is T-odd. At present,
the most convenient methods to find minimum {s, ¢}-cuts actually compute a maximum flow
from s to ¢t. Thus all such methods require only a small amount of extra work to return a
minimum {s, ¢ }-cut which is T-odd whenever {s,t} is useful. Assume nodes s and ¢ in step 2.
of algorithm Min_T-cut are chosen at random and with uniform probability. By Lemma, 4.4,
{s,t} is useful with probability at least ITI%I Exploiting this fact, we can easily see that
the probability that algorithm Min_T-cut will perform as many as |T'| — 1 max-flow min-cut
computations is at most

(750) (729 ()) < (%) (F20) - () ()~ (3)

and tends therefore to 0 when |T'| grows. (Just observe that, where 6(S) is the cut
considered in step 3., then the less favorable case in bounding this probability occurs when
ITNS|=2or |TNS|=2 whenever |T| > 2).

Even more, for any constant K, the probability that algorithm Min_T-cut will perform
more than |T| — K max-flow min-cut computations tends to 0 when |T'| grows.

4 Computing optimal 7T-pairings

Let (G,T) be a graft with cost function ¢ : E — Ry. A T-pairing is a partition of T into
pairs. The value of a T-pairing P is defined as:

valg(P) = {uf’i?é 5 A6 (u;0)

where A\g(u,v) denotes the cost of a minimum {u,v}-cut. Let P be any T-pairing and
d(S) be any T-cut. Since §(S) is T-odd, P contains a pair {u,v} such that 6(S5) is {u, v}-odd.
Therefore, c(§(S)) > Ag(u,v) > valg(P) and the value of P is a lower bound on Ag 7.

In this section, we show that algorithm Min_T-cut actually finds a T-pairing of value
Ag,r- Indeed, consider a single iteration of the algorithm. Let s and ¢ be two odd nodes. Let
d(S) be a minimum {s,¢}-cut. In each iteration the algorithm contemplates two possibilities:
Case 1: §(S) is T-odd. By Lemma 3.1, Ag,r = min{c(6(5)), Ag, ;.1 }. By Lemma 4.1 here
below, if P’ is a T s-pairing with valg, , (P') = Aa, 1., then P = P'U{{s,t}} is a T-pairing
with valg(P) > min{c(6(S)),val(P')} = min{c(0(S)), Aa, .15} = AG,1-

Case 2: §(5) is T-even. By Lemma 3.2, A\g,r = min{Ags 15, A5, - By Lemma 4.2 here be-
low, if Pg is a Ts-pairing with valgs(Ps) = Ags,1s and Py is a Tg-pairing with valg,(Pg) =
AGg,T5, then P = Pg U Pg is a T-pairing with valg(P) > min{valg,(Ps),vale.(Pg)} =
min{)\GS’TS, A(;?’Tg} = /\G,T- O

Lemma 4.1. Let 6(S) be a minimum {s,t}-cut in (G,c). Then we have:
Ac(u,v) > min{¢(6(5)), A, , (u,v)} Vu,v € V(G)\ {s,1}

Proof: Indeed, the {u,v}-cuts of Gs; are exactly the {u,v}-cuts of G that are not {s,¢}-
odd. m|

Lemma 4.2. Let §(S) be a minimum {s,t}-cut in (G,c). Then we have:
Ac(u,v) = Agg(u,v) Vu,ve V(G)\ S

Proof: Let u and v be any two nodes in V(G)\ S. Obviously Ag(u,v) < Agg(u,v). For the
converse, let 6(X) be any minimum {u, v}-cut in G. By Lemma 2.4, we can assume that S and
X do not cross. But then the edge set 6 (X) is a {u,v}-cut in Gg and A\g4(u,v) = Ag(u,v). O

To summarize this section, the above arguments lead to the following results:

Theorem 4.3. For every (G, T,c) the mazimum value of a T-pairing equals the minimum
cost of a T-cut.

Lemma 4.4. For every node u in T there exists a node v € T\ {u} such that {u,v} is useful.

Proof: Apply algorithm Min_T-cut to (G,T,c). At each recursion, keep choosing s = u
until the minimum {s,¢}-cut 6(S) is T-odd. By Lemma 4.2, {u,t} is useful w.r.t. (G,T,c).
a

Acknowledgments

Thanks are due to the anonymous referees of a previous version of this work. Their suggestions
and advice significantly helped improving the presentation.

References

[1] R. Gomory and T.C. Hu, Multi-terminal network flows. SIAM 9 (1961) 551-570.
[2] L. Lovdsz and M.D. Plummer, Matching Theory, Akadémiai Kiad6 (1986)

[3] M.W. Padberg and M.R. Rao, Odd minimum cut-sets and b-matchings. Mathematics of
Operation Research 7 (1982) 67-80.

[4] R. Rizzi, Minimum 7-cuts and optimal 7-pairings. Discrete Mathematics. 257 (1) (2002)
177-181.

