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Abstract

Let G be a fixed collection of digraphs. Given a digraph H, a G-packing of H
is a collection of vertex disjoint subgraphs of H, each isomorphic to a member
of G. For undirected graphs, Loebl and Poljak have completely characterized
the complexity of deciding the existence of a perfect G-packing, in the case
that G consists of two graphs one of which is a single edge on two vertices. We
characterize G-packing where G consists of two digraphs one of which is a single
arc on two vertices.
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1 Introduction

We consider finite graphs and digraphs. Let G be a fixed collection of digraphs. Given
a digraph H, a G-packing of H is a collection of vertex disjoint subgraphs of H, each
isomorphic to a member of G. For graphs, this notion is a natural generalization of
matchings, since a matching can be viewed as a collection of vertex disjoint copies of
Ky, i.e. a {Ks}-packing. Given a packing, a vertex of H is covered if it belongs to one
of the members in the packing. A packing is perfect if all vertices are covered. The
G-packing problem is the problem of deciding for a given input digraph H, whether
or not H admits a perfect G-packing.

The G-packing problem has received much attention [2, 3, 5, 6, 7, 9] in the case of
undirected graphs. In particular, [3] and [6] recognized the importance of hypomatch-

able graphs, and [9] continued this work by completely classifying the computational
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complexity of packing with the family G = { K5, G}, i.e. a single edge and a graph G,
where G is connected. For a recent survey see [8].

In the case of digraphs, packing with directed paths and cycles have been exam-
ined in [1]. The purpose of this note is to present a complete classification of the
computational complexity of the {]31, D}-packing problem, i.e. a single arc and a
digraph D, where D is weakly connected. (We use P, to denote the directed path of
length i.)

We make extensive use of the following definitions. A graph G is perfectly match-
able, or has a perfect matching, if it admits a perfect {K5}-packing. A graph G is
hypomatchable if G — v has a perfect matching for every vertex v of G. A graph ¢
is a propeller if it can be obtained from a hypomatchable graph B by adding a new
pair ¢, r of vertices, some new edges connecting ¢ with a nonempty subset of vertices
of B, and the edge cr. The graph B is the blade of the propeller. The vertex c is the
centre, and the vertex r is the root. In [9] it is shown for a fixed, connected graph G,
the problem of determining whether a given input graph admits a perfect { K5, G}-
packing is polynomial time solvable if G is perfectly matchable; G is hypomatchable;
or (G is a propeller; and the problem is NP-complete otherwise.

The underlying graph of a digraph D = (V, A) is the graph on vertex set V' where
two vertices are adjacent if and only if they are the ends of some arc in A. Given a
digraph D, we call D respectively perfectly matchable, hypomatchable, or a propeller
if the underlying graph of D is respectively perfectly matchable, hypomatchable, or

a propeller. Our main result is the following.

Theorem 1.1 Let D be a fized, weakly connected digraph. The {]31, D}-packing prob-
lem 1s polynomial time solvable if D s perfectly matchable, hypomatchable, or B,. The

problem is NP-complete in all other cases.

(The assumption that D is weakly connected is not required for the positive results:
the result holds for all perfectly matchable digraphs D; moreover, hypomatchable
digraphs must be weakly connected.)

We begin by observing that a digraph packing problem is NP-complete whenever
the underlying graph packing problem is NP-complete.

Proposition 1.2 Let G’ be a collection of digraphs, and let G be the collection of
underlying graphs of G'. That is, G = {G : G is the underlying graph of some D €
G'}. Suppose G-packing is NP-complete. Then G'-packing is NP-complete.

Proof: Clearly G'-packing is in NP. We reduce G-packing to G'-packing. Let H be an
instance of G-packing. Let H' be the symmetric digraph defined by V(H') = V(H)
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and (u,v),(v,u) € E(H') if and only if {u,v} € E(H). The digraph H' admits a
perfect G'-packing if and only if H admits a perfect G-packing. |}

Corollary 1.3 Let D be a weakly connected digraph. The {ﬁl,D}—packing problem
1s NP-complete if D is not perfectly matchable, hypomatchable, or a propeller.

Proof: The result follows directly from the Loebl, Poljak classification [9] for graphs
and Proposition 1.2. |}

In the next sections, to complete the proof of Theorem 1.1, we will examine
{131, D}-packing in the case that D is perfectly matchable, hypomatchable, or a pro-
peller.

2 Some preliminary cases

Suppose D is a perfectly matchable digraph. Then any {]31, D}-packing of a digraph,
say H, can avoid the use of D. Given any packing P of H, we can simply replace
each copy of D € P with a perfect {ﬁl}—packing of D. The packing thus obtained

covers the same set of vertices in H as P. The following proposition is immediate.

Proposition 2.1 Let D be a perfectly matchable digraph. Then the {]31, D}-packing

problem is polynomially time solvable.

Consider the case that D = P. In [1] a reduction of {P,, P,}-packing to bipartite
matching is presented. Thus the problem is polynomial time solvable. For any pro-
peller other than P, the {]31, D}-packing problem is NP-complete. This is shown in

Section 4. The remaining case (D is hypomatchable) is presented in Section 3.

3 Hypomatchable digraphs

Let G be a fixed hypomatchable graph. In [2, 5, 6] the {K», G'}-packing problem, as
well as the following restricted version of the problem, are shown to be polynomial
time solvable.

Restricted {K,, G}-packing.

Instance: A graph H and a set C of subgraphs of H each isomorphic to G.

Question: Does H admit a perfect { Ky, G'}-packing where each copy of G in the
packing belongs to C?

Proposition 3.1 Let D be a hypomatchable digraph. The {ﬁl, D}-packing problem

18 polynomial time solvable.



Proof: Let H be an instance of {P;, D}-packing. We reduce the digraph {P;, D}-
packing problem to the (undirected) restricted { K, G}-packing problem, where G is
the underlying graph of D. Let C be all subgraphs of H isomorphic to D. (Note
D is fixed, and thus |C| is polynomial in the order of H.) The instance of the re-
stricted {K,, G}-packing problem is the underlying graph of H, say H’, and the
collection C' = {C" : C" is the underlying graph of some C € C}. The collection C’ is
precisely those copies of G in H' that correspond to copies of D in H. Hence there

is a natural correspondence between perfect {ﬁl,D}-packings of H and restricted
{K,, G}-packings of H'. |}

4 Propellers

We now show that the {ﬁl, P}-packing problem is NP-complete if P is a propeller
different from the directed path of length two. To this end, let P be such a propeller.
Let r be the root of P, ¢ be the centre, and n be a neighbour of ¢ in the blade of P.

Let E be a boolean formula in conjunctive normal form. Let X = {z;,...,z,} be
the set of variables and D = {dy,...,dy,} be the set of clauses in E. The following
restricted version of SAT is NP-complete (see Problem A 9.1. [LO01] on page 259 [4]):

(A) at most 3 literals per clause;

(B) every variable occurs in at most 3 clauses.

We may assume every clause has at least two literals, for a clause with one literal
uniquely determines the value of that variable in any satisfying truth assignment and
allows for a natural reduction where restrictions (A) and (B) are both mantained.

Moreover, if all occurrences of a variable are positive, then we can set that variable
to true and drop that variable and all clauses containing it. By inverting a variable,

we can also assume that for each variable:

(c) either the variable has one positive occurrence and one negated occurrence;

(D) or the variable has two positive occurrences and one negated occurrence.

For the variable x; we will label the corresponding literals with x;,Z; in case (C),
and with z}, 22, Z; in case (D).

Thus, let E be a boolean expression with the restrictions (A), (B), (C) and (D)
described above. We construct a digraph H = H(E) from truth-setting components
and testing components. There is one testing component for each clause in £ and
one truth-setting component for each variable in E. The digraph H(F) will admit a
perfect {ﬁl, P}-packing if and only if F admits a satisfying truth assignment.



Figure 1: Examples of the testing component

If P has a trivial blade, we will exploit the following assumption: the number of
arcs between the root and the centre does not exceed the number of arcs between the
blade and the centre. (If necessary, reverse the role of the root and the blade.)

Construct a vertex for each literal appearing in E. These vertices, called literal
vertices, play a special role in that all components are connected only by means
of these vertices. More precisely, a literal vertex will belong to the truth setting
component of the involved variable and to the testing component of the clause in
which the literal appears.

Let d be a clause in E. We construct a testing component, i.e. a digraph, which
we call T'Cy. Let [;, I, and possibly I3 be the k literals appearing in d. Construct
k — 1 copies of P, say D1,...,Dr_1. We label the blade of D; with B;, the centre
with ¢;, and the root with r;. The root is the literal vertex corresponding to /;; hence
l; and r; label the same vertex. In addition, add arcs between the pairs (I;, ¢;), @ # J,
so that any /; together with any c¢; U B, is a copy of P with root /;. Examples of the
testing components are shown in Figure 1.

The main property and basic role of the testing component is revealed by the
following lemma.

Lemma 4.1 Let S be a non-empty subset of {l1,...,lt}. Then there exists a {]31, P}-
packing covering all vertices of TCy except those in S. Moreover, TCy admits no
perfect {ﬁl, P}-packing.

The truth setting components are now defined. Let z; be a variable occurring
in E. If z; occurs twice, then the truth-setting component 7T'S; associated with x;
consists of a directed path of length 2. The two ends of the path are the two literal
vertices and hence are labelled with z; and Z;; the centre of the path is labelled v;.
Observe that no {131, P}-packing of the truth-setting component can cover both z;
and T; since P differs from ]32. If x; occurs three times in E, then the truth-setting



Figure 2: Examples of the truth-setting components

component is constructed as follows: Begin with a copy P’ of P where ] is the root
and 2? is the specified neighbour, n, of the centre. Label the centre with v;. If there
is an arc of P’ with tail z} and head v;, then add a single arc from v; to Z;; otherwise,
add a single arc from Z; to v;. An example of each kind of truth-setting component

appears in Figure 2.

1,2
i L5

Lemma 4.2 Any packing of T'S; which covers all of T'S; — {T;, z } cannot cover

both T; and a vertex labelled xf .

Proof: Assume T; is covered by a packing of T'S; which covers all of T'S; —{T;, =}, 27 }.
We show that Z; is not covered by a propeller. By our choice of the single arc between
v; and T;, no subgraph of T'S; isomorphic to P can have root T;. Clearly, such a
subgraph cannot have centre T; either. For T; to belong to its blade, P has a trivial
blade, and P has a single arc between the centre and the blade. Since we assumed
that the number of arcs between the root and the centre does not exceed the number
of arcs between the blade and the centre, and since P differs from ]32, it finally follows
that Z; cannot be covered by a copy of P inside T'S;. Therefore, T; must be covered
by a copy of 131 which also covers v;. Hence, the packing does not cover x). Moreover,
the packing does not cover z? either, since the blade of P is hypomatchable, and the
packing covers all of T'S; — {Z;, z;,2?}. |

This completes the construction of H(E). That is, H(FE) consists of the literal
vertices upon which we have constructed testing components and truth-setting com-
ponents.

Lemma 4.3 Let H(FE) be the digraph constructed as above and suppose P is a perfect
{]31, P}-packing of H(E). Assume a node c; of a testing component is covered by a
propeller in P. Then c; is covered by the centre of the propeller.

Proof: If ¢; is covered by the root of a propeller, then the hypomatchable graph
Bj must be covered by copies of ﬁl, a contradiction. If ¢; belongs to the blade of a
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propeller, say B’, then B’ must cover an odd number of vertices of B;. The removal
of ¢; from B’ disconnects the blade B’ creating a component with an odd number of
vertices. This cannot happen in a hypomatchable graph. Consequently, ¢; must be
covered by the centre of B'. ||

The result in the following lemma is related to the notion of coherence introduced
in [7].

Lemma 4.4 Let P be a perfect packing of H(E). Then there ezists a perfect packing
P' of H such that each member of P’ is a subgraph of some truth-setting component

or a subgraph of some testing component.

Proof: Clearly every P inPisa subgraph of some truth-setting component or a
subgraph of some testing component. In light of Lemma 4.3, the result also holds if
P has a blade consisting of a single vertex.

Thus assume P has a nontrivial blade. Let P’ be a copy of P which covers
vertices ¢; and /; in some testing component T'Cy, but is not a subgraph of T'Cy. By
Lemma 4.3, we know that the centre of P’ covers ¢;. Since the blade of P, say B',
is connected either all of B, is covered by B’ or none of B; is covered by any of B’.
In the former case P’ is a subgraph of T'C,;. Thus the latter case must occur. Since
B; cannot be covered solely by copies of ﬁl, the root of P’ must cover a vertex in B;.
The remainder of B; is covered by copies of P.

We will now show that B’ covers a blade in the truth-setting component to which /;
belongs. The vertex [; is covered by a vertex in the blade B’. Since B’ is a nontrivial
hypomatchable graph, it does not contain any vertex of degree one. Hence [; has
degree at least two in B’. We conclude that [; is xg in truth-setting component 7°S,.
(Note that /; may also be adjacent to another centre in 7'Cy; however, by Lemma 4.3
this centre cannot be covered by any vertex in B'.) Let B, denote the blade in T'S,
to which 2 belongs.

As in the proof of Lemma 4.3 we can see that all of B, must be covered by B'.
Otherwise, the removal of the v, from B’ would leave a component with an odd
number of vertices in B’. This cannot happen in a hypomatchable graph.

We now remove P’ and the copies of P, which cover Bj from P. We add a propeller
covering xg = [; with its root, ¢; with its centre, and B; with its blade. We cover the

remainder of B, with copies of ]31. The result follows. ||

Theorem 4.5 The {131, P}-packing problem is NP-complete.

Proof: Let E be an instance of SAT with the restrictions above. The digraph
H = H(E) is the instance of the { P, P}-packing problem.
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Suppose there is a satisfying truth assignment for E. For each variable z;, if z;
is false, then we cover 7, v; with P If x; is true, then we cover T'S; — Z; with P
(respectively P) if z; appears twice (respectively three times) in E. For each testing
component T'Cy, at least one of the vertices labelled with /; must be covered at this
point. The remainder of the testing component can be covered by copies of 131 and
P.

On the other hand, suppose H has a perfect {]31, P}-packing. By Lemma 4.4 we
can assume each member in the packing is a subgraph of a truth-setting component
or a testing component. The first direction of the proof provides a template for
determining the truth assignment for the variables. Each testing component must
have at least one vertex [; that is not covered by a subgraph of the testing component.
Thus [; must be covered by a subgraph of some truth-setting component. Specifically,

the vertex /; is some T; (in which case we assign false to ;) or it is one of {z;, 2}, z3

3y
(in which case we assign true to z;). By our above remarks and Lemma 4.2, it is
not the case that both T; and one of {x;,z},23} are covered by subgraphs of the

truth-setting component. Consequently, no variable is assigned both true and false.

We conclude that our assignment is a satisfying truth assignment for E. i
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