Packing paths in digraphs

Richard C. Brewster*' Pavol Hell** Sarah H. Pantel

Romeo Rizzi¥l Anders Yeo **

Abstract

Let G be a fixed set of digraphs. Given a digraph H, a G-packing in
H is a collection P of vertex disjoint subgraphs of H, each isomorphic
to a member of G. A G-packing P is mazimum if the number of
vertices belonging to members of P is maximum, over all G-packings.
The analogous problem for undirected graphs has been extensively
studied in the literature. The purpose of this paper is to initiate the
study of digraph packing problems. We focus on the case when G is a
family of directed paths. We show that unless G is (essentially) either
{P.}, or {P|, P}, the G-packing problem is NP-complete.

When G = {]31}, the G-packing problem is simply the matching
problem. We treat in detail the one remaining case, G = {P}, P,}.
We give in this case a polynomial algorithm for the packing problem.
We also give the following positive results: a Berge type augmenting
configuration theorem, a min-max characterization, and a reduction
to bipartite matching. These results apply also to packings by the
family G consisting of all directed paths and cycles. We also explore
weighted variants of the problem and include a polyhedral analysis.

*The authors gratefully acknowledge the support of the Natural Science and Engineer-
ing Research Council of Canada.
tDepartment of Computer Science, Bishop’s University, Lennoxville, Québec, Canada,
J1IM 177, rbrewste@ubishops.ca
School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada, V5A
1S6, pavol@cs.sfu.ca
$Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C.,
Canada, V5A 156
Yfinancial support from project TMR-DONET nr. ERB FMRX-CT98-0202 of the
European Community.
ICWI, Amsterdam, The Netherlands, romeo@science.unitn.it
**Department of Computer Science, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, United Kingdom, anders@sartre.cs.rhbnc.ac.uk



1 Introduction

A matching can be viewed as a collection of vertex disjoint copies of Ky. A
natural generalization of this concept is a collection of vertex disjoint copies
of an arbitrary fixed graph G, or of members of an arbitrary fixed family
G of graphs. Specifically, a G-packing of a graph H is a collection of vertex
disjoint subgraphs of H, each isomorphic to some member of G. Given such
a packing P, a vertex of H is called covered by P if it belongs to one of the
subgraphs in P (and ezposed otherwise).

The G-packing problem has received much attention [5, 8, 9, 14] in the
case of undirected graphs. In particular, [5] and [9] identified the role of hy-
pomatchable graphs G in the family G. This work was continued by [14], who
additionally identified another family of graphs playing an important role for
the problem: A propeller is a graph which can be obtained from a hypo-
matchable graph B by the addition of two new vertices c¢,r, any nonempty
set, of new edges connecting ¢ to B, and the edge cr. Note that, in par-
ticular, the path of length two is a propeller. In [14] the authors obtained
a complete classification of the complexity of G-packing with any family of
the form G = {K5, G}: The G-packing problem is polynomial time solvable
when G has a perfect matching, or is hypomatchable, or is a propeller, and
is NP-complete otherwise.

The purpose of this paper is to initiate the study of digraph packings.
Note that if G-packing is NP-complete for a family of undirected graphs
G, then G'-packing is NP-complete for any family G’ obtained from G by
orienting the arcs of each graph in G. In other words, NP-complete undirected
problems yield NP-complete directed problems.

Our focus is on families G of directed paths. We show that unless G can be
reduced (as described below) to either {P,}, or { P, P,}, the G-packing prob-
lem is NP-complete, while in these two cases it is polynomial time solvable.
Other results on digraphs are found in [3], where G-packings with families G
of oriented stars are explored, and in [2], which gives a complete classification
of the complexity of G-packing with any family of the form G = {P,,G}. In
turns out that {]31, G'}-packing is polynomial when the underlying graph of
the digraph G has a perfect matching, or is hypomatchable. Of all the cases
when the underlymg graph is a propeller, we only have a polynomial time
algorithm for the {Pl, P2} packing problem All other dlgraphs G (including
orientations of propellers other than P,) yield NP-complete { P, G}-packing



problems. This further identifies the {131, ﬁg}—packing problem as an inter-
esting case. The third author presents a survey of graph packings in her
M.Sc. Thesis [15] including an introduction to the directed case. (See also
[10].)

We now describe G-packing as a formal decision problem and introduce
the concept of reducing one family to another. Let G be a fixed family of
digraphs. (To avoid trivialities we assume G is nonempty.)

G-packing.
Instance: A digraph H and an integer k.

Question: Does H admit a G-packing that covers at least k vertices?

Clearly, we can also view this problem as an optimization problem. Given
a host graph H, a G-packing is mazimum if it covers the maximum number
of vertices in H taken over all G-packings of H. A packing is perfect if it
covers all the vertices of H.

We will show that when G is (essentially) a family of directed paths other
than {P,} or {P,, P}, the G-packing problem is NP-complete. The qualifier
essentially refers to the concept of reducibility. Specifically, suppose G is a
family of digraphs and G € G. Further suppose that there exists a G\{G}-
packing of G which covers every vertex of G. Then for any digraph H and
any G-packing P of H, there exists a G\{G}-packing of H covering the same
vertices as P, since the use of G can be avoided. Such a family G containing
a redundant element G is called reducible. A family which is not reducible is
called #rreducible. Each family G contains a unique irreducible subset called
the kernel of G. Clearly, all families of directed paths containing both P, and
P, have {]31, ]32} as their kernel. Similarly, {]31} is the kernel of any family
of directed paths containing P, but no paths of even length.

Our main result follows.

Theorem 1.1 Let G C {P,, P, Ps,...} be an irreducible family. If G is nei-
ther {P.}, nor {Py, B,}, then G-packing is NP-complete. Both {P,}-packing
and { Py, P,}-packing are polynomial.

The proof of the NP-completeness result follows in the next section. We
note that when G = {P,}, a G-packing of a digraph H is just ordinary
matching of the underlying graph of H. Thus, the {ﬁl}-packing problem is
polynomial. In the remainder of the paper, the case when G = {131, 132} is



studied from various perspectives. We present a Berge type theorem which
states that a packing is not maximum if and only if there exists an augmenting
configuration. On the other hand, we also present a Hall type min-max
characterization stating a packing is maximum if and only if there exists
a subset of the vertices which satisfies a certain neighbourhood condition.
Together, these two results give us an algorithm which simply consists of
constructing a search tree for augmenting configurations. It is very similar
to the bipartite matching algorithm. (In particular, the more complicated
blossom algorithm [7, 16] for nonbipartite matching is not required.)

Rather than discussing our algorithm in detail, we also present a reduction
to the bipartite matching problem. The reduction allows us to exploit the rich
theory of matchings including algorithmic, polyhedral, and matroid results.
Consequently, we have many complexity and polyhedral results which follow
directly from matching theory, or whose proofs are similar to standard proofs
from matching theory. We state these results here, and direct the reader
to a technical report [4] (avaliable online) for the details. The report also
contains a direct O(mn) algorithm which is a labeling counterpart to the
above augmenting configurations approach.

We use the following terminology: Given a digraph H and two vertices
u,v of H, such that wv or vu is an arc in H, we use the term edge {u,v}
for the appropriate arc (either one of them if both are present). We use the
term edge when the orientation is unknown or unimportant. A trail of length
k in H is a sequence of vertices and edges ug, €1, u1, €2, Us, . - ., ek, ux of H, in
which wu;_1,u; are the two vertices incident with edge e;, and e; # e; for i # j.
We will only list the vertices in a trail when the sequence of vertices suffices
to identify the trail. A trail in which additionally all vertices are distinct is
called a path, denoted P,. We also use the notation 13k for the directed path
of length k, i.e., the path wug,uq,...,u; in which all arcs are oriented from
u;_1 to u; for ¢+ = 1,2,...k. Given a vertex v, the in-neighbourhood of v,
denoted N*(v), respectively out-neighbourhood of v, denoted N~ (v), is the
set {u|uv is an arc of H}, respectively {u|vu is an arc of H}. Given a set of
vertices S, N1(S) is the union of N*(v) taken over all vertices v in S. The
set N~ (S) is analogously defined using N~ (v).

An arc uv is in the packing P, denoted uv € P, if uv belongs to a subgraph
in P.

Given a digraph H and a packing P, we extend our neighbourhood def-
initions by letting N (v) = {uluv € P}, and similarly for Ny (v), NA(S),
and N5 (5).



b c c c

] 1 )\
Y11 k-1 Yk—1 Pr—1 Yr—1 k-1
Yr—2* Lk—2 Yr—2! k-2 Yr—2! L2
yl,: @1 y1: :gfl yl: | 1
Yoy L0 Yo & Yo 0
Pk Pk-1 P2 D1 Do Pr D=1 D3 Pre Do Dk Pk—1 P2 D1 Do

(a) (b) (c)

Figure 1: (a): The gadget G;. (b): A G-packing of G covering the connec-
tors. (c): A G-packing of G leaving the connectors exposed.

2 The NP-completeness proof

In this section, we establish the NP-completeness of the G-packing problem
when G is a family of directed paths whose kernel is neither { P} nor { Py, P,}.

We reduce 3-dimensional matching to G-packing. Let 7 C A x B x C be
an instance of 3-dimensional matching. We assume that |A| = |B| = |C] as
otherwise 7 does not admit a 3-dimensional matching.

Assume that G is an irreducible family of directed paths other than {P,}
or {P,,B,}. Let k be the length of the shortest path in G. We have two
cases.

Case 1: k > 2. We create an instance of G-packing, say H, as follows.
For each point in A, we create a path @Q; = ¢iq...q. (fori =1,2,...,|A|).
For each point in B, we create a vertex b; (for 7 = 1,2,...,|B|). For each
point in C, we create a vertex ¢; (for ¢« = 1,2,...,|C|). For each triple in
(as,b;, c) in T, we take a copy of Gy (see Figure 1 (a)) and identify the path
paps . .. pr With the path ¢iqi...ql in H. Similarly we identify the vertex b
in G; with b; in H, and we identify the vertex ¢ in G with ¢, in H. We call
the path psops ... pg, and the vertices b, and ¢ the connectors of G;. We show
that H admits a perfect G-packing if and only if 7 admits a 3-dimensional
matching.



Assume 7 admits a 3-dimensional matching. Given a triple in the match-
ing, pack the corresponding copy of G; as shown in Figure 1 (b). (Thick arcs
are in the packing.) For each triple not in the matching, pack the corre-
sponding copy of G as shown in Figure 1 (c). It is easy to see that this
yields a perfect G-packing of H.

On the other hand, assume that there exists a perfect G-packing, say
P, of H. If the path pgp;...pr in a gadget G is in P, then P restricted
to the gadget also covers b and c (see Figure 1 (b)). (The vertex y, must
be covered by some directed path, and ﬁk is the shortest path in G.) As
|A| = |B| = |C| this implies that P restricted to a G; must either cover all
of the connectors or none of the connectors. The collection of triples which
correspond to gadgets whose connectors are covered forms a 3-dimensional
matching. This completes the first case.

Case 2: k =1. We claim that there must exist an integer [ > 2, such
that Py € G. This is so, since G # {P’l},g # {131,]32}, and is irreducible.
Indeed, an irreducible family containing P, does not contain any other odd
length paths. We furthermore assume that [ is chosen as small as possible.
We now consider the gadget G5 depicted in Figure 2 (a). We note that if a
G-packing of G covers a and po, then it also covers b and ¢ (see Figure 2
(b)). Also, there exists a G-packing of Gy that covers all of Gy, except a, b
and c (see Figure 2 (c)). The proof is now analogous to that of case 1, where
we use the vertex a instead of the path pops . ..px (and the vertex py instead
of the vertex o). I

3 The min-max theorem via augmenting con-
figurations

In the remainder of the paper, we study the {131, ﬁg}—packing problem. Thus
from now on, the term packing without further specification always refers to
a {ﬁl, P'Q}—packing. Let H be a digraph and let P be a packing in H. Then
exp(P) denotes the number of vertices of H left exposed by P. For any set
S of vertices from H, the deficiency of S is defined as

def(S) = [S] = [NT(S)[ = [NT(5)].

Clearly, exp(P) > def(S) for every set S and every packing P, since for every
vertex of s € S covered by P there is an arc sv with v € N=(S) or an arc vs

6



c a T
DPa-—1 P23 { 1

D2 Doice P-4 Ps DPr Do

(a)

N R o P Pus
P2 Dai—2 Pai—a P2 P1 Po P2t P2i—2 P-4 P2 P1 Do

(b) (¢)

Figure 2: (a): The gadget G3. (b): A G-packing of G5 covering the connec-
tors. (c): A G-packing of G5 leaving the connectors exposed.

with v € NT(S) in the packing. The following min-max characterization is
a main result of our analysis.

Theorem 3.1 Let H be a digraph. Then
min exp(P) = maxdef(S)

where the minimum is taken over all packings P of H and the mazimum s
taken over all set S of vertices of H.

3.1 Augmenting Configurations

Let H be a digraph and P a packing in H. An alternating trail in H (with
respect to P) is an even length trail wg,us, ug, ..., ugk 1,us, (k > 0) such
that uy is exposed, with edges alternately not in P and in P. For each
1=0,1,...,k — 1 we have

o the edges {ug;, i1} and {ug; 11, usio} are both oriented towards ug; 41
or both oriented away from us;11; and

® Ug; o is incident with exactly one arc of P (namely, {ug;i1, ugii2})-



Configuration 1(a)

S———p-0
J
p
y
)

) Uy Us uz U “us

Configuration 2(a)
) Uy Us U3 (I

Configuration 3
"LL() U1 Uo ’d3 Uy Us

Figure 3: Examples of non-self-intersecting augmenting configurations

We emphasize here that the trails can revisit vertices but not arcs. However,
the starting vertex ug can only appear once, and each other vertex at most
twice (each occurrence requires a different arc from P). In fact, (for any 7) a
vertex ug; cannot appear twice, and if a vertex wus;;1 equals ug; 41 (for some
i # j), then both edges incident with uy;,1 are oriented towards it and both
edges incident with ug;1 away from it, or vice versa.

An augmenting configuration is one of the following types of trails:

TYPE 1. (An alternating trail plus a single arc.)

A trail ug, uq, U, . . ., Ugg, Usgr1 Where ug, Uy, Us, - . ., U is an alternating trail
T and
(a) wuggy1 does not belong to 7" and is exposed in P; or
(b) ugkt1 = ugit1 for some i with 0 < ¢ < k — 1, the path ugg, ug;y1, ug; is
a directed 132, and U2i+1, U2i+2 is a ﬁl in P; or
(€) Ugkt1 = ug; for some i with 0 < ¢ < k — 1, the path ugg, ug;, ug;y1 is a
directed 132, and ug;1, Ugito 1S A ]31 in P.

TYPE 2. (An alternating trail plus two arcs.)

A trail ug, uy, Usg, - . ., Usk, Usgt1, Uokro Where ug, Uy, Us, . .., Ugg is an alternat-
ing trail T, with the edge {ua,usry1} not in P, the edge {uoki1, Usgio} in
P; and



A
)

U go——oU 5

U Us AUy
'UO Ul = Uy U2 us "LL() Ul U9 = U7 Ujs T Uy
Configuration 1(b) Configuration 1(c)
Ugt “Us ) A Utg— +o o5
A de
T dl =U7 U Us ° < ° ° >e
U Uy = uUg Ug Uus Uy
Y R Configuration 2(b)
ug Ug U10
Configuration 2(a)

Figure 4: Examples of self-intersecting augmenting configurations

(a) neither ugg 1 nor ugg, o belong to T, gy, Uski1, Uskro is a directed P,
and Uggi1, Ugkao 1S @ P in P; or

(b) ugk41 does not belong to T', and uggo = ug;41 for some i with 0 < ¢ <
k—1.

TYPE 3. (An alternating trail plus three arcs.)

A trail ug, u1, ug, . . . , Uk, Uskt1, Uskt2, Uskrs Where ug, Uy, Us, - . ., Ugy iS an al-
ternating trail 7'; none of wugky1, Usgio, Uskrs belong to 715 and the edge
{UQk, quH} does not belong to P but both {U2k+1, u2k+2} and {u2k+2, u2k+3}
do.

We now observe that the presence of any of the above augmenting config-
urations signals that the packing P can be modified to increase the number of
covered vertices. For instance, in a configuration of type 1(a) we may simply
take the edges {ug; 1, us12} (for all 4 = 0,1,...,k — 1) out of the packing
and put the edges {ug;, ug; 11} into the packing (for all i = 0,1,...,k). The
definition of alternating trail assures that we again obtain a packing. The
other configurations are similar — only the types 2(a) and 3 are exceptional
in that the last arc is not removed from P.

Figure 3 contains examples of non-self-intersecting augmenting configu-
rations. Figure 4 contains examples of augmenting configurations that do
self-intersect. Thick arcs in the drawing belong to P. Note that the role odd



cycles play in the examples of type 1(c) and 2(b) suggests why blossoming is
not required in our algorithm.

We next state our min-max result which incorporates the concise certifi-
cate for maximality of packings and the augmenting configuration theorem
for increasing packings.

Theorem 3.2 Suppose H is a digraph and P a packing in H. The following
statements are equivalent:

(a) P is a mazimum packing;
(b) P does not admit an augmenting configuration;

(c) there is a set S C V(H) with def(S) = exp(P).

Proof: We have already observed that (a) implies (b) - each augmenting
configuration allows us modify the packing to increase the number of covered
vertices. The inequality def(S) < exp(P), derived earlier, implies that for
any S and P with def(S) = exp(P), we have that def(S) is maximum and
exp(P) is minimum. Hence (c) implies (a).

It remains to prove that (b) implies (c). Assume that P does not admit
an augmenting configuration, and define the set S as follows:

S = {u :upuy ... usk_1ug is an alternating trail where u = ugy}

That is, S is the set of all vertices reachable from an exposed vertex by an
even length alternating trail. We now claim:

1. no vertex of S is the center vertex of a P, in P;
2. NT(8) = Nj(S) and N=(S) = N (S);
3. def(S) = exp(P).

Since no augmenting configuration exists, no vertex in S is incident with
two packing edges; otherwise, we have a configuration of type 3.

We now prove that NT(S) = N£(S). Let u € S and v € N (u). If
vu € P, then we are done. On the other hand, if vu & P, then by defini-
tion of S, there is an alternating trail, T : wg, u1, ... Uk 1Uok(= u) (where
ug is by definition exposed). If v is exposed and v does not belong to T,
then T" together with vu forms an augmenting configuration, contrary to our
assumption. (The case that v belongs to 7" is below.)

10



Therefore, assume that v is incident with a packing edge say {v, w}. Begin
by assuming that v and w do not belong to 7. Since P does not admit an
augmenting configuration, without loss of generality v dominates w, and the
trail 7', extended by v, w, is an alternating trail. Thus w € S and v € N (S).

Next assume v does not belong to T', but w does belong to 7. In this case,
W = Ug;41 for some  =0...k — 1 and we have an augmenting configuration
of type 2(b), a contradiction.

Thus, we assume v belongs to T'. If v = ug;;1 for some 7 =0,...,k — 1,
then either an augmenting configuration of type 1(b) exists, or without loss
of generality w € S and v dominates w. Hence v € Nj(9).

Finally we assume that v = ug; for some ¢ = 0,...%k — 1. (This includes
the case above where v is the exposed vertex ug.) Consider the trail 7" =
UQ, - - -, Ui (= V), Uak (= 1), ugg_1. Since we do not have any augmenting con-
figurations, it must be the case that the arc uoy_1uo is a 151 in P. (Specifically
Ugk_1 dominates ugy). Since T is an alternating trail, it must be that wuog_;
also dominates ug,_o. Consider 1" = uq, .. ., Ug;, Usk, Uok—1, Uok—_2, Usk—_3. AI-
guing as above, we see that uog_3, uok_2 is a ﬁl in P and ug,_3 dominates both
Usok—o and ugk_4. Continuing in this manner, we can conclude ug; 1, Ug;iio is a
131 in P where uy;,1 dominates ug; = v and ug; 9. This yields an augmenting
configuration of type 1(c), a contradiction.

A similar argument shows N~ (S) = N, (S). Hence, we can count |[NT(.5)]
and |N~(S)| using only packing edges. Since each vertex in S is either
exposed or incident with exactly one packing edge, we have |N*(S)| +
IN=(S)| = |S| — exp(P). That is,

def(S) =S| = [NT(S)| = [N7(S)| = exp(P).
i

A different proof of the equivalence of (a) and (b) appears in [15]. This
proof is by induction and does not use the min-max condition (c).

We close this section by deducing the following Tutte-type condition for
the existence of perfect {P;, P»}-packings.

Corollary 3.3 Let H be a digraph with vertex set V. Then the following are
equivalent:

(a) H admits a perfect { P,, P,}-packing;
(b) |S| < |NT(S)|+ |N~(S)| for all S C V.

11



Theorem 3.1 applies to two additional families: DPC, the family of all
directed paths and cycles; and DP, be the family of all directed paths. This
follows from the fact that {]31, ]32} is the kernel of both DPC and DP. Specif-
ically, given a digraph H, we have minezp(P) = maxdef(S), where the
minimum is taken over all DPC-packings, respectively DP-packings, and
the maximum is taken over all subsets S of the vertex set. The analogue to
Corollary 3.3 follows:

Corollary 3.4 Let H be a digraph with vertex set V. The following are
equivalent:

(a) H admits a perfect DPC-packing;
(b) H admits a perfect DP-packing;
(c) |S| < |INT(S)|+ |[N(S)| for all SC V.

4 Algorithmic considerations

Using Theorem 3.2, it is possible to construct a polynomial time algorithm for
the {]31,132}—packing problem. We outline this algorithm in subsection 4.1;
however, in subsection 4.2, we show how to reduce the packing problem to
bipartite matching. This reduction implies that for the packing problem we
can achieve the same results as for bipartite matching [11] or max-flow [6] in
terms of running time.

4.1 An algorithm based on augmenting configurations

Given some packing P (in a digraph H), we seek to increase the number of
covered vertices using Theorem 3.2, i.e. we seek an augmenting configuration.
We begin with a set S consisting of the exposed vertices (with respect to
P) and proceed to increase S through the examination of vertices in its
neighbourhood. The set S corresponds to the set in Theorem 3.2. As each
vertex is examined one of three things happens: First, we can discover an
augmenting configuration. In this case we increase the packing and restart
the algorithm with this larger packing. Second, we can increase the set S.

12



In this case we continue with the examination of vertices. Finally, if neither
of the first two cases occur, then our set S is a certificate that the packing is
maximum, i.e. def(S) = exp(P), and the algorithm terminates. The details
of this are fairly straightforward, and the resulting algorithm resembles the
bipartite matching algorithm (in particular, there is no blossoming).

4.2 A reduction to bipartite matching

Instead of giving the details of the above algorithm we show how to reduce
the problem to the bipartite matching problem. Let H be a digraph with
vertex set V and arc set A. We define the bipartite graph G associated with
H (denoted by G = G(H)), as follows: Let V', V* and V'~ be three distinct
copies of V, with u™ € V*,u* € V* and u~ € V~ denoting the vertices
corresponding to u € V respectively. Let ET = {utv* : uwv € A} and
E~ ={wu*v™ :uv € A}. The graph G has the vertex set W =V+TUV*UV~
and the edge set F = ETUFE~. Note that G is indeed a bipartite graph with
bipartition V*,V*+ UV ~. We shall describe a correspondence between sets
of vertices in H that can be covered by packings of H, and sets of vertices in
V* that can be covered by matchings of G.

Lemma 4.1 Let G be the bipartite graph associated with a digraph H. For
every packing P of H, there exists a matching M of G such that u € V is
covered by P if and only if u* is covered by M.

Proof: For each arc uv which forms a P, in P, we put in M the edges utv*
and u*v~. For each pair of arcs uv, vw which form a P, in P, we put in M
the edges u*v*, u*v~, and vrw*. |l

Lemma 4.2 Let G be the bipartite graph associated with a digraph H. For
every matching M of G, there exists a packing P of H such that u € V 1s
covered by P whenever u* is covered by M.

Proof: Every nontrivial directed path or cycle admits a perfect {ﬁl, P;}-
packing; thus, it suffices to find a packing of H by directed paths and cycles
covering the appropriate vertices. However, the subgraph of H which natu-
rally corresponds to M may contain vertices incident with three arcs (one arc
for each of 4™, u*, u*). Thus, we shall process M to form a new matching M’
covering the same vertices of V* as M, but which corresponds to a collection
of directed paths and cycles in H.

13



Consider the bipartite graph F on the vertex set V*t UV, with the
edges utv~ for all arcs uv of H. Consider the matching M, := M N E*: by
replacing each asterisk with a plus (in the superscripts), we can view M; to
be a matching of F'. Similarly, we can view M, := M N E~ as a matching
of F' by replacing all asterisks with a minus sign. Note that v* is covered
by M if and only if v~ is covered by M; or v* is covered by M,. By the
Dulmage-Mendelsohn theorem [13], we can find (in linear time) a matching
M' in F which covers all vertices of V't covered by M; and also all vertices
of V= covered by M,. To this matching M’ in F' there corresponds in H a
set of disjoint directed paths and cycles, covering a vertex v whenever v* is
covered by M. |

Recall that the size of a packing of H is the number of covered vertices.
While the size of a matching of G is formally the number of edges in the
matching, we note that this equals the number of vertices in V* covered by
the matching.

Theorem 4.3 Let G be the bipartite graph associated with a digraph H.
Then the size of a maximum packing of H equals the size of a mazimum

matching of G. |

These results (together with the bipartite matching algorithm and a
linear-time algorithm inherent in the Dulmage-Mendelsohn theorem) yield
a polynomial time algorithm to find a maximum packing.

We remark the above theorem also gives an alternative derivation of our
min-max formula. Trivially, for S C V*, M will leave at least |S|—|NT(S)|—
|IN~(S)| vertices exposed in V*. Note that this fully corresponds to deficiency
in the digraph H. Moreover, by Hall’s theorem for bipartite graphs, we know
that when M is a maximum matching, there exists a set of vertices S with
exactly def(S) exposed vertices.

4.3 Polyhedral considerations

If we put weights on the vertices, then we can find the maximum possible
total weight of a set coverable by a { P, P,}-packing, by reducing the problem
to weighted bipartite matching [4].

However, if we put weights on the arcs, the situation is quite different. In
[4] we show that even the “cardinality case” (all arc weights are 1) is already
difficult:

14



Problem 4.4 Given a digraph H and an integer k, does there exist a mazx-
imum { Py, Py}-packing P with at least k arcs.

(Note that maximizing the number of arcs in a packing is equivalent to
maximizing the number of By’s.) This makes it unlikely that we can find a
polyhedral description of maximum packings. This also explains why post-
processing (Dulmage-Mendelsohn) was needed in our reduction. In [4] we also
show that for planar digraphs (and even for planar digraphs with in- and out-
degrees bounded by 3) the arc weighted version remains NP-complete even
if the weights are all 0 or 1.

Now we briefly mention some facts that can be established in standard
ways (often by following existing proofs of results on bipartite matchings).
Full proofs are available in [4], which is accessible electronically.

Consider the system below

max cx
z(dt(v) < 1 WweV (1)
z(0~(v) < 1 WweV
z> 0

The system has only integral vertices and describes the convex hull of
characteristic vectors of packings of directed paths and cycles. Hence we can
find packings of directed paths and cycles of maximum weight.

Also the vertices of the dual, below, are all integral.

min ly™ + 1y~
y (u) +y (0) = Cuw V(u,v) €A (2)
y> 0

References

[1] J. Akiyama and M. Kano, Path factors of a graph, in: Graphs and
Applications, (eds. F. Harary and J. S. Maybee), John Wiley & Sons,
New York (1985), 1-21.

[2] R. C. Brewster, R. Rizzi, Digraph packings with hypomatchable graphs
and propellers, Information Processing Letters, to appear.

15



[3] R. C. Brewster, P. Hell and R. Rizzi, Digraph packings with stars, in
preparation.

[4] R. C. Brewster, P. Hell and R. Rizzi, Sidepath results on packing P;’s
and P,’s. Technical report, in preparation.

[6] G. Cornuéjols, D. Hartvigsen, and W. Pulleyblank, Packing subgraphs
in a graph, Operations Research Letters, 1(1982), 139-143.

[6] A. Goldberg, and S. Rao, Flows in undirected unit capacity networks,
SIAM J. Discrete Math., 12 no. 1 (1999), 1-5.

[7] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathemat-
ics, 17(1965), 449-467.

[8] P. Hell and D. G. Kirkpatrick. On generalized matching problems. In-
formation Processing Letters, 12(1981), 33-35.

[9] P. Hell and D. G. Kirkpatrick. Packings by cliques and by finite families
of graphs. Discrete Mathematics, 49(1984), 45-59.

[10] P. Hell. Graph Packings. Proceedings of the 6™ Collogque International
de Théorie des Graphes, Electornic Notes in Discrete Mathematics, 5.

[11] J. E. Hopcroft and R. M. Karp. An n%? algorithm for maximum match-
ing in bipartite graphs. SIAM Journal on Computing, 2(1973), 255-231.

[12] D. Lichtenstein, Planar formulae and their uses. SIAM Journal on Com-
puting, 11(1982), no. 2, 329-343.

[13] L. Lovdsz and M.D. Plummer, Matching Theory, (North-Holland, Am-
sterdam, 1986).

[14] M. Loebl and S. Poljak. Efficient subgraph packing. Journal of Combi-
natorial Theory, Series B, 59(1993), 106-121.

[15] S. H. Pantel. Graph Packing Problems, M.Sc. Thesis, Simon Fraser Uni-
versity, 1998.

[16] R. E. Tarjan. Data Structures and Network Algorithms, Society for In-
dustrial and Applied Mathematics, 1983.

16



