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Abstract

We give a polynomial algorithm to compute shortest paths in weighted undirected
graphs with no negative cycles (conservative graphs). We show that our procedure gives
a simple algorithm to compute optimal T-joins (and consequently all of their special cases,
including weighted matchings). We finally give a direct algorithmic proof for arbitrary
weights of a theorem of Sebd characterizing conservative graphs and optimal paths.



1 Conservative Graphs and 7T-joins

We propose an elementary and direct algorithm to find a shortest path between two nodes
of an undirected graph with no cycle of negative weight. This shortest path problem can be
formulated as an optimal degree-constrained subgraph problem and can therefore be solved
by matching techniques, see e.g. [4]. Indeed, efficient algorithms for the minimum 7-join
problem (we define this concept later) had already been given by Edmonds and Johnson
in [1].

Our main result is a purely combinatorial algorithm that finds a minimum weight 7'-join,
giving a strongly polynomial algorithmic proof of a theorem of Seb6 [9]. This theorem char-
acterizes undirected graphs with no cycles of negative weight, in terms of potentials. An
algorithmic proof of this theorem is given in [7], but that works only for unit weights. In
Section 3, we provide an improved algorithm for unit weights, which is extended in Section 4
to a strongly polynomial algorithm for arbitrary rational weights.

We consider pairs (G, w) made up by an undirected multigraph G = (V, E) with n nodes
and m edges, together with a weight function w = w(e), e € E. G may have loops or parallel
edges. The weight w(F) of a set F of edges is Y. . w(e). For F C E, let wr be defined as
wr(e) = —w(e) when e € F and wr(e) = w(e) when e € E\F. It is immediate to see that
for A, B C E, we have that wy(B) = w(AAB) — w(A).

Let T be an even subset of V. A T-join is a set of edges J C E such that d;(v) is odd
if and only if v € T, where d;(v) is the degree of node v in the graph (V,J). An Eulerian
subgraph is an (-join. (Hence, an empty set of edges is an Eulerian subgraph). A T-join of
minimum weight is said w-optimal (or optimal, when no confusion arises). Finally, (G, w)
is conservative if it contains no cycle whose weight is negative (negative cycle). Mei Gu
Guan [3] has given the following coNP-characterization of T-joins in terms of conservative
graphs. (Note that this is not a good characterization in the sense of [5]).

Theorem 1.1 A T-join J is optimal in (G, w) if and only if (G, wy) is conservative.

This follows by noting that the symmetric difference of two T-joins is an Eulerian sub-
graph, hence the union of a (possibly empty) set of disjoint cycles, and conversely the sym-
metric difference of a T-join and a cycle is again a T-join.

2 Clean and Switch

In (G, w), fix a node v, € V. Assume given a {v,, v}-join Jy, , for every v € V\{v,} plus the
0-join Jy, », = 0. Then J,,, := {Jy,» : v € V} is a family of joins rooted at v,. A family 7,
is w-optimal if every {v,,v}-join in 7, is w-optimal. Finally, 7, is a clean family if every
join in J,, is acyclic. We now introduce two procedures, Clean and Switch.

Procedure Clean takes as input:

e A pair (G,w) and a family J,, = {Jy,, :v €V}



Clean examines the joins in [, one by one. Every join J,, , in J,, is decomposed as
the disjoint union of an acyclic {v,,v}-join J; , and into a (possibly empty) set of cycles
Ciy...,Cy.

If w(C;) < 0 for some cycle C; then Clean outputs C; in (i) below.

Else w(C;) > 0 for 1 <i < k and if w(C;) > 0 for a cycle C; in the set, then w(J,, ,) <
w(Jy, ) and Clean outputs J,_, in (ii) below.

Otherwise w(Jy, ,) = w(Jy, ). If this is the case for all joins in J,,, Clean outputs the
clean family J, = {J; , :v € V} in (iii) below.

So the output is one of the following:
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(i) A cycle C such that w(C) < 0.
(ii) An acyclic {vo, v}-join J;_, such that w(J;, ,) < w(Jy, ).

(iii) A clean family J, = {J;, , :v € V} with w(Jy ,) = w(Jy,») Vv € V.

Vo,V

Procedure Switch takes as input:
e A pair (G,w), a family J,, = {Jy,» : v € V} and a node v, € V\{v,}.
The output is the following:

e The pair (G,wy, ) and the family Ty =Ty 0 = JvowDJu,, Yo € V} T00ted at v,

Theorem 2.1 Let (G,w;, _,,J,) be the output of Switch when applied to (G,w, Jy,,v}).
Then (G,w) is conservative and Ty, is w-optimal if and only if (G,w; ) is conservative

;. )
and ,.71]; 8 ’ll)]vo,v‘,) -optimal.

Proof: Assume (G, w) is conservative and J,, is w-optimal. By Theorem 1.1, (G,w; )

is conservative since J, . € J, is w-optimal. Moreover, for every J', € J' the pair
Ug,’l}o Vo ) v v
o

0>V

(G (wy, )y, )=(G,wy, ) is conservative since Jy, » € Jo,- S0 J,, is wy _,-optimal.
Conversely, when Switch is applied to (G, wy, ,\.71:‘/]’ Vo), then the output is (G, w, Jy,)- (In-
deed, Jys o, = Jug v, A0, = Jug, TOT Ty 0, = 0). O

3 Unit pairs, bipartite pairs

Ifw: Ew {-1,+1} then (G, w) is a unit pair and we denote by E the set of positive edges
of weight +1 and by E_ = E\E, the set of negative edges. We say (G, w) is a bipartite pair
if every cycle of G has even weight. Note that a unit pair (G, w) is bipartite if and only if G
is a bipartite loopless graph. In this case, (G, w) is a bipartite unit pair.

This section describes Improve, a polynomial algorithm which takes as input:
e A bipartite unit pair (G, w) and a clean family J,, = {J,,, : v € V}.

The output of Improve is one of the following:



(i) A check that (G,w) is conservative and J,, is optimal.
(ii) A negative cycle C of (G,w).
(iii) An acyclic {v,,v}-join Jy, , with w(Jy, ) < w(Jy, )

Improve can be employed to test conservativeness of bipartite unit pairs or to find shortest
paths in conservative bipartite unit pairs. Improve relies on three operations: Clean, Switch
and Contract. Procedure Contract takes as input:

e A unit pair (G,w) and a clean family 7,,, where w(J,,,) = w(v,v) = +1 for every
neighbor v of v,.

Contract obtains from G a new graph G’ = (V', E) by contracting the star é(v,) into a
new node v),. This introduces loops but E and w are left uneffected. Contract sets Syt o = 0
and for every node v € V'\{v}, J;, , is obtained from J,,, by removing the unique edge
having v, as endnode. (Uniqueness follows since Jv, s clean). So the output is the following:

e A unit pair (G',w) and a family Jég of joins rooted at v.

Theorem 3.1 Let (G',w,J,,) be the output of Contract when applied to (G,w, T,,). Then
(G,w) is conservative and Ty, is optimal if and only if (G',w) is conservative and J, is
optimal.

Proof: Let C be a negative cycle of (G, w). By contracting all edges in é(v,), C becomes an
Eulerian graph of negative weight since §(v,) C E;. So C is the disjoint union of cycles, at
least one of them is negative and (G', w) is not conservative.

Let jz,oﬂ, be a join of (G,w) such that w(j,,o,v) < w(Jy, ). If v is a neighbor of v, then
w(jvo,v) < 0 since w(Jy,,») = 1. Contracting d(v,), jvo,v becomes an Eulerian graph of nega-
tive weight since fvoﬂ, has at least one edge incident at v,. Again (G',w) is not conservative.
Assume v is not a neighbor of v,. Contracting é(v,), j,,o,v becomes a {v),v}-join ‘71,)’0,11 with

w(J, ) =w(Ty, ») =1 <w(Jy, ) — 1 =w( w,0)- S0 Ty is not optimal.

!
v, v

Conversely let C be a negative cycle in (G',w). In (G,w), either C is a negative cycle,

or a {u,v}-join, with 4 and v neighbors of v,. In the second case J,,, = {vou} UC is a

{vo, v}-join of (G, w) with w(Jy,») <0< 1= w(Jy,)-

So we assume (G',w) to be conservative. Let Jy, , be a {v;,v}-join with w(qu;g,,v) <

w( 1']:”11). We can assume j;;;,,v to be acyclic, hence d3,  (v;) = 1. So there exists a neighbor
u of v, such that jq’,:”v is a {u,v}-join in G. Hence J,,, , = Z;,v U{vou} is a {vo,v}-join in G
and w(Jy,0) = w(Jyy ) +1 <w(ly ) +1=w(Jy0)- =

Improve starts the following Recursion with (G, w) and the clean family 7, as input.

Recursion A bipartite unit pair (G*,w*) and a clean family of joins Jpx = {Jyx» v €
V(G*)} rooted at v} are received as input.

If G* contains a single node, stop: (G, w) is conservative and J,, is optimal.

If w*(Jys 0r) < —1 for some neighbor v, of v}, then apply Switch to (G*,w*, Jys, v)-

4



Otherwise w*(Jyx ,) > 1 for all neighbors v of v}. If there exists an edge vyv € §(v;) such
that w*(vyjv) < w*(Jyzw), define jq, v = {vjv} and go to the Surface Step.

Otherwise d(v}) C E; and w (J ») = 1 for every neighbor v of v}. Apply Contract to
( ’ w* ) jvo )

The output (G',w’, Jyr) of either Switch or Contract is given to Clean. If Clean finds a
negative cycle or an acyclic join jvg,v such that w’ (f,,{ﬂv) < w'(Jy »), go to the Surface Step.
Otherwise the clean family obtained and (G’,w') are the input of the next Recursion.

Surface Step Let (G,w) = (Go,wo),(G1,w1),...,(Gg, wi) be the sequence of pairs
computed by Switch or Contract in the apphcatlons of the Recursion, where in (G, wg)
a negative cycle or a join Jvk » such that wk(Jvk,U) < wg(Jy,,») has been found. With &
applications of Theorems 2.1 and 3.1 (whose proofs are constructive) we can find a negative
cycle in (G, w) or a join J,, , such that w(Jy, ») < w(Jy, ). If an “improved” join J,, , has
been found, apply Clean one last time to obtain a negative cycle or an acyclic improved join.

Remark 3.2 Since (G,w) is a bipartite unit pair, G is a bipartite loopless graph and this
property is maintained by the above algorithm.

Remark 3.3 Since (G,w) is a bipartite unit pair, then w(J,, ) is odd (hence distinct from
0) whenever v and v, are neighbors. So the two cases w(Jy, ) < —1 for some neighbor v of
vo and w(Jy, ») > 1 for all neighbors v of v, considered in the Recursion are ezhaustive.

Remark 3.4 The polynomiality of Improve is straightforward: FEach time we apply Switch,
we reduce the number of negative edges. Fach time we apply Contract, we reduce the number
of nodes. In order for (G,w) to be conservative E_ has to be a forest. Therefore we can
assume |E_| < n and so the number of calls to Switch or Contract is O(n).

So, if (G,w) is a bipartite unit pair which is conservative and J,, is a clean family of
joins rooted at v,, then, with O(n?) calls to Improve, J,, can be turned into a clean optimal
family.

4 Finding Optimal T-joins

In this section, we show that a version of Improve for general weight functions can be used
to compute an optimal T-join, and hence an optimal matching, in any pair (G, w).
We first describe a strongly polynomial procedure, w-Improve, which takes as input:

e A pair (G,w), where w is rational (hence integral). A clean family J,,, .
and whose output is one of the following:
(i) A check that (G, w) is conservative and J,, is optimal.
(ii) A negative cycle C of (G, w).

(iii) An acyclic {v,,v}-join Jy, , With w(Jy, ) < w(Jy, ).



w-Improve relies on Clean, Switch and w-Contract:

w- Contract takes as input:

e A pair (G,w), where w(e) # 0 for every e € E. A clean family 7, such that 0 <
w(Jy, ) < w(vev) for every v,v € §(vy).

Let w = mz'nvo,,e[;(vo){w(‘]”"’”);w(v"v)} = w(‘]”"’g);w(v"ﬁ). Note that w > 0 since w(v,0) >

0. Define w'(e) = w(e) for every edge e ¢ §(v,) and w'(e) = w(e) —w for every edge e € §(v,).
Obtain G’ from G by contracting the edges e with w'(e) = 0. Note that loops may have been
created. Let v} be the node of G’ containing v,. (i.e. v, = v}, if no edge has been contracted).
A family J), of joins is obtained from J,, by defining Jot o, = (), performing the above
contraction in all the joins of 7, and discarding all joins J,, , if v,v is contracted.

So the output is the following:

e A pair (G',w"), where w'(e) # 0 for every edge e of G', and a family \711,) of joins rooted
at v).

The proof of the following theorem in an immediate extension of the proof of Theorem
3.1 and is left to the reader.

Theorem 4.1 Let (G',w',J,,) be the output of w-Contract when applied to (G,w,Ty,)-
Then (G, w) is conservative and J, is optimal if and only if (G',w") is conservative and 7,
18 optimal.

Remark 4.2 If (G,w) is a bipartite pair, and v is a neighbor of v,, then w(vov) and w(Jy, »)
have the same parity and hence W is an integer.

Algorithm w-Improve first contracts all edges of zero weight (this does not affect conser-
vativeness nor optimality of joins) as to guarantee that w(e) # 0 Ve. (Note that this property
is maintained by Clean, Switch and w- Contract).

Then w-Improve starts the following Recursion with (G, w) and J,, as input:

Recursion A pair (G*, w*), where w*(e) # 0 for every edge e of G*, and a clean family
Jvz = {Juz v 1 v € V(G™)} of joins rooted at v, are received as input.

If G* has only one node, and no loop of G* has negative weight stop: (G, w) is conservative
and J,, is optimal. If some loop has negative weight, go to the Surface Step.

If w*(Jyz o) < 0 for some neighbor v, of v}, then apply Switch to (G*,w*, Jys,v,)-

Otherwise w*(Jyx,,) > 0 for all neighbors v of v. If there exists an edge vjv € 6(v}) such
that w*(vyv) < w*(Jysv), define .71,; v = {vjv} and go to the Surface Step.

Otherwise 0 < w*(Jyzv) < w*(vyv) for all edges vyv € 6(v;). Apply w-Contract to
(G*,w*, Tpz)-

The output (G',w’, J, ) of either Switch or w-Contract is given to Clean. If Clean finds a
negative cycle or an acyclic join j%ﬂ, such that w’(jvgyv) < w'( 1’}:},0), go to the Surface Step.
Otherwise the clean family obtained and (G’,w') are the input of the next Recursion.



Surface Step Let (G,w) = (Go,wp), (G1,w1),-..,(Gk, wg) be the sequence of pairs
computed by Switch or Contract in the applications of the Recursion, where in (G, wg)
a negative cycle or a join jvk,v such that wk(jvk,v) < wy(Jy, ») has been found. With k
applications of Theorems 2.1 and 3.1 (whose proofs are constructive) we can find a negative
cycle in (G,w) or a join jvo,v such that w(jvmv) < w(Jy,p). If jvo’v has been found, apply
Clean one last time.

Theorem 4.3 Algorithm w-Improve calls w-Contract O(m) times and Switch O(mn) times.

Proof: To apply Switch on (G,w, Jy,,v,) we must have w(Jy, ) < 0. But wy, (J{:g,vo) =
—w(Jy, ) > 0 and moreover wr, (J;){,,v) = W(Jyp0) = W(Jyy0r) > W(Jyp0)- °

This means that once the root of our family leaves v, by Switching, it can not reenter v,
if no w- Contraction is involved. Hence the number of Switchings, between two consecutive
w- Contractions, is at most n.

An edge uv of G is said monotone for (G, w, Jy,) when |w(uv)| = |w(Jy,u) — W(Jy,0)|-
Note that if uv is monotone for (G,w, J,,), then uv is monotone for any (G,w’, J, ) obtained
from (G, w, J,,) by Switching. The same holds for Cleaning as long as this procedure returnes
a clean family as in (i). Assume now (G',w’, Jqu) is obtained from (G,w, J,,) by applying
w-Contract. If uv € E(G")\d(vg) is not monotone for (G',w’, J,, ) then uv is not monotone
for (G,w,J,,). If viu € é(v)) is not monotone for (G',w',J;, ) then v,u is not monotone
for (G,w, Jy,).- Moreover, if v,7 is monotone for (G, w, J,,), then w- Contract contracts VU
and so G’ has less edges than G. Otherwise, if v, is not monotone for (G,w, J,,), then
w'(v)v) = w(vv) —w = w =W — w(Jys) = —w'(Jy5) and v,7 is monotone for
(G",w', Jy;). Thus w-Contract is applied O(m) times and therefore Switch is applied O(mn)
times. 0O

Schulz, Weismantel and Ziegler [6] show that if we can find in strongly polynomial time
a "better” solution of a 0/1-integer program, then we can solve such a program in strongly
polynomial time, provided an initial solution is available. So we can derive from w-Improve
a strongly polynomial algorithm to compute optimal {u, v}-joins in conservative pairs.

We now show that if we can find optimal {u,v}-joins in conservative pairs then we can
find optimal T-joins in any conservative pair:

Remark 4.4 Let T = {uy,v1,...,uk, v}, kK > 2 be an even subset of nodes in a conservative
pair (G,w). Fori=1,...,k let J; be an optimal {u;,v;}-join in the pair (G,wna. Az ;)
(Jo = 0). Then for i =1,...,k the pair (G, wyA..Ayg;) is conservative. In particular J =

JIATy ... Ady is an optimal T-join in (G,w).

To conclude, the following well known fact, see e.g. [5], shows that in computing an optimal
T-join for a pair (G, w), w can always be assumed non-negative, hence (G, w) conservative:

Given a set of edges F C E we define T = {v € V : dp(v) is odd}, i.e. TF is the set of
nodes such that F is a TF-join.



Theorem 4.5 Given a pair (G, w) let T be any even subset of V and F be any subset of E.
Then a subset J of E is a w-optimal T-join if and only if JAF is a wg-optimal (TATY)-join.

Proof: Note first that J is a T-join if and only if JAF is a (TATT)-join. By Theorem 1.1 .J
is w-optimal if and only if (G, wy) = (G, (wr)Fay) is conservative. This happens if and only
if JAF is wp-optimal. O

Corollary 4.6 Given a pair (G, w) and an even subset T of V, let E_ = {e € E : w(e) < 0}.
If J is an optimal (TATE-)-join in (G, wg_) then JAE_ is an optimal T-join in (G,w).

Note that wg > 0.

5 A Theorem of Sebo

In this section, we use algorithm Improve to prove a characterization, due to A. Sebd [9]
and conjectured by A. Frank, of the bipartite unit pairs that are conservative. This theo-
rem implies most structural theorems about optimal T-joins and packing of T-cuts, see for
instance [9] and [2], such as Seymour’s result on packing T-cuts in bipartite graphs [10] and
Sebd’s theorem on packing T-borders [8].

We begin by formalizing the inverse of Contract:
Decontract applies to a bipartite unit pair (G',w’) in which a node v! has been distinguished
as root. Let {d1,...,0;} be any partition of §(v)), where we allow for some of the classes
d1,...,0; to be empty. Let v,,v1,...,vr be new nodes, not in G'. For 1 = 1,...,k replace
every edge viv € §; with an edge v;v of the same weight. Next remove v). Finally for
i = 1,...,k add any number (at least one) of positive edges between nodes v, and v; and
designate v, as the new root.

A direct implication of algorithm Improve is the following;:

Lemma 5.1 The conservative bipartite unit pairs are precisely the bipartite unit pairs which
can be obtained from a graph consisting of a single node (taken as the first root) and no edge
through a sequence of Decontractions and Switchings on optimal acyclic {v),v,}-joins (where

vl is the root before and v, will be the root after Switching is performed).

By Theorem 3.1 the decontraction of a conservative bipartite unit pair (G',w') is a conser-
vative bipartite unit pair (G, w) with no zero weight cycle going through v,. Hence for every
optimal {v,, v}-join Jy, , in (G,w), d;,, ,(v,) < 1. In particular if v = v, then J,,, = 0, if
v is a neighbor of v,, J, , is obtained by adding an edge in §(v,) to a zero weight Eulerian
subgraph of (G',w') and if v € V(G’) then J,, , is obtained by adding an edge in d(v,) to an
optimal {v),v}-join of (G',w').

For a pair (G, w) the distance function X centered at v, is defined as:

A(w) = min{w(Jy, ») : Sy, v I8 a {ve,v}-join} Vv eV



Let X be the distance function centered at v} in (G',w’). The above argument implies
A(vo) = 0, A(v) =1 for every neighbor of v, and A(v) = X (v) + 1 for every other node.

For every integer i, let G* be the subgraph of G induced by V' = {v € V : A(v) < i}. Let
D ={D: D is the node set of a connected component of some G"}.
After defining V', G} and D’ analogously for (G',w'), note that:

{6(D) : D € D} = §(v,) U{d(D') : D' € D'} (1)
On the other hand, by the following remark, Switching does not affect D.

Remark 5.2 Let A be the distance function centered at v, in a conservative pair (G,w),
Jvot, an w-optimal {vo,vy}-join and X' the distance function centered at v), in (G wi, )
Then for every v in V we have X (v) = Mv) — w(Jy, v)-

!
,UO

Proof: Let Jy, be an w-optimal family of joins rooted at v, with Jy,,» € Jy,- Theo-
rem 2.1 implies the w; ,-optimality for the family {Jqug,u = Jyo,vt Adyy v Yy, 0 € Ty, }-Thus

N(v) = vao,%( o 0) = W(Juo0) = W( Ty, ) = Av) — w(Jyy0)- O

For every D € D, let 6p, =0 when v € D and dp, = 1 when v ¢ D. A. Sebd [9] proves
the following good-characterization of conservativeness for bipartite unit pairs:

Theorem 5.3 A bipartite unit pair (G, w) is conservative if and only if:
6(D)NE_|=0py, VDED (2)
And from it he derives a characterization for optimal {v,,v}-joins:

Theorem 5.4 Let J,, , be a {v,,v}-join in a conservative bipartite unit pair (G,w). Then
Juo,w 18 optimal if and only if:

w(0(D) N Jy,») =0py — 6Dy, VDE€ED (3)

Remark 5.5 Condition (3) characterizes optimal {vo,v,}-joins (i.e. zero-weight Eulerian
subgraphs) in a conservative bipartite unit pair (G,w).

Proof of Theorems 5.3 and 5.4: We first prove the "only if” direction of both theorems.
Properties (2) and (3) hold trivially when G consists of a single node.

By Lemma 5.1, we need to consider two cases:

Case 1: (G,w) is obtained from a conservative bipartite unit pair (G',w’), for which both
(2) and (3) hold, by Decontracting. Then ¢(v,) C E and consequently (1) implies that (2)
holds for (G, w) since it holds for (G',w'). Let J,, , be an optimal {v,,v}-join in (G, w). If
v = v, then J,, , = 0 and (3) holds trivially. If v is a neighbor of v, then J,, , is obtained
by adding an edge in §(v,) to a zero weight Eulerian subgraph of (G',w'). If v € V(G") then
Jy,» is obtained by adding an edge in §(v,) to an optimal {v),v}-join of (G',w'). In both
cases (3) holds for D = {v,}, since v, € D but v ¢ D and consequently (1) implies that (3)
holds for every D € D since it holds for every D € D’ by induction.



Case 2: (G,w) is obtained from (G, wy, ) by Switching on the wy  -optimal join J;, , ,
where (G, w,; ) satisfies (2) and (3). In (G,wy, ), let B\ E", N and D' as in accordance
with the previ(,)us notation. By Remark 5.2 D = D'. Thus for every D e D="7D"
0(D)NE_|=[6(D)NE_|+wy, (6(D)N le;gvo) =
=60pw, + (0D,w, = 0Dw) = 6D v,

And the necessity of Theorem 5.3 is proven.

Let J,,» be any optimal {v,,v}-join in (G,w). Theorem 1.1 implies that 7;2,1, =
isawy -optimal {vj,v}-join. Thus for every D € D = D', we have:

w(8(D) N Ty,0) = _
= ws(D)nJ, vo((é(D) N Ty o) AO(D) N Ty, 0)) — ws(o)n!, (6(D)N Ty 4,) =
—wy, (D) Ty ,) —wy, (D) T,) =
= (6D,U - 6D,1}g) - _(5D,vo - 5D,vg) = 5D,v - 5D,vo-
And the necessity of Theorem 5.4 is complete.
For the "if” part of both theorems observe first that for every edge uv € E, we have

|A(v) — A(u)| = 1 because u and v are on different sides of the bipartition of G. This means
that {6(D) : D € D} is a partition of E.

Let (G, w) be a pair satisfying (2) and C be any cycle in G. For every D € D, |[CN§(D)|
is even and |[0(D)NE_| <1, hence |CNJ(D)NE_| <|CNJ(D)N E;|. From this we obtain:

ICNE_|=) |CNéD)NE_|< > |CND)NEL =|CNE,|
DeD DeD

Thus (G, w) is conservative and the sufficiency of Theorem 5.3 follows.

Let Jy,» be a {v,,v}-join satisfying (3) in a conservative bipartite unit pair (G, w). Take
an optimal {v,,v}-join J,, . Since J,, , satisfies (3) we have:

w(Jyyw NI(D)) =6py — 0pw, = w(Jy,pNID)) VD eED
which implies w(Jy, ») = w(Jy, ) since {§(D) : D € D} is a partition of E. The sufficiency
of Theorem 5.4 follows. a
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