Packing Cycles in Undirected Graphs

Alberto Caprara™ Alessandro Panconesi' Romeo Rizzi°

* DEIS, University of Bologna
Viale Risorgimento 2, 1-40136 Bologna, Italy

e-mail: acaprara@deis.unibo.it

t Dipartimento di Informatica, University of Bologna
Mura Anteo Zamboni 7, [-40127, Bologna, Italy

e-mail: ale@cs.unibo.it

¢ BRICS? Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark

e-mail: rrizzi@science.unitn.it

Abstract

Given an undirected graph G with n nodes and m edges, we address the problem of
finding a largest collection of edge-disjoint cycles in G. The problem, dubbed CYCLE
PACKING, is very closely related to a few genome rearrangement problems in computa-
tional biology. In this paper, we study the complexity and approximability of CYCLE
PACKING, about which very little is known although the problem is natural and has prac-
tical applications. We show that the problem is APX-hard but can be approximated
within a factor of O(logn) by a simple greedy approach. We do not know whether the
O(logn) factor is tight, but we give a nontrivial example for which the ratio achieved by

greedy is not constant, namely Q (%g"lgog—n). We also show that, for “not too sparse”

graphs, i.e. graphs for which m = Q(n'*+#+9) for some positive integer ¢ and for any fixed

6 > 0, we can achieve an approximation arbitrarily close to % in polynomial time. In

particular, for any & > 0, this yields a 2 +¢ approximation when m = Q(n3+9), therefore
also for dense graphs. Finally, we briefly discuss a natural linear programming relaxation
for the problem.

Key words: packing, edge-disjoint cycles, complexity, approximation, linear program-
ming relaxation.

Introduction

Several combinatorial optimization problems in computational biology are related to the
following natural packing problem, dubbed here CYCLE PACKING: given an undirected graph
G with n nodes and m edges, find a largest collection of edge-disjoint cyclesin G. In particular,
SORTING BY REVERSALS, a basic problem arising in the reconstruction of evolutionary trees
[14, 2], is closely related to the following variant of CYCLE PACKING. The input is a graph

*Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

Graph Class Complexity =~ Hardness of Approx. Approx. Achievable

General NP-hard [13] AP X-hard O(logn)
Planar NP-hard ? 2+¢[7]
Planar Eulerian O(mn) [11, 7] — —
Gg(t,a,d) NP-hard [13] ? 2y

Table 1: Summary of the results (and open questions) on CYCLE PACKING.

whose edge set is bicolored, i.e. partitioned into, say, grey and black edges. One is to find
the largest collection of edge-disjoint alternating cycles. A cycle is alternating if it has even
length and its edges are alternately black and grey [2]. The connection of this problem with
CYCLE PACKING is discussed in [6].

Despite its connections and basic character, very little seems to be known about the
complexity and approximability of CYCLE PACKING. To the best of our knowledge, the
only known result is the NP-hardness of the problem, implied by an old result of Holyer
concerning the packing of triangles [13].

In this paper we study the approximability of CYCLE PACKING. We show that the
problem is APX-hard, but that it can be approximated within a factor of O(logn) by a
simple greedy approach. Whether this bound is tight we do not know and leave it as an
interesting open problem. What we are able to show is that the performance of greedy is

not constant. More precisely, it must be 2 (%glgog—n). We also show that CYCLE PACKING
is N"P-hard for planar graphs. We finally show that the problem can be approximated in
polynomial time for “dense” graphs where by dense we mean graphs defined as follows. Given
an integer constant ¢ > 2 and positive constants « and ¢, G(¢, @, d) consists of those graphs
such that m > antit9. For these graphs, we can achieve an approximation arbitrarily close
to % (i.e. independent of a and §) in polynomial time. In particular, for any £ > 0, this
yields a % + ¢ approximation for graphs in G(2, @, §), that include dense graphs. The running
time is O(ctas: + p(n)), where ¢y is a (huge) constant depending on ¢, @, d, €, and p(n) is a
polynomial independent of ¢, «, §, €.

Table 1 summarizes the results proved in this paper, along with the previously-known re-
sults. The latter can be recognized by the presence of a reference. Entries without references
correspond to results of this paper, while question marks correspond to open problems. In a
companion paper [7] we study the following problem, dubbed CUT PACKING: given an undi-
rected graph G, find a largest collection of edge-disjoint cuts in G. Differently from CYCLE
PACKING, CUT PACKING is essentially as hard as INDEPENDENT SET. However, for planar
graphs, CYCLE PACKING and CUT PACKING are equivalent, and our study in [7] yields some
of the results in the table. Besides those in the table, the main open question remains, namely
the existence of a constant factor approximation algorithm for CYCLE PACKING. Another
intriguing question concerning CYCLE PACKING is to characterize the exact performance of

greedy.

Basic definitions and notation

Consider a maximization problem P. Given a parameter p > 1, a p-approzimation algorithm
for P is a polynomial-time algorithm which returns a solution whose value is at least % - opt,
where opt denotes the optimal solution value. We will also say that the approzimation
guarantee of the algorithm is p. Similarly, given a parameter ¥ and a function f(-), an
O(f(k))-approximation algorithm is a polynomial-time algorithm that returns a solution
whose value is Q(% - opt) (with approximation guarantee O(f(k))). A problem P is APX-
hard if there exists some constant o > 1 such that there is no o-approximation algorithm
for P unless P = NP. We remark that this definition is non-standard but it is adopted
here because it simplifies the exposition, while at the same time it allows us to reach the
conclusions we are interested in.

Although our results apply to undirected multigraphs, we shall focus on connected, simple
graphs. Connectedness can be assumed without loss of generality, for the problem we study
can be solved separately on each connected component and the solutions be pasted together.
As for multiple edges they can be removed in pairs, counting one cycle per removed pair.

Given an undirected graph G = (V, E), we will let ng := |V| and mg := |E|. The
subscript G will be omitted when no ambiguity arises.

Definition 1 A cycle of G is a sequence of edges v1va,Vov3, ..., Vp_1Vk, VU1, k > 2, such
that v; # vj for i # j.

Sometimes, for convenience, the cycle will be denoted simply by the sequence of nodes it visits,
namely v1,v2,...,V_1,Vk. A packing of cycles is a collection of edge-disjoint cycles, and
CYCLE PACKING is the problem of finding a packing of cycles in G of maximum cardinality.

Definition 2 g denotes the mazimum size of a packing of cycles in G, dg denotes the
minimum degree of G, and gg the girth of G, i.e. the length of the shortest cycle of G.

Note that gg > 3, as we are dealing with simple graphs only.
Finally, the notation “log” without subscripts stands for the logarithm base 2.

1 The hardness of CYCLE PACKING

For the AP X-hardness proof, the reduction is from MAX-2-SAT-3. The input to this problem
is a Boolean formula ¢ in conjunctive normal form in which each clause is the OR of at most
2 literals. Each literal is a variable or the negation of a variable taken from a ground set
of Boolean variables {z1,...,z,}, with the additional restriction that each variable appears
in at most 3 of the clauses, counting together both positive and negative occurrences. The
optimization problem calls for a truth assignment that satisfies as many clauses as possible.
It is known that MAX-2-SAT-3 is APX-hard [1, 4].

Theorem 1 CYCLE PACKING is APX-hard, even for graphs with mazximum degree 3.

Proof: Given an input ¢ to MAX-2-SAT-3, let {z1,...,z,} denote the set of variables and
{c1,...,cm} the set of clauses. Furthermore, denote by m; the number of occurrences of ;.

We will show how to transform ¢ into a graph G(y) in polynomial time in such a way that
every truth assignment for ¢ that satisfies k£ clauses can be transformed, again in polynomial
time, into a packing of G(¢p) of value >°7*_; 2m;+k, and viceversa. Once this is done, the claim
follows from the easy observation that > ;' ; 2m; < 4m and at least half of the clauses can be
satisfied by a simple greedy approach. This implies that any (ﬁ)-approximated solution of
CYCLE PACKING on G(y) can be transformed in polynomial time into a (=5)-approximated
solution of MAX-2-SAT-3 on ¢.

To each clause c¢; we associate a test component, shown in Fig. 1. The left-hand side shows
the test component when the clause has two literals, while the right-hand side shows it when
the clause has one literal. The test component of a clause with two literals consists of two
squares (i.e. cycles of length 4) s},r},r?,t} and s?,r},r?,t? with the edge le-r]? in common.
The test component associated with a clause c¢; with one literal consists of a single square

1,1 .2 41

sj,rj,rj,tj.
1 1 2 1 1
S T'j Sj Sj Tj
1 2 2 1 2
ooy i

Figure 1: To the left, the test component associated with the clause ¢; when it has two literals
and, to the right, when it has one literal.

To each variable z; is associated a truth setting component. Please refer to Fig. 2.
Without loss of generality we can assume that x; appears either two or three times, for
if it appears only once we can set it to the value which satisfies the clause it belongs
to. The truth setting component can be thought of as a “wheel” consisting of two cy-
cles, one “inside” the other, connected by “spikes”. The outer, or external, cycle has 12m;
nodes, E := z},ul,v},..., 2™ ui™ ;™ while the inner, or core, cycle has 4m; nodes,
C:=1b,... ,b;lmi. When referring to a truth setting component, it is understood that all
indices are modulo 4m;.

Each node b is connected to 2!, 1 < g < 4m;. Each cycle

149 .9 ,9 .9 9+l 7q+1
Sq=0b;,7,u;,v,2 b

is called a sector. (Note that there are four sectors in the component for each occurrence of
z;.) A sector is odd if ¢ is odd, and even otherwise. The parity of edge ujv] is the parity of
the sector it belongs to (i.e. that of ¢). Clearly, at most half of the sectors can belong to the
same packing, and this is possible only if they all have the same parity.

The graph G(p) is obtained by connecting test and truth setting components as follows.
Let z; be a variable appearing, say, in clauses ci,...,c¢y,;. For j = 1,...,m;, if z; appears
positive (resp. negated) in ¢;, we identify an edge s?t;‘ (h € {1,2}) of the test component of
c; with edge u?jﬂv?j*2 (resp. u?jilv;ljfl) of the truth setting component of z;. We perform
identifications in an arbitrary order, so as to guarantee that, for each clause c; with two
literals, both edges s}t} and s?t? are identified with one edge in the truth setting components
of the two variables occurring in c;.

1
ul™

q+1
v;

q+2
Z;

Figure 2: The truth setting component associated with the variable z; (only three consecutive
sectors are depicted).

By the above construction, it is easy to see that, given two (cyclically) consecutive sec-
tors Sy, S¢+1 in the truth setting component associated with x;, at least one edge among

1 1
o uf Tyt

iU is not identified with any edge in a test component. This property simplifies
the case analysis below.

A maximal packing P is called canonical if (a) for each truth setting component, it
contains either all even sectors or all odd sectors of the component, and (b) for every test
component it contains at most one of its squares.

A canonical packing P naturally corresponds to a truth assignment in the following way.
If P contains a square of the test component of ¢; this means that c; is “satisfied” by P. If
P contains all odd (resp. even) sectors of the truth setting component of z; this means that
x; is “set to true (resp. false)” by P. Therefore a maximal canonical packing of G(¢) which
contains X7 ;2m,; + k cycles, k of which are squares, corresponds to a truth assignment of ¢
satisfying exactly k clauses, and viceversa. The following three claims conclude the proof.

Claim 1 If k clauses of ¢ can be simultaneously satisfied, then there is a canonical packing
of G(yp) with at least ;| 2m; + k edge-disjoint cycles.

Proof: Consider a truth assignment 7" which satisfies k£ clauses. In the truth setting compo-
nent of variable x;, take all odd sectors if z; is true. Otherwise, take all even sectors. Now
take a square from each test component associated with a clause which is satisfied by 7. O

Claim 2 Given a packing P we can find in polynomial time a packing P' which is at least
as large and in which each cycle is either fully contained in some test component or in some
truth setting component.

Proof: Consider a cycle C in P having at least one edge in a truth setting component, say
associated with variable z;, and one edge in a test component, say associated with clause
cj. We assume w.l.o.g. that C' contains edge rjl-s}, where s} coincides with u! for some
g € {1,...,4m;}. We consider all possible cases (and subcases), in increasing order of com-
plication, and show how to replace C' (and possibly other cycles) in P by squares and sectors

so as to get a packing at least as large as P. The case analysis can be checked by looking

J J
q q+1
Z'L Sl- tl Z:
_ J J
U‘.l 1 Sq uq+1
1 2
uq_l Sq—l b4 bq+ Sf1+1 1)?""1
I3 i H [3
q—1 g—1 a+2 q+2
% b; b; 2§

Figure 3: Reference picture for the case analysis in the proof of Claim 2.

at Fig. 3. Given two adjacent nodes u,v of degree 3, we say that edge wv is covered by a
cycle C if C visits either u or v (or both). Clearly, any edge covered by a cycle C' cannot be
contained in any other cycle.

152 241

Case A: c; has only one literal. In this case, C' must contain also edges r;r:,r

;77 75t and

covers edge sjl-t}, therefore a packing as large as P is obtained by replacing C' by the square
sjl-,rjl-,rjz,t}.

Case B: ¢; has two literals.

Case B.1: C contains also edge s}t}. In this case, note that both edges TJI-TJQ- and rjzt} are

covered by C. Therefore, a packing as large as P is obtained by replacing replacing C by the

square s;, le-, r?,t}.

Case B.2: C contains also edge z] s}.

Case B.2.1: C contains also edge le-rjz. In this case, both edges s}t} and r?t} are covered

by C, therefore a packing as large as P is obtained by replacing C by the square sj, 7,77, ;.
1

Case B.2.2: C contains also edges r; 5? and s?t?. In this case, both edges rjl-rjz and tgrjz-

are covered by C, therefore a packing as large as P is obtained by replacing C' by the square
r},s?,t?,r%
Case B.2.3: C contains also edges r}s? and s?zﬁ, where x5, is the other variable occurring

inc; and p € {1,...,4my}. In this case, edges sjl-tl- 1r2, s%t2 are covered by C.

rirs,s
A A AR]

Case B.2.3.1: Edges t}r?- and r?t? are not contained in any cycle in P \ {C}. In this case,

a packing as large as P is obtained by replacing C' by the square s%, rjl-, 7”32-, tjl-.

Case B.2.3.2: There exists a cycle ' in P\ {C} containing edges tjr7 and r7t7. In this

case, C' contains also edge t}zf“. Note that C covers edge z{b! and C’ covers edge z?“b;-”l.

Case B.2.3.2.1: Edge bgbg“ is not contained in any cycle in P\ {C,C’}. In this case, a
packing as large as P is obtained by replacing C, C’ by the square 7}, s2,t2,7? and the sector

FEA ARV AR
14 49 1 41 g+l 3q+1
Sq—bi,zi,sj,tj,zi b

Case B.2.3.2.2: There exists a cycle C" in P\ {C, '} containing edge b7b?*". In this case,
C" contains also edges bg_lbg and bg“bg”. Moreover, since edges A 01,071 are

. v, andu; v,
. . -1 g¢-1 _g-1 -1
not in any test component, C contains also path 2], v{ ", ul *, 2! and covers edge b 2!,

qg—1
1, g1 g+l q+2 .o ° +2_q+2 '
and C' contains also path 27", u!"", 07", 277 and covers edge b]" “2z]"". Therefore, a pack-
152,42, r? and the sectors

ing as large as P is obtained by replacing C, C', C" by the square r;, 57,7, 7;

1 1 1 2 2
zq—l— uq+ ,Uq+ Zq+ bq+ . O

_19-1 g¢-1 ¢-1 g1 _q 14 _ g+l
Sg-1=b; L,z u; v 25,0 and S =0,z L up v 7 b

A)

Claim 3 Given a packing P we can find in polynomial time a canonical packing Q which is
at least as large.

Proof: If P = C1,...,Cy is a packing of cycles in G(¢) we can derive a canonical packing Q
such that:

(1) each cycle of Q is either fully contained in some test component or in some truth setting
component;

(2) every cycle of Q inside a test component is a square of that test component;
(3) at most one square per test component is in Q;

(4) every cycle of Q inside a truth setting component is a sector of that truth setting
component;

(5) for each truth setting component, Q contains either all even sectors or all odd sectors
of the component.

Condition (1) is shown by Claim 2. Conditions (2) and (3) follow immediately from (1)
and the structure of the test components.

In order to show (4), assume P contains a cycle C inside a truth setting component
which is not a sector of the component. If C contains path b}, 2!, u!,v], zz~q+1, bgH for some
g, replacing C' by the sector S yields a packing as large as P. Otherwise, C' contains either
edges b;flbgle and b;-ﬁ'lbg+2 or path z;’l,ug,vf,zf“,u?“,v?“,z?” for some ¢q. We consider
only the first case since the second is perfectly analogous. If C' contains also edge bz, i.e.
if C contains at all an edge of the form b!z? for some p, then note that C' contains either
path 27, u?,v?, 297! and covers edge b?T'297!, or path 27, 0!, u?! 27" and covers edge
bg_lzf_l. Replacing C by the sector S in the first case and by the sector S;,_1 in the second
yields a packing as large as P. The case which remains is the one in which C is the inner
cycle b}, ... ,b;lmi. In this case, there is at most another cycle in the component, namely the
outer cycle C'. Replacing C' (and possibly C') by two arbitrarily chosen sectors which are not
consecutive and whose edges utv! are not shared by any test component (two such sectors
always exist) yields a packing at least as large as P.

We finally show (5). It is here that we make use of the special structure of MAX-2-SAT-3
formulae. Focus on a truth setting component K associated with z;. Suppose that z; appears
negated in at most one clause ¢; (the case in which z; appears positive in at most one clause
being identical). If P does not contain all even or all odd sectors of K, then replacing the
sectors of K in P by all odd sectors and possibly removing from P the square in the test

component of ¢; with one edge in K, yields a packing at least as large as P. O

We conclude this section with the NP-hardness proof for the planar case, reducing the
following PLANAR 3-SAT problem to CYCLE PACKING. As customary {zi,...,zp} and
{c1,...,cm} denote, respectively, the set of variables and clauses in a Boolean formula ¢

in conjunctive normal form, where each clause has ezactly 3 literals. Consider the bipartite
graph G, = (UUV, E,), with color classes U := {z1,...,z,} and V := {c¢1,...,¢cn} and
edge set E, = {zc : variable z occurs in clause c¢}. The Boolean formula ¢ is called planar
when G, is planar. PLANAR 3-5AT is the problem of finding, if any, a truth assignment that
satisfies all clauses in a planar Boolean formula, where each clause has exactly three literals.
It is known that PLANAR 3-SAT is N'P-complete [15].

Theorem 2 CYCLE PACKING is N'P-hard for planar graphs with mazimum degree 3.

Proof: The proof follows the same lines as that of Theorem 1, transforming a PLANAR 3-
SAT instance ¢ to a graph G(p) in polynomial time by connecting certain gadgets together.
The truth setting component associated with variable z; is perfectly analogous to the one in
the reduction of Theorem 1, displayed in Fig. 2, noting that in this case m; is not constant
in general The test component associated with a clause c; is displayed in Fig. 4. Each
cycle r ;), i J,t;“, ;H'l is called a pentagon. This component is connected to truth setting
components by sharing the edges s';t!;, s?;t%; and s3;t3;, as in the reduction of Theorem 1.
3 42

Figure 4: The test component associated with the clause ¢; in the ANP-hardness proof for
the planar case.

In particular, we define the graph G(¢) as follows. Consider a planar embedding of G,.
Such an embedding defines, for each variable z; a (cyclic) topological order of the clauses
in which z; appears, corresponding to the order in which the associated edges appear in
clockwise order around node z; in the planar embedding. Analogously, for each clause c;, the
embedding defines a topological order of the variables appearing in c;.

Starting from G, and its planar embedding, we first replace each edge z;c; by two parallel
edges (z;cj)! and (z;c;)?. Then, for each variable z; appearing, say, in clauses cy, ..., cmp;,
given in topological order, we replace the corresponding node by the truth setting component.
Within thls operation, for] =1,...,m;, edges (z;c;)! and (z;c;)? are replaced, respectively,
by edges u; 7203 and v B c] if z; appears positive in c;, and by edges u4jflc] and 11477 c;j
if z; appears negated in c¢;. Finally, we replace each clause c;, containing, say, varlables
z1,%2,T3, again given in topological order, and incident edges ulc;, vilic; (j = 1,2, 3), by the
four nodes %, i = 0,1,2,3. Here, for i = 1,2,3, we introduce edges ror and replace edges

]’
ulicj, vlic; by uqsz vq’r”l (with r =r}). (Note that sZ = vl and tZ =) fori=1,2,3.)

rl
J
The resultlng graph is the required (<p)

It is immediate to see that all the operations in the definition of G(¢) from G, preserve
planarity, i.e. G(¢p) is planar.

We now show that G(¢) has a packing of size > ;- ; 2m; +m if and only if ¢ is satisfiable.

The “if” part being trivial, we show the remaining. Let P = Cy,...,Cy be a packing
of edge-disjoint cycles with £ := Y% ; 2m; + m. We show that P can be transformed in
polynomial time into “canonical” packing O that is at least as large as P and moreover satisfies
Conditions (1)—(5) in the proof of Claim 3 above, with “square” replaced by “pentagon” in
(2) and (3). As in the proof of Theorem 1, Conditons (2) and (3) follow immediately from
(1). Moreover, the proof of (4) is identical since that proof holds for any m;, whereas (5) is
immediately impled here by the requirement on the size of the packing.

Figure 5: Reference picture for the case analysis in the proof of Claim 4.

Therefore, we only need to prove (1).

Claim 4 Given a packing P we can find in polynomial time a packing P’ which is at least
as large and in which each cycle is either fully contained in some test component or in some
truth setting component.

Proof: The proof is analogous to that of Claim 2, but the case analysis is more involved.
We consider again a cycle C in P having at least one edge in a truth setting component, say
associated with variable z;, and one edge in a test component, say associated with clause c;,
and assume w.l.o.g. that C contains edge r}s; = rjuf for some g € {1,...,4m;}. As before,
we consider all possible cases and show how to replace C (and possibly other cycles) in P by
pentagons and sectors so as to get a packing at least as large as P. Note that c; contains
exactly three literals in this case. The reference picture is Fig. 5.

Case 1: C contains also edges s}t} and t}zfle and hence covers edges 7"]1-7"?, rjzt} and zfs}.
Case 1.1: Edge r?r]z is not contained in a cycle in P\ {C}. In this case, a packing at least

as large as P is obtained by replacing C by the pentagon sk, r},r? r2, t!

373273073777

Case 1.2: There exists a cycle C' in P\ {C} containing edge rr7. In this case, C' contains

also edges rf—s? and 7‘;-)7"5-’ and C' contains also edge rjl-tg?.
. 1 1 1 2 2, q+2
Case 1.2.1: C contains also path zé”’ ,u;-H' ,'U;H' ,zz“ and hence covers edge Z,?+ bg+ .

Case 1.2.1.1: Edge b?"'b7™ is not contained in any cycle in P\ {C}. In this case, a packing
as large as P is obtained by replacing C' by the sector Sg.

Case 1.2.1.2: Edge b7"'6?"? is contained in a cycle C" in P\ {C} (possibly C" = C'). In
this case, C" contains also edges bqbqu1 and bq+2bq+3, as well as either edge bqbq or path
bqqqluqlql q—1_g—

q q 1 1. .
i %0 U, In both cases, no edge in path z; u; z; I8 contalned in any cycle

in P\ {C,C’ }, and a packing as large as P is obtamed by replacmg C,C'" by the sectors S;_1

and Sgy1.
Case 1.2.2: C contains also edge 22", b7

Case 1.2.2.1: C contains also edge bq+1bq and hence covers edge bJz}. In this case, a packing
as large as P is obtained by replacmg C by the sector Sj.
Case 1.2.2.2: C contains also edge b;”’lbgl'2 and covers edge bg”zg”. In this case, no edge

1 g+l g+l _q+2 . Lo . :
in the path zf*", uf™" v3T! 29%? is contained in any cycle in P, and a packing as large as P

is obtained by replacing C' by the sector Sgy1.

1r and s

Case 2: C contains also edge z] and hence covers edges r;]

Case 2.1: Edge t1 q+ is not contamed in any cycle in P\ {C’}

Case 2.1.1: C contalns also path 221 u?' 77! 27 and hence covers edge z
Case 2.1.1.1: Edge b ¢ is not contalned in any cycle in P\ {C}. In this case, a packing
as large as P is obtained by replacing C by the sector S,_;.

Case 2.1.1.2: There exists a cycle C' in P\ {C} containing edge b bq In this case, C’ con-
tains also edges bqbq+ and b/~ 2bq 1, as well as either edge bq+1bq+2 or path
bq+1, f“,u?“,vf“, f+2. In both cases, a packing as large as P is obtained by replac-
ing C, C’ by the sectors S;_1 and Sy ;.

Case 2.1.2: C contains also edge zlb].

Case 2.1.2.1: C contains also edge bqbq+ and hence covers edge bgl'lzq. In this case, a

(3
packing as large as P is obtained by replacmg C by the sector Sj.

qlbql

Case 2.1.2.2: C contains also edge bgilbg and hence covers edge bgflzgfl

packing as large as P is obtained by replacing C' by the sector S;_1.

. In this case, a

1,011

Case 2.2: There exists a cycle C' in P\ {C} containing edge #;2{" . In this case, C’ contains

also edge t}rZ and covers edge 7";)]2
1 L L1
Case 2.2.1: C contains also path z] ,ug , vl ", 2z} and hence covers edge z! bl

Case 2.2.1.1: Edge b7 'b? is not contalned in any cycle in P\ {C}. In this case, a packlng
as large as P is obtalned by replacing C by the sector S;_1.
Case 2.2.1.2: Edge bqflbq is contained in C’. In this case, a packing as large as P is obtained

by replacing C,C’ by the pentagon s],r]l, r?,r],t} and the sector S,_

Case 2.2.1.3: There exists a cycle C" in P \ {C,C'} containing edge b7 'b7. In this case,
C" contains also edges bqbq+1. bql'lbq+2 and covers edge bq+2 q+2, and C' contains path

Prans uf“, ’U;H—l, zq+2 In thls case, a, packmg as large as P is obtalned by replacing C,C’, C"

I3
by the pentagon s},r},79,7%,t; and the sectors Sy 1, Sgq1.
Case 2.2.2: C contains also edge 2]b].

Case 2.2.2.1: C contains also edge bq 1bq and hence covers edge b] ! z ! In this case, a
packing as large as P is obtained by repla,cmg C by the sector S;_;.
Case 2.2.2.2: C contains also path b7, 577 and C' path 22", wI™! w7 2912, In this

case, a packing as large as P is obtained by replacmg C,C" by the pentagon sj,rjl, r?,r],t]l

10

and the sector Sg1. O

Now, since for each truth setting component, at most half of its sectors can be packed,
Y1 2m; + m is an upper bound on the size of any packing of G(y). If we have a packing
of this size then, for each test component, exactly 2m; sectors are in the packing and they
all have the same parity. Therefore the packing corresponds to a truth assignment for ¢ that
satisfies all clauses. O

Corollary 1 CuT PACKING is N'P-hard for planar graphs.

2 An O(logn) approximation algorithm

Given the results above, we investigate the approximability of the problem. Recalling that
the shortest cycle in a graph can be found efficiently, consider the following intuitive idea:
repeatedly pick a cycle of smallest length in the solution and remove the associated edges.
The resulting algorithm will be called basic greedy. As such, this algorithm does not work
well. The simple example in Fig. 6 demonstrates that the approximation guarantee can be
as bad as Q(y/n), and in fact this is (asymptotically) the worst case. This is stated formally
in the following.

Theorem 3 The approzimation guarantee of basic greedy is ©(y/n).

Proof: We first illustrate the bad example. A sunflower (see Fig. 6) is a graph .S consisting of
a core cycle C' = wvy,...,v, and of p petals, namely p cycles P; = v;, ul, ... ,u;,_Q, vj+1, Where
indices are modulo p. Note that ng = ©(p?). The optimum packing consists of the p petals,
therefore 1g = p. Basic greedy on the other hand, may select the core first. Thereafter there
is only the ezternal cycle remaining, E := vy, ul,... ,u})_z,m,u%, . ,’11,12)_2,’1)3, ...,v1. The
approximation guarantee is therefore Q(/n).

In order to show that the approximation guarantee is O(y/n), let C be the first cycle found
by basic greedy and let S be any maximum packing of cycles. We prove that C intersects
(i.e. has at least one edge in common with) at most O(y/n) cycles of S. This shows that the
optimal CYCLE PACKING value is decreased by at most O(y/n) by taking C' in the solution,
as is done in the first iteration of basic greedy. Iterating this argument on the graph obtained
by removing C' yields the claim.

If C has at most v/n edges, we are done. Otherwise, assuming |C| > 1/n, let Si,..., Sk be
the cycles in S intersected by C and G’ be the subgraph of G induced by the nodes visited by
at least one cycle among C,S1,...,S;. Consider a breadth-first search over G’ which starts
from all nodes visited by C, i.e. contains all these nodes at level 0. At level 4 (i > 0) of the
breadth-first search we have the nodes in some cycle among Si, ..., S that are at distance %
from the closest node of C' in G'.

Now, let £ be the smallest level in which there is a node u having at least two neighbors
in levels < £. This means that there are two distinct paths from the nodes at level 0 to u, of
length at most £ and £ + 1, respectively. Since all nodes at level 0 are in C, this means that
there is a cycle visiting v whose length is at most 2+ |C|/2+ 1. The fact that C is a shortest
cycle in G’ implies |C| < 20+ |C|/2 + 1, i.e. £ = Q(|C|). Since Si,..., S are edge disjoint,

11

there are Q(k) nodes in level 1. Moreover, since each node in levels 2, ..., £ — 1 is adjacent to
exactly one node in the previous level, there are (k) nodes in each level 0,...,£ — 1. This
implies

n > ng = QUk) = Q(|Clk).
Since |C| = Q(+/n), we get k = O(y/n), which completes the proof. a

We next show that a small modification of basic greedy, called modified greedy works
“reasonably well”. We use the following well-known result (see for example [5]):

Fact 1 For a graph G with dg > 3, gc < 2[logn].

Modified greedy iteratively performs the following three steps: (1) while G contains a
node w of degree 1, w is removed from G along with the incident edge; (2) while G contains
a node w of degree 2, with neighbors 4 and v, w is removed from G along with the incident
edges, and edge uv is added to G (note that edge uv may already be present, in which case
a cycle of length 2 is formed, which is removed and added to the solution); (3) an arbitrarily
chosen shortest cycle C of G is added to the solution and the corresponding edges are removed
from G. Steps (1), (2) and (3) are repeated until there are no edges left in G.

Theorem 4 Modified greedy is a O(logn)-approximation algorithm for CYCLE PACKING.

Proof: This proof is similar to the second part of the proof of Theorem 3, based on the
observation that the first cycle C found by modified greedy intersects at most O(logn) cycles
of a maximum packing S. In particular, C' is taken from the graph G¢ obtained from G by
applying Steps (1) and (2). Since dg., > 3 and ng, < ng =n, by Theorem 1 C has O(logn)
edges. This completes the proof along with the observation that Steps (1) and (2) do not
change the optimal CYCLE PACKING value. O

If one wants to get rid of the O(-) notation in the approximation ratio, it is easy to see
that the approximation guarantee is (2 + o(1)) log n.

We do not know of any examples for which the approximation ratio achieved by modified
greedy is Q(logn). We remark that if gg is Q(logn) it is fairly easy to show that the
approximation guarantee of modified greedy is constant. The same holds if g is bounded by
a constant during the whole execution of modified greedy. What we are able to show is the
following.

Theorem 5 The approzimation guarantee of modified greedy is §2 (‘/lo?fg()gn)'

Proof: In order to build the bad example we shall make use of the sunflower graph S
described above. Recall that C denotes the core cycle and Pi,..., P, denote the petals.
Consider a p(p — 2)-regular graph H having girth p(p — 1). That such graphs exist follows
from the following fact (see for example [5]).

Fact 2 For every positive integers d > 3, g and n, iflog;_, n > g then there exists a d-regular
graph G with n nodes such that gg > g.

12

Figure 6: The sunflower graph (within the circle on the right) and the construction of a bad
example for modified greedy.

Therefore, setting d := p(p — 2) and g := p(p — 1), there exists a d-regular graph H with
girth at least g, provided that ny has, say, (;02)1”2 nodes. Given H, we replace each node
w of H with a copy of the sunflower S, denoted as S,, (see Fig. 6). The degree-2 nodes of
different copies of S are connected as follows. If uv € E(H), connect an arbitrarily chosen
degree-2 node of S, to an arbitrarily chosen degree-2 node of Sy, provided that no node has
ever degree greater than 3. Let G be the resulting graph.

The optimal CYCLE PACKING solution for G has value at least png. A solution of this
size can be obtained by taking cycles Pi,..., P, for each copy of S. On the other hand,
modified greedy applied to G may for the first ng iterations select the ny core cycles in each
copy of S. Afterwards, as we will show, the optimal solution value for the left-over graph is
at most %ng To see this, consider the graph G’ obtained by removing all the core cycles
from G, without removing degree 2 nodes. We have gor = p(p — 1), since the only cycle left
within each copy of S is the external cycle, whose length is p(p — 1), while the length of any
cycle visiting more than one copy of S is at least equal to the girth of H. We have that,

1
mg = mp + (# of edges remaining in all copies of S) = ip(p —2ng +p(p — ng.

The optimal CYCLE PACKING solution cannot be larger than the ratio between the number
of edges and the girth, i.e.

o <™ < ip(p —2)ng +p(p — V)ng
= og9¢ p(p—1)

<
ng-.

Therefore, overall greedy may find a solution of value at most gn H, with an approximation

ratio of
png _ 2p

5 =
ETLH 5

13

Now, the relation ng < (;02)1”2 implies

lognyg
P2 T
loglogng
lognpg

as (Flgolg(%) 108188 <y if and only if %{;ﬁ%(log logny —logloglogny) < logny, which

is immediately verified. Hence, noting that logny = O(logng), we get the desired claim. O

3 Constant approximation guarantee for “nonsparse” graphs

In this section, we consider the approximation ratio achieved by a version of basic greedy for
graphs that have (asymptotically) “many more” edges than nodes. More precisely, given an
integer constant ¢ > 2 and constants «,d > 0, let G(¢,a,d) be the family of graphs with n
nodes and m edges such that

m > an' Tt (1)

We will show that a constant approximation ratio can be achieved for these graphs, where
the constant depends only on t.

Our approach is based on showing that, if n is “not too small” (i.e. not bounded by
a constant) the girth of the considered graph G will remain “small” for a large number of
iterations. In particular, our proof will be based on the following result, given in [5], p. 158:

Theorem 6 For every graph G with
m > 90tn1+%,
where t is an integer > 2, gg < 2t.
Moreover, we will use the following obvious remark: if n is bounded by a constant, CYCLE

PACKING can be solved in constant time.

The algorithm, called dense greedy, is as follows. Let € > 0 be arbitrary, but fixed. If
90¢(1 + &)\ #
ne (B 2)
Qe
then n is bounded by a constant and dense greedy finds an optimal solution by complete
enumeration. Otherwise, dense greedy simply proceeds as basic greedy in the previous section.
Theorem 7 For any fized € > 0, dense greedy is a p-approximation algorithm for CYCLE

PACKING on graphs in G(t,a,d), where

2t
p:=(1 +6)§'

The running time is O(ciase +p(n)), where ciase i a constant depending on t,a, 0, and p(n)
is a polynomial independent of t, a6, €.

14

Proof: Clearly, the constant c¢i,4. corresponds to the time taken to solve by complete enu-
meration CYCLE PACKING on graphs with a “small” number of nodes (see (2)). Hence, the
only case to be considered in the proof is the one in which (2) does not hold, i.e.

y (90t(1 +5)>%’

Qe

which is equivalent to
90¢(1+¢
an' it > ﬂn“ﬁ.
€
In other words, we have
€

m > an

Consider the last iteration of basic greedy, say the p-th, in which the remaining number of
edges (after removal of the edges in the cycles found) exceeds 90tn'*7. This means that, in
iterations 1,...,p, basic greedy found p cycles and that, after removal of these cycles, the
number of edges is at most 90tn'*i. In other words, these p cycles contain, overall, at least

1
m — 90tn1+% > 1 m

3

edges. Moreover, by Theorem 6 the length of each of these cycles is at most 2t.
Therefore, the number of cycles found by dense greedy is at least

m

Z 1+e

2t 3)

p

Furthermore, the optimal CYCLE PACKING solution ¢ has value at most 3 as each cycle
in G contains at least 3 edges (recall that G is simple). Therefore,

n 2t
Ve o 5 (1402
D Tre 3

2t
O

Note that for ¢ = 2, i.e. for all graphs for which m = Q(n%""s) for some § > 0, which
include dense graphs, the approximation achieved is arbitrarily close to %.

A reduction of the constant c;,s. can be achieved by using results which are tighter than
Theorem 6, limiting the complete enumeration to smaller values of n than the right-hand side
of (2). (For instance, it is known that every graph with at least (1 4 v/4n — 3) edges has a
cycle of length 4.) However, the exact determination of the minimum value of the right-hand
side in (2) that preserves the approximation guarantee is out of the scope of this paper.

Note that the use of modified greedy instead of basic greedy in the above scheme would
yield the same guarantee.

15

4 CyCLE PACKING and Linear Programming

A simple, natural Integer Linear Programming (ILP) formulation of CYCLE PACKING is the
following. Let C be the family of all cycles of G. We associate with each C € C a binary
variable z¢ equal to 1 if and only if cycle C is in the optimal CYCLE PACKING solution. The
ILP model reads

max 3" e, (4)

ceC
subject to
Z zc <1, e €k, (5)
C3e
10>0, CeC, (6)
Z¢ integer, Cec. (7)

The associated LP relaxation (4)—(6) can be solved in polynomial time as its dual reads

min Z Ye, (8)

ecE
subject to
dye>1, Cec, (9)
ecC
Ye > 0, e€EF, (10)

and the separation problem for (9) calls for a cycle of minimum weight (the weighted counter-
part of the girth), which can be found by shortest path techniques if weights are nonnegative.
Note also that each optimal integer solution of the dual corresponds to a set of edges that
intersects each cycle at least once, i.e. to the complement of a spanning tree of G. The
corresponding value is m — n + 1.

A question closely related with the approximability of CYCLE PACKING is how large can
be the difference between the value of integer and fractional solutions of (4)—(6). In particular,
let ¢, be the optimal value of LP (4)—(6) and define the integrality gap as the ratio between
¢ and 1. The analysis of modified greedy in Section 2 shows an upper bound on this gap.
In fact, this result was already shown by Erdos and Pésa [9]. Here we give a constructive
proof analogous to theirs.

Theorem 8 For any graph G, ¥ < O(logn) - ¥g.

Proof: We already noted that ¢ < m —n + 1. We show that m —n +1 < O(logn) - ¥q,
which yields the proof. In particular, we show that h > gao’g;f), where h is the value of
the solution produced by modified greedy. Indeed, at each iteration of modified greedy, h
is increased by 1. Moreover, in Steps (1) and (2) (removal of nodes of degree 1 and 2) the
quantity m —n + 1 is not changed. Finally, in Step (3) m is decreased by O(logn) and n is

unchanged. Hence, every time h is increased by 1, m — n + 1 is decreased by O(logn). O

A main question is, again, whether the O(logn) bound is tight. Clearly, Fact 2 mentioned
in Section 2 shows that ¥ = O(logn) - (m —n + 1) for some 3-regular graph G for which

16

9c = O(logn). However, since ¢5; < 7% (note that y; := g%: is a feasible dual solution) and

Ya > %, gc = O(logn) implies that the integrality gap for G is bounded by a constant.
Graph K33 shows that the integrality gap is at least 2.25. In particular, among the graphs
G with 9 = 1, K33 is the one for which 9, (= %) is largest.

Note that the proof of Theorem 7 implicitly shows that the integrality gap for “nonsparse”
graphs is asymptotically constant, as clearly ¢ < ﬂG and gﬂc < O(1) - ¢ as P¢ tends to

P g
infinity.

Acknowledgments

Part of this work was done while the first and third authors were visiting BRICS. The first
author was also partially supported by CNR and MURST, Italy. We thank Maxim Sviridenko
for helpful discussions on the subject. Moreover, we are grateful to two anonymous referees,
whose comments led to an improvement of the presentation as well as to a strengthening
(and simplification) of the original version of Theorem 7.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi,
Combinatorial Optimization Problems and their Approzimability Properties, Springer-
Verlag, Berlin (1999).

[2] V. Bafna and P.A. Pevzner, Genome Rearrangements and Sorting by Reversals. SIAM
J. on Computing 25 (1996) 272-289.

[3] B.S. Baker, Approximation Algorithms for A"P-Complete Problems on Planar Graphs.
J. ACM 41 (1994) 153-180.

[4] P. Berman and M. Karpinski, On Some Tighter Inapproximability Results. Proceed-
ings of the 26th International Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science 1644, Springer-Verlag, Berlin (2000) 200-209.

[56] B. Bollobds, Eztremal Graph Theory, Academic Press, New-York (1978).

[6] A. Caprara, Sorting Permutations by Reversals and Eulerian Cycle Decompositions.
SIAM J. on Discrete Mathematics 12 (1999) 91-110.

[7] A. Caprara, A. Panconesi and R. Rizzi, Packing Cuts in Undirected Graphs.
Research Report OR/01/14, DEIS, University of Bologna (2001). Available at
http://www.or.deis.unibo.it/alberto/online.htm

[8] P. Crescenzi, V. Kann, A Compendium of NP Optimization Problems. Available at
http://www.nada.kth.se/ viggo/problemlist/compendium.html

[9] P. Erdés and L. Pésa. On the Maximal Number of Disjoint Circuits of a Graph. Publ.
Math. Debrecen 9 (1962) 3-12.

17

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Erdos and H. Sachs. Regulare Graphen Gegebener Taillenweite mit Minimaler Knoten-
zahl. Wittenberg Math. — Natur. Reine 12 (1963) 251-257.

A. Frank, Conservative Weightings and Ear-Decompositions of Graphs. Combinatorica
13 (1993) 65-81.

M. Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Opti-
mization, Springer-Verlag, Berlin (1988).

I. Holyer, The N"P-Completeness of Some Edge-Partition Problems. SIAM J. on Com-
puting 10 (1981) 713-717.

J. Kececioglu and D. Sankoff, Exact and Approximation Algorithms for Sorting by
Reversals, with Application to Genome Rearrangement. Algorithmica 13 (1995) 180
210.

D. Lichtenstein, Planar formulae and their uses. SIAM J. on Computing 11 (1982)
329-343.

C.H. Papadimitriou and M. Yannakakis (1991), Optimization, Approximation, and Com-
plexity Classes J. Comput. System Sci. 43 (1991) 425-440.

18

