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Abstract

Sorting by Reversals (SBR) is one of the most widely studied models of genome re-
arrangements in computational molecular biology. At present, % is the best known ap-
proximation ratio achievable in polynomial time for SBR. A very closely related problem,
called Breakpoint Graph Decomposition (BGD), calls for a largest collection of edge dis-
joint cycles in a suitably-defined graph. It has been shown that for almost all instances
SBR is equivalent to BGD, in the sense that any solution of the latter corresponds to a
solution of the former having the same value. In this paper, we show how to improve the
approximation ratio achievable in polynomial time for BGD, from the previously known
% to % + ¢ for any € > 0. Combined with the results in [6], this yields the same approx-
imation guarantee for n! — O ((n — 5)!) out of the n! instances of SBR on permutations
with n elements. Our result uses the best known approximation algorithms for Stable Set
on graphs with maximum degree 4 as well as for Set Packing where the maximum size
of a set is 6. Any improvement in the ratio achieved by these approximation algorithms
will yield an automatic improvement of our result.

Key words: sorting by reversals, breakpoint graph, alternating cycle decomposition, set
packing, stable set, approximation algorithm.

1 Introduction

Sorting by Reversals (SBR) is one of the most widely studied models of genome rearrange-
ments in computational molecular biology, and is defined as follows. Let 7 = (m ... m,)
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be a permutation of {1,...,n}. A reversal of the interval (4, j) is an inversion of the subse-
quence 7; ... 7; of m, yielding permutation (7 ... m_1 Tj Tj_1 ... Wip1 T Wjgl-.. Tp).
SBR calls for a shortest sequence of reversals transforming 7 into the identity permutation
(12 ... n—1n). The length of such a sequence is denoted by d.

A problem very closely related to SBR is the following Breakpoint Graph Decomposition
(BGD). A breakpoint graph [1] G = (V, E) is one in which:

e the edge set F is partitioned into subsets B of black edges and Y of grey edges (G is
“bicolored”);

e there are no parallel edges (G is “simple”);

e cach node of G is either isolated, or incident with one black and one grey edge, or
incident with two black and two grey edges (G is “balanced” and A(G) < 4);

e there is no monochromatic cycle, i.e. no cycle is fully contained in B or Y;

where A(G) denotes the maximum degree of a node of G. Let bg = |B|(= |Y]). An
alternating cycle of G is a cycle of even length whose edges are alternately black and grey,
possibly visiting some nodes twice, but visiting each edge at most once. BGD calls for the
maximum number of edge-disjoint alternating cycles of G, denoted by cg. More precisely, the
objective is to minimize bg — ¢*, where ¢* is the number of alternating cycles in the solution,
and the optimal solution value is bg — cg. In the following, we will refer to alternating cycles
by calling them simply cycles.

In [1] it is shown that, given a permutation 7, one can define a breakpoint graph G(m) such
that dr > bg(r) — cq(r)- In particular, G(7) = (V, BUY) is defined as follows. Add to 7 the
elements 7y := 0 and 7,41 := n+1, re-defining 7 := (0 71 ... 1, n+1). Also, let the inverse
permutation 7' of m be defined by 7T7E-1 =i4fori=0,...,n+ 1. Let V:={0,...,n+ 1},
where each node v € V represents an element of . Black edge set B is given by the pairs
i, Tit1, for all ¢ € {0,...,n} such that |m; — m41| # 1, i.e. elements which are in consecutive
positions in 7 but not in the identity permutation. Such a pair m;, ;11 is called a breakpoint
of m. Moreover, gray edge set Y is given by the pairs 4,7 + 1, for all s € {0,...,n} such that
w7t — 7TZ~_+11| # 1, i.e. elements which are in consecutive positions in the identity permutation
but not in 7. It is easy to check that G(m) is a breakpoint graph according to the definition
above. (On the other hand, [5] shows that any breakpoint graph is isomorphic to G() for
some permutation 7.) In order to show that d; > bg(r) — cg(r), the key observation is that
for the identity permutation ¢, d, = 0 and bg(,) — cg(,) = 0, and that, in the “best case”, a
reversal applied on 7 yields a permutation o such that bg(,) —cg(s) = bg(r) — cG(r) —1 (more
precisely, in the “best case” the reversal either removes a cycle of length 4 or transforms a
cycle of length 2k, k£ > 3, into a cycle of length 2(k — 1)). For a formal proof, see [1].

For short, we will omit subscripts in the following and simply use the notation d, b, and
c. Even if in the worst case d may be as large as 3(b — ¢) (but not more) [5], the extensive
computational results carried out in [11, 7] as well as the probabilistic analysis of [6] showed
that d = b — ¢ in almost all cases, namely with probability 1 — @(%) for a uniformly random
permutation of n elements. More precisely, given a BGD solution of value b — ¢, in almost
all cases one can immediately derive an SBR solution of the same value. This motivates the
study of BGD itself, which has the advantage of being simpler than SBR in many respects.



In particular, in the study of BGD one does not have to deal with complex combinatorial
objects called hurdles [9], that typically make results for SBR much harder to prove than
their counterparts for BGD.

At present, the best known approximation ratio achievable for both SBR and BGD is
3, due to Christie [8]. One may wonder whether this ratio is the best possible. In [4],
Berman and Karpinski showed that the two problems are APX-hard, namely they cannot
be approximated within a ratio better than 1.0008 in polynomial time unless P=NP, and
posed as a challenging question the improvement of either the 1.0008 lower bound or the
% upper bound. In this paper, we improve the approximation ratio achievable for BGD,
showing how to get a % + ¢ approximation for any ¢ > 0. This proves that the % ratio is
not the best possible, at least for BGD. Moreover, our result makes use of the best known
approximation algorithms for Stable Set on graphs with maximum degree 4 as well as for Set
Packing where the maximum size of a set is 6, and any improvement in the ratio achieved by

these approximation algorithms will yield an automatic improvement of our result.

2 The main scheme

Consider an optimal BGD solution and let co; denote the number of corresponding cycles of
length 2k for k = 2,3,.... Note that b = 2¢c4 + 3¢ + 4cg + ... > 2¢, and assume without loss
of generality b > 1, as BGD is trivial when F = () (this happens if and only if the input 7 to
SBR is the identity permutation). The results in [4] imply that finding a largest collection of
cycles of length 4 (and also of length < 2k for any given k > 2) is APX-hard.

Our approximation algorithm is based on efficiently finding two collections of edge-disjoint
cycles, one containing at least acs cycles (of length 4) and the other containing at least
B(cs + cg) cycles (of length < 6). Therefore, the final objective value for BGD is b — c*,
where ¢* > max{acy, B(cs + ¢6)}. Before our work, the best known guarantees achievable in
polynomial time for o and 3 were % (see [8]) and £ — ¢ for any € > 0 (see [10]), respectively.
It is known and it will be clear from the discussion below that the bottleneck in order to
improve on the % approximation for BGD is the value % for . Accordingly, most of the paper
will be devoted to the illustration of an improvement on this value. In particular, we will
show that the problem of finding a largest collection of cycles of length 4 in G can be stated
as the problem of finding a largest stable set in a suitable graph G* with A(G*) < 4. Hence,
we will be able to push a up to % — ¢ for any € > 0, which is the best known approximation
guarantee for this version of Stable Set [3]. In particular, this guarantee is m — ¢ for
any value of A(G*). Here is a formal statement of the result that we will prove in the next
section.

Lemma 2.1 The problem of finding a largest collection of edge disjoint cycles of length 4 in
a breakpoint graph G can be reduced to a Stable Set problem on a graph G* with A(G*) < 4,
for which the currently best known ratio achievable in polynomial time is % —¢€ for any e > 0.

We did not succeed in improving the % — ¢ value for 8. The same approach used to
improve the value of o seems useless for this purpose. In particular, this approach considers
only cycles of length 4 along with the fact that every such cycle may share an edge with not
too many (at most 6, as shown in the next section) cycles of length 4. When also cycles of



length 6 are considered, it is easy to realize that such a cycle may share an edge with up to
18 other cycles of length 6.

The approximation ratio of % — ¢ is achieved by using a general technique to approximate
the following problem, called p-Set Packing. The well known Set Packing problem is defined
by a ground set F' and a collection Si,...,S, of subsets of F.. Two subsets S; and S; are
called independent if S; N S; = 0, and the objective is to find a largest subcollection of
pairwise independent subsets. If the cardinality of each subset in the collection is bounded
by a constant p, the problem is called p-Set Packing. Hurkens and Schrijver [10] described a
local search scheme for p-Set Packing that achieves an approximation ratio of 2 — ¢ for any
€ > 0. Clearly, the problem of finding a largest collection of cycles of G of length at most
6 can be formulated as a 6-Set Packing problem where F' = E and the collection of subsets
corresponds to all cycles of length < 6. To formalize this discussion, we state the following

Lemma 2.2 The problem of finding a largest collection of edge disjoint cycles of length < 6
in G can be formulated as a 6-Set Packing problem, for which the currently best known ratio
achievable in polynomial time s % —¢ for any € > 0.

The next result illustrates the approximation ratio that is achieved by the BGD solution
depending on the values of « and . In particular, one should compare the heuristic solution
value b — c¢*, where ¢* > max{acs,S(cs + cg)}, and the optimal solution value b — c. We
note that, generalizing Lemma 2.2 in a straightforward way, we may also obtain a number of
cycles at least equal to %(04 +cg+...+cop) —e forany e >0 and k =4,6,..., but this does
not help in improving the approximation guarantee.

Lemma 2.3 Let ¢* > max{acy, B(ca + cg)}, where 0 < B < a < 1. Then,

b—c* x{é2— 3—-p 3a—ﬁ—aﬁ}
b—c = T T T oa—p [

Proof: We prove the claim by solving the optimization problem

max 0 ¢ @)
subject to
c > ¢4 + cg, (3)
CSC4+CG+I)_QC%%366> (4)
¢* > max{acy, Bcs + cs)}, (5)
b>1, (6)
c4,c6 > 0. (7)

Constraint (4) follows from the fact that every cycle of length > 8 contains at least 4 black
(and grey) edges. The integrality of the variables does not have to be imposed explicitly, as
any rational solution can be scaled by a suitable factor so as to obtain an integer solution of
the same value (below we will show that we can restrict our attention to rational solutions).



Note first that ¢ appears at the denominator of the objective function (2) with negative
coefficient and is bounded by (3) and (4), therefore the maximum is attained when ¢ takes
its maximum value, i.e. when (4) is satisfied at equality. This allows us to remove variable ¢
along with (4), replace (3) by

b > 2c4 + 3cs, (8)

and write the new objective function

b—c*
max 3, 1. 1_ - (9)
2b — 5C4 — 7Cp
1’72 1
Of course, the maximum is attained when (5) is satisfied at equality. We consider separately
the two cases ¢* = acy and ¢* = B(cq + cg).
In the first case, acy > B(cs + cg). The problem can therefore be rewritten as (9) subject

to
acy > B(es + cs) (10)
b > 2¢q + 3cq (11)
b>1 (12)
cg > 0. (13)

In particular, the non-negativity of ¢4 is implied by (10) and the fact that o > . This is a
fractional linear programming problem, which is the generalization of a linear programming
problem in which the objective function is the ratio of two linear functions. It is well known
that, provided the objective function is bounded in the feasible region F', the maximum is
attained in an extreme point of F'. Note that in our case the objective function is bounded
both from below and from above.

The extreme points are found by imposing equality in three out of the four inequality
constraints. We consider separately the 4 cases, indicating the inequality that is not tight for
each of them.

(10) is not tight: We have ¢ =0, b=1 and ¢4 = %, and the objective value is

2 —a. (14)

(11) is not tight: We have ¢4 = ¢¢ = 0 and b = 1, and the objective value is

4
. (15)

(12) is not tight: We would have b = ¢4 = ¢g = 0, which is clearly infeasible.

(13) is not tight: We have b =1, ¢4 = a’%ﬁcﬁ and cg = %, le. ¢y = ﬁ, and the

objective value is

1_3353 _da—p—af

3 8 a—f _
17 2BaB)  1Bap) 20— f8

(16)




We now consider the case ¢* = (cq + ¢6), implying acy < B(cs + ¢). The problem can
be rewritten as (9) subject to

acy < B(ca + cg) (17)
b > 2c4 + 3cg (18)
b>1 (19)

¢y > 0. (20)

In particular, the non-negativity of cg is implied by (17) and the fact that o > . In this
case, the extreme points correspond to the following cases:

(17) is not tight: We have ¢4 =0, b=1 and ¢s = %, and the objective value is

#. (21)

(18) is not tight: We have ¢4 = ¢ = 0 and b = 1, and the objective value is as in (15).

(19) is not tight: We would have b = ¢4 = ¢g = 0, which is clearly infeasible.

(20) is not tight: We have b=1, ¢4 = a’%ﬁcﬁ and ¢g = %, and the objective value is
as in (16).
The proof then follows from (14), (15), (16), and (21). O

As a consequence of Lemmas 2.1, 2.2 and 2.3, we have the improved approximation for BGD,
obtained by plugging in the values of @ and 8 in (1).

Theorem 2.4 There is a polynomial time % + e-approximation algorithm for BGD, for any
€>0.

By random permutation we mean a permutation 7 drawn uniformly at random among the
permutations on n elements. In [6] it is shown that, given a random permutation 7 and a
solution of the associated BGD instance of value b— ¢, one can derive for SBR on 7 a solution
of value not larger than b — ¢ with probability 1 — O(Elg) (actually this probability depends
only on 7 and not on the BGD solution). Combined with the theorem above, this implies

Theorem 2.5 There is a polynomial time algorithm that, given a random permutation m,
returns a %—I—s—approzimated solution for SBR on w, for any € > 0, with probability 1—0(;15).

3 Cycles of length 4 and stable sets: Proof of Lemma 2.1

In this section we prove Lemma 2.1. We will only consider (alternating) cycles of length 4,
called C4’s for short. In many points in our proofs we will exclude the presence of monochro-
matic cycles, also called black or grey cycles depending on the color of their edges.

Let G* be the C4-intersection graph of G, defined as the graph having one node for each
C4 of G and one edge connecting each pair of C4’s that share an edge in G. The problem
of finding a largest collection of edge disjoint C4’s in G is clearly equivalent to the problem
of finding a stable set of maximum cardinality in G*. We will propose simple reductions for



this second problem, in case G* has a node of degree > 5. The effect will be to transform
the problem of finding a largest collection of edge disjoint C4’s into a stable set problem in
a graph G* with A(G*) < 4, proving the lemma.

We say that two edges of G are independent if they have no common endpoint. The fact
that G is simple implies

Fact 3.1 Let e and f be two edges contained in a same C4. Then e and f are independent
if and only if they have the same color.

Fact 3.2 Two C}’s can share at most two edges. Moreover, if they share two edges then
these two edges have different colors.

Proof: Let C7 and Cs be two C4’s. If C; and Cs have at least three edges in common then
C1 = (5 since G is simple. Let e and f be two edges contained both in C; and in Cy. By
Fact 3.1, if e and f have the same color then they are independent. Here, Cy = Cs follows
again since G has no monochromatic cycle. O

Fact 3.3 Fach edge belongs to at most three C4’s.

Proof: Let Cy,C;,Cy and C3 be four distinct C4’s using edge uv. We can assume that uv
is black, and that zu and yv are the two grey edges of Cy. By Fact 3.2, there must exist
two further grey edges zu and yv adjacent to wv and we can assume w.l.o.g. the following
scenario: zu,uv,vy € Cq, Tu,uv,vy € Co, and Tu,uv,vy € C3. But then G would contain a
black cycle, made up by the following 4 edges: zy from Cy, yz from Cs, Zy from Cs, and yz
from Cj. O

The next lemma shows that A(G*) < 6 and identifies those configurations in G that lead
to a node of degree 5 or 6 in G*. Since Stable Set on graphs with maximum degree 6 can
be approximated within % — ¢ for any ¢ > 0, by Lemma 2.3 this would already imply an

approximation of % + ¢ for BGD.

Lemma 3.4 No node of G* has degree more than 6. Moreover, to each node of degree 6
there corresponds the configuration given in Fig. 1. Ezcluding cases which are equivalent
by symmetry, to each node of degree 5 there corresponds one of the configurations given in
Figs. 2, 8, 4, and 5, called Type A, Type B, Type C and Type D configuration, respectively.

Proof: Let C be a node of G*, i.e. a C4 of G. Let ab and cd be the two grey edges of C' and
bc and da be the two black edges of C. Let  be the number C4’s of G sharing precisely one
edge with C. Let y be the number C4’s of G sharing precisely two edges with C.
Claim 1: z < 4. Indeed, assume z > 4. Let (7 and Cs be two C4’s containing a same
edge (w.l.o.g. ab) of C and such that C; and C5 share only edge ab with C. Since at most
two black edges are incident with every node of G, it follows that C; and Cy must have both
black edges in common. This is in contradiction with Fact 3.2. o
Assume A(G*) > 6, i.e. x +y > 7. By Fact 3.3, each edge of C belongs to at most two
C4’s other than C. Since C has four edges £ + 2y < 4-2 = 8. Combining the two inequalities
we get £ > 6, a contradiction.
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Figure 1: Configuration corresponding to a node of degree 6 in G*.

Next, let us consider the case in which C has degree 6, i.e. z + y = 6. Combining again
with z 4+ 2y < 8 we get y < 2 and z > 4. By the claim above, this implies £ = 4 and y = 2.
Let Cgp (resp. Cpe, Ceq and Cy,) be the C4 sharing precisely edge ab with C (resp. edges be, c¢d
and da). Let aap and bbg be the two black edges of Cy,. Even if in this way a same node can
be referred to by more than one name, we call bby and ccy the two grey edges of Cy., ccp
and ddp the two black edges of C.q4, ddy and aay the two grey edges of Cy,. Since y = 2, we
must now exhibit the two C4’s, say C; and Cs, having precisely two edges in common with
C. By Fact 3.2, we can assume w.l.o.g. that C; contains edges ab and bc. Again, by Fact 3.2,
this forces the edges of C; to be ab, bc, ccy and aap. Therefore, ¢y and ap are actually the
same node.

If C5 contains edges cd and da, then the remaining two edges of Cs are ccp and aay
and c¢p = ay. This case corresponds to the configuration given in Fig. 1, as stated by the
lemma. Note that nodes bp and dg can still coincide. The same holds for nodes by and
dy, even if the two pairs cannot coincide at the same time, otherwise G would contain a
monochromatic cycle. No two other nodes can coincide, since G is simple, with A(G) < 4
and no monochromatic cycle.

Otherwise, we can assume by symmetry that Co contains edges bc and cd. In this case,
the remaining two edges of Cy are bby and ddp and by = dg. But then G contains the black
cycle dpd, da,aap, cyby.

Finally, let us consider the case in which C' has degree 5, i.e. z +y = 5. Combining again
with z + 2y < 8, we get y <3 and = > 2.

Case 1: z =2 and y = 3. (Type A configuration, see Fig. 2.)
Let C; and C5 be the two C4’s with precisely one edge in common with C.

Assume first (' contains edge ab and Cy contains edge cd. We will show that this leads
to a contradiction. Even if a same node can receive several names, call aag and bbg the two
black edges of Ci, and ccg and ddp the two black edges of Cs. Since y = 3, we must now
exhibit the three C4’s having precisely two edges in common with C. By symmetry, we can
assume to have one which contains edges ab and bc and another which contains edges ab and
ad. By Fact 3.2, the first one contains edge aap and a grey edge with one endpoint in ap
and the other in ¢. The second one contains edge bbp and a grey edge with one endpoint in
bp and the other in d. But then G contains the grey cycle apc, cd,dbp,bpap.
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Figure 3: Type B configuration corresponding to a node of degree 5 in G*.

Assume now, by symmetry, that C contains edge ab and C5 contains edge bc. Even if
a same node can receive several names, call aap and bbp the two black edges of C7, and
bby and ccy the two grey edges of Cy. Since y = 3, we must now exhibit the three C4’s
having precisely two edges in common with C. By symmetry, we can assume that one of
these C4’s contains edges ab and ad, containing also edge bbp as well as a grey edge with one
endpoint in bp and the other in d. Note that none of these C4’s can contain both ab and bc,
since otherwise it would also contain edges aap and ccy, i.e. ap and ¢y would coincide, with
the consequence that G would contain the grey cycle dbp,bpap, cyc,cd. It follows that we
must also have a C4 containing edges bc and cd, and a C4 containing edges ad and dc. The
first one contains edge bby as well as a black edge with one endpoint in by and the other
in d. The second one contains a grey edge with an endpoint in g and a black edge with an
endpoint in ¢, and these two edges must have their other endpoint in common. Call z this
common endpoint. Hence, this case corresponds to the configuration given in Fig. 2. Note
that x cannot coincide with any of the other nodes seen so far. In fact, no two nodes of the
configuration in Fig. 2 can coincide, since G is simple, with A(G) < 4 and no monochromatic
cycle. o
Case 2: £ =3 and y = 2. (Type B and Type C configurations, see Figs. 3 and 4.)
By symmetry, we can assume that the three C4’s containing exactly one edge of C are Cyj,,
Cap and Ch,, sharing with C edges da, ab and bc respectively. Even if a same node can receive
several names, call ddy and aay the two grey edges of Cy,, aap and bbp the two black edges



of Cyp, bby and ccy the two grey edges of Cp.. Since y = 2, we must now exhibit the two
C4’s, say C1 and (9, having precisely two edges in common with C.

Assume first C contains the edges ab and bc. Then, by Fact 3.2, Cy contains edges aap
and ccy, and nodes ap and ¢y must coincide. Now, C5 cannot contain edges ab and ad since
otherwise bp and dy would coincide, and G would contain the grey cycle cyc, cd, ddy,bpap.
Moreover, C5 cannot contain edges bc and cd since otherwise Co would contain edge bby as
well as a black edge with one endpoint in by and the other in d. Again G would contain the
black cycle da,aap, cy by, byd. Hence, Cy contains the edges ad and dc. So, Cy contains edge
aay as well as a black edge with one endpoint in ay and the other in ¢. This case corresponds
to the configuration given in Fig. 3. Note that nodes by and dy can still coincide. No two
other nodes can coincide, since G is simple, with A(G) < 4 and no monochromatic cycle.

I I Ccy — bB
GYIMY .

dy d c Cy

Figure 4: Type C configuration corresponding to a node of degree 5 in G*.

Assume now, by symmetry, that C; contains edges ad and dc and Cs contains edges bc
and cd. So, C; contains edge aay as well as a black edge with one endpoint in ay and the
other in ¢. Moreover, Cy contains edge bby as well as a black edge with one endpoint in by
and the other in d. This case corresponds to the configuration given in Fig. 4. Note that
nodes cy and bp can still coincide, as well as nodes dy and ap, even if the two pairs cannot
coincide at the same time. No two other nodes can coincide, since G is simple, with A(G) < 4

and no monochromatic cycle. 0
ag (; | q
T bB |
ay bY |
a b |
-
d c / )
dy ty .
by — cp
dy — cp
dB(J—OCB dy — by

Figure 5: Type D configuration corresponding to a node of degree 5 in G*.

Case 3: £ =4 and y = 1. (Type D configuration, see Fig. 5.)
Let Cgp (resp. Chpe, Ceq and Cy,) be the C4’s sharing precisely edge ab with C (resp. edge
bc, cd and da). Even if a same node can receive several names, call aap and bbg the two black
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edges of Cyp, bby and ccy the two grey edges of Cy., ccp and ddp the two black edges of
C.q, ddy and aay the two grey edges of Cy,. Since y = 1, we must now exhibit a C4, say C,
having precisely two edges in common with C. We can assume w.l.o.g. that C contains edges
ab and be. This forces the edges of C to be ab, be, ccy and aap, i.e. ¢y and ap are actually
the same node. Hence, this corresponds to the configuration given in Fig. 5. We can also
identify one of the following pairs: ay and bp; ay and dp; by and cp; dy and cp; dy and by.
Note that we cannot identify ay and cp as we would get the degree 6 configuration in Fig. 1. O

Lemma 3.4 covers the cases in which G* contains a node of degree > 5. The remainder of
this section is devoted to proving that G* can be modified so as to remove all such nodes and
find a stable set on a graph G* with A(é*) < 4. Before analyzing the various cases in detail,
we give an overview of the overall reduction procedure in Fig. 6. Let «(G) denote the size
of a maximum stable set of a graph G. The correctness of the procedure will be discussed in
Subsection 3.3.

3.1 Degree 6 configurations

In this subsection, we show how to get rid of the nodes of degree 6 in G* by proving that a
certain set of neighbors of a degree 6 node in G* is contained in some optimal stable set of
G*. This allows one to remove from G* this set of nodes, and address a reduced problem on a
graph G* with A(G*) < 5. Note that, after the removal of a node C in G* and its neighbors,
G* is still the C4-intersection graph of a breakpoint graph, namely the breakpoint graph
obtained from G by deleting all edges contained in C. This is formalized by the following

Fact 3.5 The graph obtained from a breakpoint graph by remowving the edges in a CJ is a
breakpoint graph as well.

Accordingly, the above reduction on G* has an immediate counterpart on GG, and one can
operate on a reduced breakpoint graph in which each C4 intersects at most five C4’s.

Due to Lemma 2.3 and the results in [2], limiting the degree of G* to 5 already yields an
approximation of % + ¢ for BGD, for any ¢ > 0.

Let H be the graph given in Fig. 7. Let H be the subgraph of H induced by the nodes in
V(H)\ {Cs,Cy4}. One can easily check that all nodes in V(H) = V(H) \ {Cy, Cy4} correspond
to C4’s actually present in the configuration given in Fig. 1 and viceversa, and that G*

contains H as an induced subgraph. We have the following.

Lemma 3.6 Assume G* contains a node of degree 6. Correspondingly, G* contains H as
an induced subgraph. Then there exists a mazimum stable set of G* which includes the nodes

Cardyddg > Cobybbg» Cdrade and Chcpa-

Proof: Note first that the four nodes Cy 4y ddy, Cioybbg> Carade @30d Chyepe form a stable set
in H and hence in G*. To prove the lemma, we will show that four is the size of a largest
stable set in the graph [H], which is defined as the subgraph of G* induced by the nodes of
H and their neighbors. To this end, we will first examine these possible neighbors.

Let C be a C4 of G which is not a node of H. Since the degree of Cypeq is 6, C cannot
contain any of the edges ab, bc, cd or da. Moreover, C cannot contain any of the edges ad/,
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algorithm Reduction
input: a graph G™* associated with a breakpoint graph G;
output: a graph G and a subset R of the nodes of G* such that:
o a(G") =|R|+a(G");
e given any stable set S of G*, one can derive in linear time a stable set S of G* such that
S| = |R| +|S];
begin
G =G*;G:=G; R:=0;
comment G is a breakpoint graph whose C4-intersection graph is G* until the for each loop;

while G* contains a node C of degree 6 do

add to R three suitable nodes in the configuration, remove these nodes and their neighbors
(including C) from G* (cf. Lemma 3.6) and modify G accordingly (cf. Fact 3.5);

end while;
while G* contains a node C of degree 5 in a Type A configuration do

remove C and another suitable node in the configuration from G* (cf. Lemma 3.8) and modify
G accoringly (cf. Fact 3.7 and Lemma 3.9);

end while;

while G* contains a node C of degree 5 in a Type B configuration do

add to R a suitable node in the configuration, remove this node and its neighbors (including C)
from G* (cf. Lemma 3.10) and modify G accordingly (cf. Fact 3.5);

end while;

while G* contains a node C of degree 5 in a Type C configuration with no neighbor of degree 5 do
remove C from G* (cf. Lemma 3.11) and modify G accordingly (cf. Fact 3.7 and Lemma, 3.12);

end while;

while G* contains a node C of degree 5 in a Type D configuration do

remove C from G* (cf. Lemma 3.14) and modify G accordingly (cf. Fact 3.7 and Lemma 3.15);

end while;

for each pair of adjacent nodes C,C" of degree 5 in a Type C configuration of G* do
remove from G* the edge connecting C' and C’ (cf. Lemma 3.13);

end for each;

end.

Figure 6: Outline of the reduction procedure.
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Figure 7: Degree 6 configuration in G*.

cd', ab' or cb' either. Indeed, by symmetry, assume C contains edge ad’. Since C does not
contain ad, then it contains ab'. If the other black edge of C is d'c, then C' = Cyapre, ie. C
is a node of H. If the other black edge of C is d'dy, then C contains a grey edge with one
endpoint in b’ and the other in dy. But then G contains the grey cycle dyd, dc, cb',b'dy and
we have a contradiction.

Consider now the case in which C' contains one of the edges ddy,ddB,bby or bbB By
symmetry, assume that C contains edge ddy. Since da ¢ C then ddg € C. If dyd' € C then
C = Cddy ddg, i-€. C is a node of H. Hence, C contains a black edge with an endpoint in dy
and a grey edge with an endpoint in dg. These two edges must have their other endpoint
in common. Note that C is adjacent to the following nodes in G*: Cocddg, Caddyar and
Cadydds- Hence, C corresponds to node Cy in Fig. 7. Analogously, if C contains edge bby,
then it corresponds to node Cp in Fig. 7.

Consider now the case in which C contains one of the edges d'dy,d'dg, by or b'bg. By
symmetry, assume that C contains edge b'by. As already seen above, C cannot contain edge
Ye. So, b'bg € C. Now, if C # Cypybby, then C does not contain bgb or byb. Hence,
C contains a black edge with an endpoint in bg and a grey edge with an endpoint in by
These two edges must have their other endpoint in common. Note that C is adjacent to the
following nodes in G*: Cieprpy s Capbgty and Cypypp,- Hence, C corresponds to node Cj in
Fig. 7. Analogously, if C contains edge d'dy, then it corresponds to node Cj in Fig. 7.

By the discussion above, the possible neighbors in V(G) \ V(H) for the nodes in H are
Cp and Cy depicted in Fig. 7. It is well known that the size of a stable set in a graph is at
most k if there exists a set of cliques @1, ..., Q% such that each node is contained in one of
these cliques. Let X be a stable set of [H] with | X| = 5.

If Caped € X, then X \ {Cupeq} is a size 4 stable set in the graph obtained from [H] by
removing Cgp.q and all of its neighbors. However, the nodes of this graph are all covered by
the three cliques: Q1 = {Cyarc}; Q2 = {Cadyddg,Ca} (or simply Q2 = {Cyayday} if Cq is
not present in G*); Qs = {Cypypby, Co} (or simply Qs = {Cybyis } if Cp is not present in
G*).
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Otherwise, if Cypg ¢ X, then X is a size 5 stable set in the graph obtained from [H]
by removing Cgpeq. However, the nodes of this graph are all covered by the four cliques:
Q1 = {Caade; Caddy d'> Caravr e} Q2 = {Cvcbar Cavbptr }; @3 = {Cacardp> Cardydap, Ca} (simply
Q3 = {Cacardp, Cadydds} if Ca is not present in G*); Qs = {Chetrby s Cirby bby> Cb} (simply
Q1 = {Chrev'by » Chby by } if Cp is not present in G*). O

3.2 Degree 5 configurations

In the previous subsection, we saw how to get rid of degree 6 nodes in G*. Here we will do
the same for the nodes of degree 5. In the previous subsection, this was based on showing
that a certain set of nodes S of G* was contained in a maximum stable of G*. Fact 3.5
stresses that this actually leads to a new breakpoint graph. With degree 5 nodes we will
in most cases show the existence of a maximum stable set of G* which does not contain
certain nodes. Accordingly, we will exhibit some operations for G, which are counterparts
of the reductions shown in G* for the maximum stable set problem, and on the other hand
transform G into a new breakpoint graph. In almost all cases this will be based on showing
that removing some nodes in G* not contained in every maximum stable set corresponds to
splitting a degree 4 node in the original breakpoint graph G, as illustrated in the following.
Given a breakpoint graph, the splitting of a node w incident with black edges wupg,wvp and
grey edges wuy,wvy corresponds to replacing w by two nodes w’ and w” and the associated
edges by w'up,w"vp and either w'uy,w"vy or w"uy,w'vy. We will say that two edges are
separated by the splitting if their counterparts after the splitting are independent. We have
the following

Fact 3.7 The graph obtained from a breakpoint graph by splitting a node is a breakpoint graph
as well.

Consider a node of degree 5 in G*. By Lemma 3.4, G contains one of the configurations given
in Figs. 2, 3, 4, and 5. In G*, these correspond to the configurations given in Figs. 8, 9, 10,
11, 13. In the next subsections, we will consider these configurations one by one.

3.2.1 Type A configuration

Fig. 2 illustrates a degree 5 configuration of Type A in G, while Fig. 8 illustrates the same
configuration in G*. Let H be the graph given in Fig. 8. Let H be the subgraph of H induced
by the nodes in V (H)\ {C}. One can easily check that all nodes in V (H) correspond to C4’s
actually present in the configurations given in Fig. 2 and viceversa, and that G* contains
graph H as an induced subgraph.

Lemma 3.8 Assume G contains the configuration shown in Fig. 2. Correspondingly, G*
contains the graph H as an induced subgraph. Then, there exists a mazimum stable set X of
G* ’w’l,th Cabcd, CbdebY ¢ X.

Proof: We first show that if a node C in V(G*)\ V (H) is adjacent to Cheap, or Cheapy , then
the following happens:
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Figure 8: Type A degree 5 configuration in G*.

(i) é is adjacent to Cbade, Cbcdby and Cbdeby;
(ii) no node in V(G*) \ V(H) \ C is adjacent to Chagp, O Chegpy -

Indeed, assume by symmetry that C is adjacent to Chpagp,- Since Cypeq is a node of degree 5
of G*, C cannot contain any of the edges ab, bc, cd or da.

Assume bbp € C. Since ab ¢ C, then bby € C. So, if bgd € C, then C = Chp,ap, -
Otherwise, if bgap € C, then C contains a black edge with one endpoint in ap and the other
in by. But then G contains the black cycle apa,ad, dby,byap.

Assume therefore bbp ¢ C' and hence dbp € C. Since da ¢ C, then dby € C. If bby € C,
then C = Chbpdby - Hence, C contains a grey edge with an endpoint in by and a black edge
with an endpoint in bg. These two edges must have their other endpoint in common. In
this case, Cis adjacent to Chadbg, Chedby, and Chpydpy- Since this was the only remaining
possibility for C, we have proved the claim above.

Consider a maximum stable set X of G*. The following arguments apply both if G* con-
tains a node C as considered above or not. If Cypeqs Chozdby € X, then X U{Chagbg> Chedby |\
{Cuabed, Cobpdby } 1 @ maximum stable set of G* with Coped, Coppaby ¢ X. Assume Cgpeg € X
and Cpppap, ¢ X. In this case, C € X since otherwise X U {Chadbg s Cbedvy } \ {Cabea} would
be a larger stable set. Therefore, X U {Chaaby,Chedby } \ {Cabed, C} is a maximum stable
set of G* with Cuped; Chppary ¢ X. Finally, assume Cupeq ¢ X and Chpyap, € X. In this
case, Cgaze € X since otherwise X U {Chadby, Coedby } \ {Chbpap, } Would be a larger stable
set. Therefore, X U {Chadby, Cocdby } \ {Cobpdby » Cdazc} 1S a maximum stable set of G* with
Cabed> Covpdoy & X- o

Note that if cycle C in the above proof is present, nodes Chpugap and Chpedp, are degree
5 nodes of Type A, but after the removal of Cyp.q, both these nodes have degree 4. Hence,
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Figure 9: Type B degree 5 configuration in G*.

the above lemma, does not imply that all degree 5 nodes of Type A can be removed from
G*, but only that an arbitrarily chosen such node can be removed: Applying this argument
iteratively, one gets rid of all the degree 5 nodes of Type A either by removing them or by
decreasing their degree.

The following observation shows how to modify G according to Lemma 3.8.

Lemma 3.9 Let é~be the breakpoint graph obtained from G by splitting node b as to separate
ab from bc. Then G* is the graph obtained from G* by removing the two nodes Cypeq and

Chrbpdby -

Proof: Clearly, H* is an induced subgraph of G*. The C4’s that are removed by splitting b
as above are either of the form C— with ab,bc € C—, or of the form C,— with bgb, bby €
abc abe bbby
brbby "
If C’gb\c contains the edge ad, then Cgb\c = Clybed, Whereas, if C;b\c contains the edge aap,
then G contains a grey edge apc and hence the grey cycle apc, cd,dbp,bpap. Moreover, if
C,— contains the edge bpd, then Cb,;ﬁy = Chbpdby , Whereas, if C'b;@y contains the edge

brbb
bBZB?’then G contains a black edge apby and hence the black cycle apby,byd,da,aap. O

3.2.2 Type B configuration

Fig. 3 illustrates a degree 5_c0nﬁguration of Type B in G, while Fig. 9 illustrates the same
configuration in G*. Let H be the graph given in Fig. 9. One can easily check that all

nodes in V(H) correspond to C4’s actually present in the configuration given in Fig. 3 and
viceversa, and that G* contains graph H as an induced subgraph.
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Lemma 3.10 A_ssume G contains the configuration shown in Fig. 9. Correspondingly, G*
contains graph H as an induced subgraph. Then, there exists a mazimum stable set of G*
containing Coy adc-

Proof: We first show that no node in V(G*) \ V(H) is adjacent to Coyade 0F Cyape- Let
C be a node in V(G*) \ V(H) adjacent to Cayade- Since Cypeq is a node of degree 5 of G*,
then C cannot contain any of the edges ab, bc, cd or da. Assume aay € C. Since ad ¢ C,
then aq € C. So, if gc € C, then C = Caycqa- Otherwise, gbp € C and C contains a black
edge with one endpoint in bp and the other in ay. This is not possible as there are already
two black edges incident with ay and neither dy nor ¢ can coincide with bg. Now, assume
ayce C, implying gc € C.IfqaeC, again we have C = Cay cqa- Otherwise, gby € C and C
contains a grey edge with one endpoint in by and the other in ay. But then G contains the
grey cycle aya,ab, by, byay. Hence, no node in V(G*) \ V( H) is adjacent to Cay ade-

Now, let C be a node in V(G*) \V(H) adjacent to Cyqpc. Note that C is neither adjacent
to Cgped nOr t0 Cyygde- Assume ag € C. Since ab ¢ C and aay ¢ C, we immediately have a
contradiction. Similarly, assuming gc € C, we have a contradiction as bc ¢ C and ayc ¢ C.
Hence, no node in V(G*) \ V(H) is adjacent to Cygpe-

Consider a maximum stable set X of G* with Cyp04c ¢ X. If Cpep, € X, then
Cabeds Caycqa ¢ X. Hence, X U{Cy, adc} \ {Caddy ay } 1S @ maximum stable set of G* contain-
ing Cqyqde- Assume therefore Cpegp,, ¢ X. Note that X contains at most one node out of
Cay cqar Cayades Caddy oy and at most one node out of Cyped, Capppgr Cyabe, since these nodes
induce triangles. Therefore, X U {Cay adc; Cqabc} \ {Cay cqa> Caddy ay » Cabed> Cabbpq} 18 @ maxi-
mum stable set of G* containing Cy, 44c- O

3.2.3 Type C configuration

Fig. 4 illustrates a degree 5 configuration of Type C in G, while Figs. 10 and 11 illustrate
the same configuration in G*. Let H be the graph given in Fig. 10. Let H be the subgraph
of H induced by the nodes in V(H) \ {Chbycytz, Coyddy x> Cayceyy> Caydyzy}- This is also a
subgraph of the graph in Fig. 11. One can easily check that all nodes in V (H) correspond to
C4’s actually present in the configuration given in Fig. 4 and viceversa, and that G* contains
graph H as an induced subgraph.

Lemma 3.11 4ssume G contains the configuration shown in Fig. 4. Correspondingly, G*
contains graph H as an induced subgraph. Moreover, assume no neighbor of Cupeq in G* has
degree 5. Then there exists a mazimum stable set X of G* with Cgpeq ¢ X .

Proof: Excluding cases which are equivalent by symmetry, one of the cases considered in
the following must occur.
Case 1: Either no node in V(G*) \ V(H) is adjacent to Cyay ¢, OF no node in V(G*) \ V(H)
is adjacent to Chpy dc- Let X be a maximum stable set of G* containing Cypcq and assume, by
symmetry, that no node in V(G*)\ V(H) is adjacent to Cpqy cq- Then, X U{Cuay ca} \ {Cabcd}
is a maximum stable set of G* which does not contain Cyp.y. This completes Case 1. o
From now on, we will assume that Case 1 does not occur and hence both Cy4, cq and
Chby dc have neighbors in V(G*) \ V(H). Let C be a node in V(G*) \ V(H) adjacent to
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Figure 10: Type C degree 5 configuration in G* (first case).

Cuaaycd- Since Cypeq is a node of degree 5 of G¥, C cannot contain any of the edges ab, bc, cd
or da.

Assume aay € C. Since ad =4 é, then aap € C. So, if aydy € C‘, then C contains a grey
edge with one endpoint in dy and the other in ap, i.e. C = Caaydyay- Otherwise, ayc € C’,
and C contains a grey edge with one endpoint in ¢ and the other in ap. This is not possible
as there are already two grey edges incident with ¢ and neither ¢y nor d can coincide with
ap.

Now assume ayc € C and aay & C. Then, ccy € C. If cyby € C’, then C would contain
a grey edge ayby and G would contain the grey cycle aya,ab,bby,byay. Hence, C must
contain a black edge cyy and a grey edge yay for some node y, which may be a new node
or it may coincide with bp (coincidence with other nodes is easily excluded). In this case,
C= Cayccyy' _

Summarizing, the two possible nodes in V(G*) \ V(H) adjacent to Cyqycq are Coaydyag
and Cgyceyy- Symmetrically, the two possible nodes adjacent to Chyp, 4. are Chpy ey, and
Chy ddy « for some node z which may be a new node or it may coincide with ap. Note that  and
y cannot coincide because otherwise G would contain the grey cycle aya,ab, bby,byx, xay.
If G contains neither a grey edge apdy nor a grey edge bpcy, we get Case 2 below.

Case 2: (G contains neither grey edge apdy nor grey edge bpcy, and there are the following
two nodes in V(G*)\ V(H): Cuy ceyy, adjacent to Cogy e and Chpy ey e, and Chy ady 5, adjacent
t0 Cpy de and Clqy dy-q- In this case, we next show that either no other node in V(G*)\ V(H)
besides Cpy 44y ¢ is adjacent to Cuqy 4y a, OF a cycle Cyy 4, .y is present, where node z maybe
new or coincide with bp or z. Indeed, a new cycle C adjacent to Cgqy dyd cannot contain
edge aay (otherwise it would be adjacent to Cyq, ) nor edge ad (Cypeq has degree 5) nor
edge dyd (otherwise it would be adjacent to Chpy 4.). Hence, C must contain both aydy and
ayy. Symmetrically, either there is no other node in V/(G*)\ V(H) besides Cyy cc,y adjacent
t0 Chhy ey e, Or cycle Chy ey to 18 present, where node ¢ maybe new or coincide with ap or y.
This situation, considering the possible presence of nodes Cy 4y zy and Cpy ¢y 1y is illustrated
in Fig. 10. Let X be a maximum stable set of G* containing Cyp.q- Then, X contains at most
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Figure 11: Type C degree 5 configuration in G* (second case).

one of the two nodes Cpy g4y 7z and Cpy ¢yt and at most one of the two nodes Cyy ceyy and
Cay dy zy- Moreover, X contains no neighbor of Cyp.q. Hence, X contains at most three of the
nodes displayed in Fig. 10. Note that, however chosen a node C; € {Chy ddy 2, Chycytz} and
a node Cy € {Cayceyy> Caydyzy}, there exists a node in {Chpy ey ey Cby des Caay cd> Caay dyd}
which is neither adjacent to Ci nor to Cy. Hence, there exists a maximum stable set of G*
not containing Cypeq. This completes Case 2. o
From now on, we will assume that Case 2 does not occur and hence that G contains
either a grey edge apdy or a grey edge bpcy. Note that these two edges cannot be present at
the same time, for otherwise G would contain the grey cycle dyd,dc, ccy,cybp,bpap,apdy.
Assume therefore, by symmetry, that G contains edge apdy. This implies the presence of
cycle Cogy dyap, adjacent to Cpgy cq- Since we are assuming that also Cpp, 4. has a neighbor
in V(G*) \ V(H) (otherwise we would be in Case 1), G must contain edges dyz and zby,
yielding cycle Cy,, 44, - Note that edges yay and cyy may or may not be present, yielding in
the first case Case 4 and in the second Case 3. The situation is illustrated in Fig. 11, where
node Cgy ceyy is present only in Case 4.
Case 3: G contains a grey edge apdy and the only node in V(G*)\ V(H) adjacent to Cyay cd
is Caaydyap- Let X be a maximum stable set of G* containing Cyped- If Chpy ey e has no
neighbor in V(G*) \ V(H), then the set of neighbors of Chy, cyc is a subset of the neighbors
of Cgpeg- Therefore, X U {Chpycyc} \ {Cabed} is @ maximum stable set of G* not containing
Cabeq- Otherwise, let C' be a node in V(G*) \ V(H) adjacent to Cppycyc. The arguments
above exclude the presence in C of edges bc, bby (C‘ would contain edge bgcy ), and ccy (C’
would contain either edge bc or ayc, being adjacent to Cyqycq in the latter case). Hence
C= Chy ¢yt for some node ¢. Note that C is also adjacent to Cpy g4y - If X does not contain
Chycytz, then the above considerations apply. Otherwise, X does not contain Cj, 44, , and
X U{Crbydc} \ {Cabed} is a maximum stable set of G* not containing Cgpeq. This completes
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Case 3. o
Case 4: @ contains grey edge apdy as well as black edges dy zx, cyy and grey edges zby, yay,
where £ may be a new vertex or it may coincide with bg and y may be a new vertex or it may
coincide with apg. In this case, Cy4, cq has degree 5, contradicting the second assumption in
the lemma. O

The following observation shows how to modify G according to Lemma 3.11 in case there
exists a maximum stable set X of G* with Cypq ¢ X.

Lemma 3.12 There ezists a breakpoint graph G, obtained from G by suitably splitting node
a or node b, whose C4-intersection graph G* is the graph obtained from G* by removing the
node Cuped-

Proof: Consider a C4 C which is removed by splitting node a as to separate ab from ad.
Then, either C contains both ab and ad, or C contains both aap and aay. If ab,ad € C,
then either dc € C and C = Clbed, Or ddy € C and C contains a black edge dyb, implying
the existence of a black cycle bc, cay,aydy,dyb. If aap,aay € C , then either ayc € C and
C contains a grey edge agc, which is not possible as ap cannot coincide with d or ¢y, or
aydy € C and C contains a grey edge apdy. To summarize, if there does not exist a splitting
of node a with the properties stated in the lemma, then there exists in G a grey edge with
an endpoint in ap and the other in ¢ or dy. Symmetrically, if there exists not a splitting
of node b with the properties stated in the lemma, then there exists in G a grey edge with
an endpoint in b and the other in d or cy. Note however that if these two grey edges were
present at the same time, then G would contain a grey cycle. O

Now we focus on the case of a node of degree 5 in a Type C configuration adjacent to
another node of degree 5. The statement is involved, and this is apparently necessary to
prove the correctness of the reduction procedure in Fig. 6. Let H be as in Lemma 3.11.

Lemma 3.13 {1ssume G contains the configuration shown in Fig. 4. Correspondingly, G*
contains graph H as an induced subgraph. Moreover, assume a neighbor C of Cupeq has degree
5. Ezcluding cases which are equivalent by symmetry, C = Cyaycq- Then, the following hold:

(i) given any stable set X in the graph obtained from G* by deleting the edge CgapedCray cds
there is a stable set X' of G* with |X'| = |X| obtained from X by replacing nodes in
{Cabcda Caaycd} by nodes in {Cabcda Caay cd>s CbbyCyCa Cbbyd(:a Caay dyd};

(i) all neighbors of Caped and Coaycd (excluding Cupeds Caay ca themselves) have degree at
most 4;

(“’7') all neighbors Of Cbbycyca Cbbydca Caaydyd (exCZUd":ng Cabcdaoaaycd) have degree at most

/.

Proof: We first show that the degree of Cypp,a, is at most 4.

Let C be a neighbor of Cypppa;- We have that ab ¢ C. If aga € C, then aay € C. Since
ayc ¢ C (cy cannot coincide with ap) we have aydy € C and therefore C = Caaydyap>
implying that G contains grey edge apdy. Symmetrically, if bgb € C, then C = Chbycybps
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implying that G contains grey edge bpcy. Note anyway that G cannot contain edges apdy
and bgcy at the same time. In other words, besides Cgypeq, there is at most another C4
sharing with Cypppa, one edge out of ab,bpb,apa. Further neighbors of Cgypppap, have only
edge agbp in common with Cypp,e,- But then, by Fact 3.3, these neighbors are at most 2,
and the degree of Cpppap is at most 4.

For convenience, the rest of the proof is a continuation of the proof of Lemma 3.11. In
particular, we refer to Case 4, as in the other cases Cypeq has no neighbor of degree 5. Recall
that, in this case, G contains grey edge apdy as well as black edges dyx, cyy and grey edges
zby,yay, where £ may be a new vertex or it may coincide with bg and y may be a new vertex
or it may coincide with ap. We have the situation depicted in Fig. 11. We first show that the
only neighbors of Cyayayq in V(G*) \ V(H) are Cuaydyap and Chyday - Indeed, reasoning
as in Case 3 for the cycle incident with Cip, ¢y ¢, namely Cpy cy 1z, the only possibility for a
cycle C incident with Caay dy d Would be C= Clay dy zy for some node z, but z cannot coincide
with ap nor with d, which are the two nodes connected to dy by a grey edge. Hence, all the
neighbors in G* for the nodes in V(H) \ {Capbpay } are depicted in Fig. 11.

In what follows, we will refer to node Cj, ¢, ¢z, but the node does not need to be present
for the arguments to apply. Consider the removal in G* of the edge e connecting Cgypeq and
Caay cd and compute a stable set X in the resulting graph G. If X contains at most one node
out of Cppeq and Cyqy cq then X is a stable set also for G*. Otherwise, X contains both Cgpeq
and Cy4y cq and does not contain any of their neighbors. If X does not contain Cp, ¢y 1z, then
we may replace Cgpeg by Chpy ey in X. Otherwise, if Cy, eyt € X, then Cpyggyz ¢ X. In
this case, X' = X U{Chbydc, Caaydyd} \ {Cabed> Caaycd} 18 a stable set of G* with | X'| = | X].
This completes the proof of (i).

Note that node Cggycq is @ node of degree 5 in a Type C configuration obtained by
switching in G the colors of the edges and renaming the nodes as in Fig. 12. Hence, having
shown that all neighbors of Cypcq With the exception of Cy,, ¢ have degree at most 4, we also
showed that all neighbors of Cy4, ¢ have degree at most 4, yielding (ii). In particular, this
implies that nodes Cy, ceyy and Cuqy 4y have degree at most 4. Therefore, the only nodes
to consider in order to show (iii) are Ch, 4ay » and Chy ¢y 14

Figure 12: Type C configuration associated with node Cgqy c4-

According to the above discussion, the proof is completed by showing that nodes Cy,, 44y »
and Cpy ¢yt have degree at most 4. Recall that all neighbors of Cuaycdy Caaydyds Chbycye
and Chp, 4. are present in Fig. 11.

Let C be a neighbor of Cp, 44, not depicted in Fig. 11. We have that by d,ddy ¢ C.
Moreover, also zby ¢ C as this would imply that either bycy or byd are in C. Ifdyz € C’,
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Figure 13: Type D degree 5 configuration in G*.

then dyap € C. Since apa ¢ C (neither aay nor ab can be in C’), we have agu,uz € C,
for some node w. This is the only possibility for C, showing that the degree of Cy, 44, » is at
most 4.

Finally, let C be a neighbor of Cy, ¢, not depicted in Fig. 11. We have that bycy ¢ C.
Moreover, also zby ¢ C as this would imply that either bycy or byd are in C. If eyt € C,
then (since by cy ¢ C’) cyy € C. Since ayy ¢ C (neither aydy nor ayc can be in é’), we have
yv,vz € C, for some node v. This is the only possibility if cyt € C. Finally, if ¢z is the only
edge common to C and Chycytz, We have zw,wz, 2zt € C for some nodes w, z having again
only one possibility. Summarizing, Cp, ., t, can have at most two neighbors not in Fig. 11,
and hence its degree is at most 4. O

3.2.4 Type D configuration

Fig. 5 illustrates a degree 5 configuration of Type D in GG, while Fig. 13 illustrates the same
configuration in G*. Let H be the graph given in Fig. 13. Let H be the subgraph of H
induced by the nodes in V(H) \ {Chyyby > Cagbpay s Cegbycp }- One can easily check that all
nodes in V(H) correspond to C4’s actually present in the configuration given in Fig. 5 and
viceversa, and that G* contains graph H as an induced subgraph.

Lemma 3.14 Let G be a breakpoint graph containing no Type A configuration. Assume G
contains the configuration shown in Fig. 5. Correspondingly, G* contains the graph H as an
induced subgraph. Then, there ezists a mazimum stable set X of G* with Capeq ¢ X .

Proof: Excluding cases which are equivalent by symmetry, one of the cases considered in
the following must occur.
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Case 1: No node in V(G*) \ V(H) is adjacent to Cygpe. Let X be a maximum stable set of
G* containing Cgpeq. Then, X U {Cyapc} \ {Capea} is @ maximum stable set of G* which does
not contain Cp.q4- o

From now on, we will assume that Case 1 does not occur and hence there exists a node
C in V(G*) \ V(H) adjacent to Clyabe- Since Cypeq is a node of degree 5 of G*, then C cannot
contain any of the edges ab, bc, cd or da. Assume ga € C. Since ab ¢ C, then aay € C.
So, if gc € C, then C contains a black edge with one endpoint in ¢ and the other in ay.
This is not possible, since there are already two black edges incident with cp, and ay and cp
cannot coincide (otherwise we would have a node of degree 6). Therefore, gbg € C and then
C contains a black edge with one endpoint in bp and the other in ay, namely C = Cagbpay -
Symmetrically, assuming gc € C, then one has that C = Cegbycp-

By the above discussion, if there are two nodes in V(G*) \ V(H) adjacent to Cygpe, then
these two nodes are Cygpp0y and Cegpycp and the following case occurs.

Case 2: Two nodes in V(G*) \ V(H), namely Cogppay and Cegby ey, are adjacent to Cygpe-
Here, one can verify that node Cyqp. is a node of degree 5 in a Type A configuration as in
Fig. 2 after renaming the nodes as follows: ¢ — a (node ¢ in Fig. 2 corresponds to node a in
Fig. 5), a = ¢,z — d,b — ¢q,d = b,ap — cp,bp — by,by — bp,cy — ay. This contradicts
the first assumption in the lemma. o

From now on, we will assume that Case 2 does not occur and hence only one node in
V(G*)\ V(H) is adjacent to Cyabe- By symmetry, we can assume that this node is Cogbgay
which is also adjacent to Cypp, 4 and implies the presence of a black edge bgay in G. Suppose
that no other node of V(G*) \ V(H) is adjacent to Cabbgq Or 10 Chegpy , then we have the
following case.

Case 3: One node in V(G*) \ V(H), namely Cogppay , is adjacent to Cyape and Coppjq and no
other node in V(G*) \ V(H) is adjacent to Cyape 0F Capppq OF Cheghy - Let X be a maximum
stable set of G* containing Cgp.q- Note that at most one out of Cppygp, and Cygppe, is in
X. If Chpygpy & X, then X U{Chregby } \ {Cabca} is a maximum stable set of G* and does not
contain Cyped- If Cogppyay & X, then X U{Cyepc} \ {Cabed} is @ maximum stable set of G* and
does not contain Clp.q- o

We now consider, as last possibility, the presence of a node C # Cagbpay in V(G*)\V(H)
and adjacent to Cypppq OF 10 Cpegpy - We first show that such a Cis actually adjacent to both
Cabbpq and Cbcqby Indeed, assume by symmetry C to be adjacent t0 Chegby -

If bby € C, then bbg € C. Clearly, bpq € C since otherwise C = Chby gbp- Therefore, C
must also contain a black edge with one endpoint in by and a grey edge with one endpoint
in bp havmg a common endpomt z. In this case, C = Chbpaby s also adjacent to Cuppg-

If gc € C, then ccg € C. Now, if ga € C, then G contains grey edge acg, which is
not possible as already two grey edges are incident with a, and ay and cp cannot coincide,
otherwise gby € C and G contains edge bycp, and we would be in Case 2. Hence we can
assume gc ¢ C.

Finally, if gby € C, then gbp € C. If also bgb € C, then C = Chpy b, else bpay € C and
G contains a grey edge with one endpoint in ay and the other in by. This is a contradiction
as G would contain the grey cycle aya, ab, bby, by ay.

Summarizing, Cpp 5, is the only possibility for C and we are left with the following case.
Case 4: One node in V(G*) \ V(H), namely Cagbgay > 15 adjacent to Cygpe and Coppyq and
another node in V(G*)\ V(H) is adjacent to Cyppjq O Chegpy - Here, one can verify that node
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Cabbpq is a node of degree 5 in a Type A configuration as in Fig. 2 after renaming the nodes
as follows: ¢ = bg,a — a,z — ay,b — b,d — ¢,ap — d,bp — ¢,by — by,cy — z. This
contradicts the first assumption in the lemma. O

The following observation shows how to modify G according to Lemma 3.14.

Lemma 3.15 There ezists a breakpoint graph G, obtained from G by suitably splitting node
a or node ¢, whose C4-intersection graph G* is the graph obtained from G* by removing the
node Cuped-

Proof: For convenience, we refer to the four cases considered in the proof of Lemma 3.14.
Note that Cases 2 and 4 lead to a contradiction, hence only the other two cases have to be
addressed.

If Case 1 occurs, let G be the breakpoint graph obtained from G by splitting node a as to
separate ab from ad. Then, G* is the graph obtained from G* by removmg the node Cypeq-
Indeed, let C be a C4 which is removed by the splitting. Then, either C contains both ab
and ad, or C contains both ag and aay. In both cases C is adjacent to Cgabe- However, the
only nodes adjacent to Cyepe are Coped, Cappgg and Chegry, - Note that Copppg and Chegr,, are
not affected by the splitting.

Otherwise, Case 3 must occur. Let G be the breakpoint graph obtained from G by split-
ting node ¢ as to separate ¢b from cd. Then, G* is the graph obtained from G* by removing
the node Cypeq. Indeed, let C be a C4 which is removed by the sphttlng Then, either C
contains both ¢b and cd, or C contains both ¢q and ccp. In both cases C is adjacent to Cyape-
However, the only nodes adjacent to Cyepe are Coped, Cabbgqr Chegpy and Coghpay - Note that
Cabbpg> Cheghy and Cougppay are not affected by the splitting. O

3.3 Correctness of the reduction procedure

We refer to the procedure given in Fig. 6. With the exception of the last for each loop,
the procedure works with a breakpoint graph G, namely the breakpoint graph whose C4-
intersection graph is G*. This ensures that the considerations in the various lemmas, made
by using the structure of a breakpoint graph, can be used within the reduction. Note that
the only degree 5 nodes possibly remaining before the last for each loop are adjacent pairs of
degree 5 nodes in a Type C configuration. By removing the corresponding edges, Lemma 3.13
ensures that any resulting stable set can be converted in a stable set with these edges restored.
In particular, considering two pairs C', C” and D', D", these pairs are disjoint by (ii) and the
nodes that replace C’, C" in the stable set are distinct from the nodes that replace D', D" by
(iii).

As already mentioned, not all degree 5 nodes in the initial graph G* are removed by
the procedure (even assuming no pairs of adjacent degree 5 nodes of Type C exist), as the
removal of each node decreases the degree of its neighbors, possibly of degree 5 before the
removal.
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