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Abstract

Given a multigraph G = (V, E), the Edge Coloring Problem (ECP) calls for the mini-
mum number x of colors needed to color the edges in E so that all edges incident with a
common node are assigned different colors. The best known polynomial time approximation
algorithms for ECP belong to a same family, which is likely to contain, for each positive
integer k, an algorithm which uses at most [((2k + 1)x + (2k — 2))/2k] colors. For k < 5
the existence of the corresponding algorithm was shown, whereas for larger values of &k the
question is open. We show that, for any k such that the corresponding algorithm exists, it is
possible to improve the algorithm so as to use at most [((2k + 1)x + (2k — 3))/2k] colors.
It is easily shown that the (2k — 3)/2k term cannot be reduced further, unless P = NP.
We also discuss how our result can be used to extend the set of cases in which well-known
conjectures on ECP are valid.
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1 Introduction

Given a multigraph G = (V, E), the Edge Coloring Problem (ECP) calls for coloring the edges
in E by using as few colors as possible so that all edges incident with a common node are
assigned different colors. Let y denote the optimal solution value of ECP, i.e. the minimum
number of colors required, and A be the maximum degree of a node in V. Clearly, x > A.
Moreover, if G is simple, i.e. it does not contain parallel edges, a basic result of Vizing [14]
states that x < A+ 1. On the other hand, Holyer showed in [7] that ECP is NP-hard even
for simple graphs for which A = 3, and hence x = 3 or 4. Therefore, unless P = NP, the
algorithmic proofs of Vizing’s result (the fastest algorithm is due to Gabow, Nishizeki, Kariv,
Leven and Terada [3]) constitute best possible, in terms of worst-case behavior, polynomial-time
approximation algorithms for ECP on simple graphs, namely algorithms which are guaranteed
to return a solution of value within one unit of the optimum.

Unfortunately, many relevant applications of ECP are associated with nonsimple graphs (see
e.g. Fiorini and Wilson [2]). For general graphs, it is easy to see that the difference between
x and A can be arbitrarily large: Consider for instance a multitriangle with three nodes and
k parallel edges between each pair of nodes, for which y = 3k and A = 2k. Nevertheless, it
is common belief that there exists a polynomial-time algorithm for ECP on multigraphs which
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is guaranteed to return a solution within one unit of the optimum, even if such an algorithm
is unknown so far. At present, the best known polynomial-time approximation algorithm for
ECP is due to Nishizeki and Kashiwagi [9], and is guaranteed to color the edges of a multigraph
by using at most |[(11x + 8)/10| colors. This algorithm improves on previous algorithms of
Andersen [1], Nishizeki and Sato [10], Goldberg [5] and Hochbaum, Nishizeki and Shmoys [6],
which are all based on similar approaches. Whereas it would be conceptually clear how one
should try to generalize the main idea of these algorithms, so as to achieve a solution using at
most x + 1 colors (see [6]), the proof techniques used in [1, 10, 5, 6, 9] require such a complicate
case analysis that probably any future improvement on the 11/10 factor will require some
alternative approach. This is probably the reason why the algorithm in [9], which is more than
10 years old, is still the best one known for a widely-studied problem as ECP.

In this paper, we show how to reduce to 7/10 the constant term 8/10 in the performance of
the algorithm in [9], obtaining an algorithm for ECP using at most [(11x + 7)/10] colors. It is
easily shown that the 7/10 term cannot be reduced further, unless P = N P. More generally, we
show a technique to achieve an ECP solution of value at most |ay + 7| when an approximation
algorithm using at most max{|aA + ], x} colors is available, where v = max{f+1—a, 4—3a}.
Even if our improvement is not impressive, it is the first one on the algorithm of [9], almost 8
years after its publication. Moreover, our method is applicable also to possible future algorithms
belonging to the same family as those in [1, 10, 5, 6, 9]. We also discuss how our result can be
used to extend the set of cases in which well-known conjectures on ECP formulated by Seymour
[12] and Goldberg [5] are valid.

We conclude this section with the basic definitions and notation used in the rest of the
paper. Let G = (V, E) be a multigraph for which the maximum degree of a node is A and the
optimal ECP solution has value . For convenience, and without loss of generality, we suppose
that G is connected. A matching of G is an edge set M C E such that each node of G is
the endpoint of at most one edge in M. If each node in S C V is the endpoint of some edge
in M then we say that M is an S-matching. Given a matching M, the graph G \ M is the
one with node set V' and edge set E \ M. Clearly, any ECP solution using v colors defines a
partition of the edge set E into v matchings, here denoted by Ci,...,C,, each corresponding
to the edges which receive a same color. Given a node set S C V', we let §(S) denote the set
of edges with exactly one endpoint in S and E(S) denote the set of edges with both endpoints
in S. Moreover, the graph G \ S is the one with node set V' \ S and edge set E(V \ S). By
connected component of a graph we mean a node set T' C V such that §(7") = 0 and §(S) # 0
for any S C T

2 The improvement

Let us consider a polynomial-time approximation algorithm for ECP, called Approz, guaranteed
to return a solution which uses at most max{|aA + 3], x} colors. We assume that A > 3,
otherwise ECP is easily solved, and a < 4/3, since there exist algorithms capable of edge-
coloring a multigraph using at most max{|4A/3], x} colors. For example, the algorithm of [9]
uses at most max{|(11A + 8)/10] ,x} colors.

Let X C V be the set of nodes of G having degree A. The basic property used by our



improvement is the following
Lemma 1 If G does not contain any X-matching, then x > A+ 1.

Proof. Assume x = A and let C1,...,Ca be a A-edge coloring of G, i.e. a partition of the
edges of G into A matchings. Then C; is an X-matching for 7 = 1,...,A and we have a
contradiction. O

Our algorithm, called I'mpr, first checks for the existence of an X-matching M. If such an
M exists, algorithm Approz is used to color the edges of G \ M, and then an additional color
is used for the edges in M. Otherwise, algorithm Approz is applied to color the edges of G.
The algorithm can be sketched as follows.

Impr(QG) require: G is a multigraph with A > 3

If G contains no X-matching, then return the coloring returned by Approz(G).

Let M be an X-matching of G. Let (Ci,...,Ck) be the coloring returned by
Approz(G \ M). Return the coloring (Cy,...,Ck, M).

Proposition 1 By using an algorithm Approx which is guaranteed to find an ECP solution
using at most max{|aA + 8|, x} colors, algorithm I'mpr is guaranteed to find an ECP solution
using at most |ax +y| colors, where vy = max{8 + 1 — o,4 — 3a}.

Proof. Suppose first an X-matching M exists, and let G' = G\ M. In G’, the maximum
degree A’ of a node equals A — 1. Let x’ denote the optimal solution value of ECP on G'.
Approx returns a solution using at most max{|aA’ + ], x'} colors. If the number of colors
used is at most |aA’+ (3], then the number of colors used by Impr to color G is at most
l[aA"+ 8] +1=|aA"+ 8+ 1] = |[aA+ S+ 1 — «af. Otherwise, the number of colors used by
Approz is x', and then the number of colors used by Approz is x' +1 < x + 1. The relation
14+ x < |ax+] is equivalent to 1 + x < ax + 7, i.e. v > 14+ (1 — a)x. Since x > 3 and
a > 4/3, the latter inequality is satisfied if and only if v > 4 — 3« holds.

Now suppose that no X-matching exists. By Lemma 1, x > A + 1. Therefore, if Approzx
returns a solution using at most |a@A + 3] colors, then the number of colors used by I'mpr is
at most |a(x —1) + 8] = |ax + 8 — a]. Otherwise, Approx returns a solution using at most
x colors, i.e. an optimal one. O

As a corollary, by using as algorithm Approz the one presented in [9], for which @ = 11/10
and @ = 8/10, Impr edge colors a graph by using at most |(11x + 7)/10] colors. As already
mentioned, assuming P # NP, by [7] any polynomial-time approximation algorithm for ECP
may return a solution of value 4 when y = 3. Hence, if the algorithm delivers a solution using
at most |ay + 7] colors, the relation v > 4 — 3a must hold. This shows that 7/10 is the best
possible value for 7 as long as a = 11/10.

By using standard matching reduction techniques (see e.g. Gerards [4]) the determination
of an X-matching, if any, can be carried out by finding a matching of maximum cardinality



in the graph G = (V,E) obtained by taking two identical copies of G, say G; = (Vi, E1)
and Gy = (Va, E3), and, for each node v € V' \ X, by introducing a new edge (vi,v3) € E,
where v; and vy are the counterparts of v in Vi and V3, respectively. Clearly G has an X-
matching if and only if G has a perfect matching. Moreover, the complexity of finding a perfect
matching of G, if any, is O(|V|'/?|E|) (see [8]), i.e. O(|V|'/?|E|), since |V| = 2|V| = O(|V]) and
|E| = 2|E|+ |V \ X| = O(|E|) (remember that G is connected). Accordingly, our improvement
does not increase the asymptotic O(|E|(|V |+ A)) running time of the algorithm in [9] and the
others in the family [1, 10, 5, 6].

The family of algorithms including that of [9] and previous ones, [1, 10, 5, 6], is likely to
contain, for each positive integer k, an algorithm for which the number of colors needed is at

max”(% + 1)A2]-: (2k — 2)} ,x}-

For k < 5, the existence of the corresponding algorithms was shown, while for larger values of

most

k the question is open. Anyway, if the algorithm corresponding to some other value of k turns
out to exist, our technique will immediately provide an approximation algorithm requiring at

[(Qk + 1)X2;r (2k — 3)}

colors, decreasing the constant term in the worst-case performance bound to its minimum

most

possible value (unless P = N P).

3 Stronger Results

For a multigraph G = (V, E), define I' as the maximum value of [2|E(S)|/(|S| — 1)] computed
over all subsets S C V with |S| odd. It is easy to check that xy > T, since each color can
be assigned to at most (|S| —1)/2 edges in E(S) if |S| is odd. Accordingly, ® = max{A,I'}
is a lower bound on the optimal ECP solution value. A well-known conjecture formulated by
Seymour [12] and Goldberg [5] states that for every graph x < max{A+ 1,I'}. A weaker form
of this conjecture (see Seymour [12]) reads

Conjecture 1 For every graph, x < ® + 1.

Conjecture 1 sounds very interesting also from an algorithmic point of view since the value of
® can be determined in polynomial time (see Padberg and Wolsey [11]).

Already in [12] Seymour claimed that the conjecture was true for ® < 6. The algorithm
presented in [9] returns a solution which uses in fact no more than max{|(11A +8)/10],T'}
colors, showing that Conjecture 1 holds for & < 11. In this section, we show that our method
guarantees finding a solution using at most |(11® + 7)/10] colors, extending to ® < 12 the
known range of validity of the conjecture. Again, our method is applicable to possible future
improvements on the algorithm in the family of [9], as discussed in the previous section. In
particular, before our result, improving from (2k + 1)/2k to (2k +3)/(2k +2) the coefficient for
x in the worst-case performance bound of the best ECP algorithm allowed one to extend the
range of validity of the conjecture from ® < 2k+1 to ® < 2k + 3. Now, the same improvement
results into an extension of the range of validity from & < 2k + 2 to ® < 2k + 4.
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Suppose the polynomial-time approximation algorithm Approz mentioned in the previous
section is guaranteed to find a solution which uses at most max{|aA + 3| ,T'} colors. Again,
assume A > 3 and a < 4/3 and let X C V be the set of nodes in V having degree A. We start
by proving a stronger version of Property 1.

An X-Tutte prover for G is a node set S C V such that G \ S has strictly more than |S]
connected components of odd cardinality containing only nodes in X. The following result,
which is essentially a reformulation of the well-known Tutte characterization of graphs not
having a perfect matching (see e.g. [4]), was pointed to our attention by Seymour [13].

Lemma 2 G contains an X -matching if and only if it does not contain an X -Tutte prover.

Proof. Clearly, if G contains an X-Tutte prover it does not contain an X-matching. To prove
the converse implication, consider the graph G = (V, E) obtained from G = (V, E) as follows.
If |[V] is odd, let V = V U {t}, where ¢ is an additional dummy node, otherwise let V = V.
Moreover, let E = E U {(u,v) : u,v € V \ X}. Since all nodes in V' \ X are pairwise connected
and |V| is even, G contains an X-matching if and only if G contains a perfect matching. By
Tutte’s characterization, G has a perfect matching if and only if it does not contain a node set
S C V such that G\ S has p > |S| connected components T4, ...,T, such that [T;| is odd for
i=1,...,p. Suppose G contains such an S and then no perfect matching, i.e. G contains no
X-matching. Since G \ X is a complete graph, at most one component among T4, ... ,Tp can
contain some node not in X. Furthermore, [T1| + ...+ [Tp| + |S| is even, meaning that p and
|S| have the same parity and hence p > |S| + 2. Let S be equal to S\ {t} if |V| is even and to
S otherwise: It is immediate to check that G'\ S has at least p—1 > |S| connected components
of odd cardinality containing only nodes in X, i.e. § is an X-Tutte prover. O

The above variant of Tutte’s characterization allows us to prove
Lemma 3 If G does not contain any X-matching, then T' > A + 1.

Proof. By Lemma 2, if G does not contain an X-matching, then it contains an X-Tutte prover
S. Let T1,...,Tp, p > |S|, be the connected components of G\ S with |T;| odd and T; C X
for i =1,...,p. We show that 2|E(T;)|/(|T;| — 1) > A for some i. Suppose indeed this is false,
ie. 2|E(T;)|/(|T;| —1) < Afor i =1,...,p. As all nodes in T1,...,T, have degree A, A|T;| =
2|E(T;)| + |6(T;)|, hence |6(T;)| > A for i = 1,...,p. Therefore, |UF_, 6(T})| > pA > |S|A,
which is a contradiction since all edges in |J!_; §(T;) have an endpoint in S and all nodes in S
have degree < A. O

We can then prove a statement analogous to Proposition 1, by following exactly the same
proof, using Lemma 3 instead of Lemma 1.

Proposition 2 By using an algorithm Approx which is guaranteed to find an ECP solution
using at most max{|aA + (| ,T'} colors, algorithm I'mpr is guaranteed to find an ECP solution
using at most |a® + | colors, where v = max{f + 1 — «,4 — 3a}.

To check that Conjecture 1 holds for ® < 12, just observe that the solution returned by
algorithm I'mpr applied by using algorithm Approz of [9] may use strictly more than ® + 1
colors only if [(11® 4+ 7)/10] > ® + 2, i.e. & > 13.
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