
Edge-Coloring Bipartite Graphs

Ajai Kapoor Romeo Rizzi∗

October 21, 1999

Abstract

Given a bipartite graph G with n nodes, m edges and maximum degree ∆, we find an
edge coloring for G using ∆ colors in time T +O(m log ∆), where T is the time needed
to find a perfect matching in a k-regular bipartite graph with O(m) edges and k ≤ ∆.
Together with best known bounds for T this implies an O(m log ∆ + m

∆
log m

∆
log2 ∆)

edge-coloring algorithm which improves on the O(m log ∆+ m

∆
log m

∆
log3 ∆) algorithm of

Hopcroft and Cole. Our algorithm can also be used to find a (∆ + 2)-edge-coloring for
G in time O(m log ∆). The previous best approximation algorithm with the same time
bound needed ∆ + log ∆ colors.

1 Introduction

An edge-coloring of a graph consists of an assignment of colors to its edges so that no adjacent
edges receive the same color. A k-edge-coloring is one that uses at most k colors. Kőnig,
in [4], showed that every bipartite graph G has a ∆-edge-coloring, where ∆ is the maximum
degree of a node in G.

Kőnig’s proof yields an O(nm) algorithm, where n is the number of nodes of G and
m the number of edges. Hopcroft and Cole, in [1], obtain an O(m log ∆ + m

∆ log m
∆ log3 ∆)

algorithm. Recently, Schrijver [7] revisited the problem and obtained an O(m∆) algorithm.
He also discussed how to obtain fast edge-coloring schemes in case the prime factors of n were
small. In the same paper Schrijver left open the problem of finding an O(m log ∆) algorithm
for bipartite edge-coloring. In this paper we provide an algorithm to ∆-edge-color a bipartite
graph in time T + O(m log ∆), where T is the time needed to find a perfect matching in a
k-regular bipartite graph with O(m) edges and k ≤ ∆.

Hopcroft and Cole, in [1], give an O(m + m
∆ log m

∆ log2 ∆) algorithm to find a perfect
matching in a ∆-regular bipartite graph. Consequently, our edge-coloring algorithm has
a time complexity of O(m log ∆ + m

∆ log m
∆ log2 ∆), which improves on the best known time

bound for bipartite edge-coloring held until now by Hopcroft and Cole’s algorithm. Depending
on the values of n and ∆, the fastest method to edge-color a bipartite graph is either the
algorithm introduced here or the scheme of Schrijver.

In the next section we describe the algorithm and prove its time complexity. We also
show how the algorithm can be used to obtain a (∆ + 2)-edge-coloring in time O(m log ∆).

∗Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy.

Ajai Kapoor was supported in part by a grant from Gruppo Nazionale Delle Ricerche-CNR.

1

2 Algorithm

Given a bipartite graph G, with m edges and maximum degree ∆, the following construction
due to Schrijver [7] makes a ∆-regular graph G with O(m) edges so that an edge-coloring of
G implies one for G. By first identifying nodes on the same side of the bipartition of G and
with the sum of the degrees ≤ ∆ we can always assume that G contains at most two nodes
with degree ≤ b∆2 c. Now a copy G′ of G is added and ∆ − d(v) parallel edges are added
between node v and its copy in G′. The bipartite graph G so obtained is ∆-regular and has
O(m) edges. Moreover, a k-edge-coloring of G contains a k-edge-coloring of G. Keeping the
above construction in mind we assume in the remainder of the paper that G is ∆-regular.
Moreover, we assume that ∆ ≥ 3, since otherwise an edge-coloring can be found inO(m) time.

An ordered list of positive integers is called a bin. Let E1, . . . , Ep be a partition of E(G)
such that G(V,Ei) is ri-regular for every i = 1, . . . , p. We associate to such a partition the
bin (r1, . . . , rp). To the input graph G we associate the bin (∆). To solve bin (∆) means
to transform (∆) into another bin whose elements are all 1’s by applying the following three
elementary operations to the integers contained in the bin.

Operation SLICE-ONE (k) require: k > 1.
return (1, k − 1)

Operation SPLIT-EVEN (k) require: k even.
return (k

2 , k
2)

Operation SPLIT-ODD (k1, k2) require: k1, k2 odd.
return Split-even(k1 + k2)

Slice-one(k) corresponds to finding a perfect matching in a k-regular bipartite graph. We
denote the cost of this operation by f(k;n).

Split-even(k), where k is even, corresponds to the following operation: Given a k-regular
bipartite graph G, obtain two k

2 -regular bipartite graphs G1 and G2, by taking alternate
edges of a Euler tour of G, in G1 and G2. The cost of this operation is O(kn). The operation
was introduced by Gabow in [2]. It was also extensively used in [3], [1] and [7].

Split-odd(k1, k2), where k1 and k2 are odd, corresponds to adding a k1-regular bipartite
graph to a k2-regular bipartite graph and then executing a Split-even(k1 + k2). The cost of
this operation is O((k1 + k2)n).

In the following we give a method to solve bin (∆). This method requires at most a
single call to Slice-one and has a total cost of f(k;n) + O(∆n log ∆), where k ≤ ∆. A first
consequence is a T +O(m log ∆) edge-coloring algorithm, where T is the time needed to solve
a perfect matching problem in a k-regular bipartite graph with O(m) edges and k ≤ ∆.

We say that a bin (b1, . . . , bp) is almost solved if

i) b1 = 1,

ii) bj ≤
∑j−1

i=1 bi (for every j ∈ {2, . . . , p}).

2

To solve an almost solved bin, iteratively solve a bin of the form (1, . . . , 1, bj) containing at
least bj ones. This can be done at cost O(bjn log bj). Therefore the total cost to solve an
almost solved bin (b1, . . . , bp) is O(

∑p
i=1 bin log bi), which is O(∆n log ∆). So it is enough to

transform the initial bin (∆) into an almost solved bin.

We need some notations when dealing with bins. When H and T are bins, denote by
(H,T) the bin consisting of the elements of H followed by the elements of T . Similarly (a,A)
is obtained by appending integer a to the start of bin A. Finally, val(H) denotes the sum of
the integers in bin H.

A bin of the form B = (H,T) is said to be normal when H = (a, b, b) with a odd and
gcd(a, b) = 1 and T possibly empty but satisfying the following condition:

tj ≤ val(H) +
∑

i<j

ti (for every tj ∈ T). (1)

Note that a normal bin with a = b is almost solved. The following procedure transforms
a bin (∆) with ∆ ≥ 3 into a normal bin.

Procedure 1 NORMALIZE (∆) require: ∆ ≥ 3

If ∆ is odd, then by Slice-one(∆) obtain the bin (1,∆− 1). By Split-even(∆− 1)
obtain the normal bin (1, ∆−1

2 , ∆−1
2).

If ∆ is even, then by Split-even(∆) obtain the bin (∆
2 , ∆

2). If ∆
2 = 2 then apply

Split-even twice more to obtain the normal bin (1, 1, 1, 1). Otherwise ∆
2 ≥ 3 and

by recursion (Normalize(∆
2), ∆

2) is a normal bin.

The cost of Normalize(∆) is at most f(k;n) +O(∆n), where k ≤ ∆.

An important ingredient of our solution is the following procedure:

Procedure 2 HIT-EVEN (a, b, b) require: a and b odd and a 6= b

If a+b
2 is even return (b,Split-odd(a, b)). Else return Hit-even(b, Split-odd(a, b)).

Hit-even transforms a bin H = (a, b, b) with a and b distinct and odd into a bin H ′ =
(a′, b′, b′) where a′ is odd and b′ is even, while val(H ′) = val(H). The cost of Hit-even(a, b, b)
is denoted by T (a, b, b) and is given by the recursion T (a, b, b) = (a + b)n + T (b, a+b

2 , a+b
2).

Note that in the bin (b, a+b
2 , a+b

2) the absolute value of the difference between the two distinct

integers is | b−a
2 |, which is half of |b− a|. Thus within at most log(|b− a|) recursive calls the

procedure terminates. Since |b− a| < ∆, then T (a, b, b) ≤ (a + 2b)n log ∆.

Observation 1: If (H,T) is a normal bin then (Hit-even(H) , T) is a normal bin.

Proof: Inside Hit-even, when Split-odd is applied to a bin H = (a, b, b) a second bin H ′ =
(a′, b′, b′) = (b, a+b

2 , a+b
2) is obtained. Note that gcd(a′, b′) divides a′ = b and b′ = a+b

2 ; hence,
a + b and a. Thus gcd(a′, b′) ≤ gcd(a, b) = 1. Moreover Hit-even does not modify val(H). 2

3

Finally the following procedure transforms the initial bin (∆) into an almost solved bin.

Procedure 3 ALMOST-SOLVE (∆)

(H,T)← Normalize(∆); comment: consider H = (a, b, b).

loop 1 : while (a 6= b) do

loop 2 : while (b is even) do

T ← (b, T); comment: append one b to the beginning of T

H ← (a,Split-even(b)); comment: Split-even the other b to create new H

end while

if (a 6= b) then H ←Hit-even(H);

end while

return (H,T).

Lemma 1: Almost-solve(∆) returns an almost solved bin (H,T).

Proof: At the start, procedure Normalize returns a normal bin (H,T). We show that the
bin (H,T) remains normal throughout procedure Almost-solve. Consequently, when the
procedure halts, then a = b and the bin is almost solved.

In loop 2, when a b moves from H to the beginning of T , then for the new (H,T)
val(H) = a + b ≥ b and condition 1 still holds. Since gcd(a, b

2) ≤ gcd(a, b), then (H,T) is
normal after the application of loop 2, if it is normal before.

Observation 1 completes the proof. 2

Lemma 2: Between two consecutive calls to Hit-even in procedure Almost-solve, val(H)
decreases at least by a factor of 3

4 .

Proof: Assume Hit-even is called with H = (a, b, b) and returns bin (a′, b′, b′). At the next

call to Hit-even , val(H) is at most a′ + b′. In case a < b, then b′ ≥ a+b
2 >

val(H)
4 and the

claim follows. In case a > b, then either b′ = a+b
2 and b′ >

val(H)
4 as above or Hit-even is

called recursively on (b, a+b
2 , a+b

2) and since b < a+b
2 the previous case applies. 2

Lemma 3: Almost-solve(∆) costs f(k;n) +O(∆n log ∆), where k ≤ ∆.

Proof: We first show that the procedure terminates. By Lemma 2, in every iteration of loop 1

val(H) decreases by a factor of 3
4 , unless procedure Hit-even is not called. When procedure

Hit-even is not called then a = b and the procedure terminates.

The cost of Normalize(∆) is f(k;n) +O(∆n), where k ≤ ∆.
The cost of a single call to Hit-even(H) is O(val(H)n log ∆). By Lemma 2, between

two calls to Hit-even the val(H) decreases at least by a factor of 3
4 . Thus, the total cost of

Hit-even is O(∆n log ∆ + 3∆
4 n log ∆ + . . .), which is O(∆n log ∆).

The cost of a single application of loop 2 is O((v − v ′)n), where v = val(H) at the start
of the loop and v′ = val(H) at the termination. At the beginning of loop 1 val(H) ≤ ∆. At
the end val(H) = 3. Hence, the total cost of loop 2 is O(∆n). 2

4

Approximation Algorithm

Assume we are given a ∆-regular bipartite graph G with ∆ ≥ 3. To (∆ + 2)-edge-color G in
O(m log ∆) time we consider a second version of procedure Normalize.

Procedure 4 GET-NORMAL (∆)

If ∆ is even, obtain (∆
2 , ∆

2) by Split-even(∆). Add an arbitrary perfect matching
to G and return (1, ∆

2 , ∆
2).

If ∆ is odd, then add an arbitrary perfect matching to G. Apply Split-even(∆+1).
Add a second arbitrary perfect matching and return (1, ∆+1

2 , ∆+1
2).

If procedure Get-normal is run in place of procedure Normalize, then our algorithm edge-
colors a [(∆ + 1) or (∆ + 2)]-regular bipartite graph containing G in time O(m log ∆). The
edge-coloring obtained contains a (∆ + 2)-edge-coloring for G. Like for the exact algorithm,
this approximation algorithm also applies to not-necessarily-regular bipartite graphs by the
construction of Schrijver [7].

3 Conclusions

Our (∆ + 2)-edge-coloring approximation in time O(m log ∆) improves on the (∆ + log ∆)-
edge-coloring approximation in time O(m log ∆) given in [7].

Our main result is however the exact algorithm which ∆-edge-colors G in time T +
O(m log ∆), where T is the time needed to find a perfect matching in a k-regular bipartite
graph with O(m) edges and k ≤ ∆. It is now clear that finding an O(m log ∆) edge-coloring
algorithm for bipartite graphs is equivalent to finding a perfect matching in a ∆-regular
bipartite graph in time O(m log ∆). This fact had been previously indicated by Schrijver [7].

Our result and the O(m+ m
∆ log m

∆ log2 ∆) perfect matching algorithm for bipartite regular
graphs given in [1] by Hopcroft and Cole yield an O(m log ∆ + m

∆ log m
∆ log2 ∆) edge-coloring

algorithm which breaks the O(m log ∆+ m
∆ log m

∆ log3 ∆) bound also obtained in [1]. Rizzi [6]
has recently improved Hopcroft and Cole’s perfect matching algorithm obtaining an O(m +
m
∆ log m

∆ log ∆) perfect matching algorithm. By our result, the time bound for edge-coloring
further improves to O(m log ∆ + m

∆ log m
∆ log ∆).

With respect to the O(m∆) edge-coloring algorithm offered by Schrijver in [7], our last

time bound is more appealing precisely when log m� ∆2

log ∆ and in practice when m� 2∆2

.
However, the comparison with the many and various results in [7] requires more care. Define

φ(∆) =
t∑

i=1

pi∏i−1
k=1 pk

where p1 ≤ . . . ≤ pt are primes with ∆ = p1 · . . . pt. Gabow [3] offered a linear time perfect
matching algorithm for ∆-regular bipartite graphs when ∆ is a power of 2. Pursuing the
approach initiated by Gabow, Schrijver [7] offered an O(φ(∆)m) perfect matching algorithm
and an O((φ(∆)+log ∆)m) edge-coloring algorithm. Schrijver also observed that φ(∆) ≤ 2pt

5

and gave examples of applications where pt is typically bounded. When this is indeed the
case, then the time bound offered by Schrijver [7] is better than our. However, combining our
main result with the O(φ(∆)m) perfect matching algorithm given in [7] we obtain a second
O((φ(∆) + log ∆)m) edge-coloring algorithm, alternative to the one in [7].

Acknowledgments

We thank Prof. A. Schrijver for providing us with a manuscript of his paper. We also thank
Michele Bugliese and Prof. Gilberto File for taking part in a stimulating discussion that
encouraged us in pursuing our approach to the problem.

References

[1] R. Cole and J. Hopcroft, On edge coloring bipartite graphs, SIAM Journal on

Computing 11 (1982) 540-546.

[2] H. N. Gabow, Using Euler partitions to edge color bipartite multigraphs, International

J. Computer and Information Sciences 5 (1976) 345-355.

[3] H. N. Gabow and O. Kariv, Algorithms for edge coloring bipartite graphs and
multigraphs, SIAM Journal on Computing 11 (1982) 117-129.

[4] D. Kőnig, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére [Hun-
garian], Mathematikai és Természettudományi Értesito 34 (1916) 104-119.

[5] R. Rizzi, Kőnig’s edge coloring theorem without augmenting paths, Journal of Graph

Theory 29 (1998) 87.

[6] R. Rizzi, Finding 1-factors in bipartite regular graphs, and edge-coloring bipartite
graphs, submitted to SIAM Journal on Discrete Mathematics (1999).

[7] A. Schrijver, Bipartite Edge-Colouring in O(∆m) Time, preprint, CWI, (1996).

6

