
Routing Permutations
in Partitioned Optical Passive Stars Networks

Alessandro Mei a Romeo Rizzi b

aDepartment of Computer Science, University of Rome “La Sapienza”, Italy
bDepartment of Information and Communication Technology, University of Trento, Italy

Abstract

It is shown that a Partitioned Optical Passive Stars (POPS) network with g groups and d
processors per group can route any permutation among the n � dg processors in one slot
when d � 1 and 2

�
d � g � slots when d � 1. The number of slots used is optimal in the worst

case, and is at most the double of the optimum for all permutations π such that π � i ���� i, for
all i.

Key words: Optical interconnections, passive stars, permutation routing.

1 Introduction

The Partitioned Optical Passive Star (POPS) network [1,3,2,5] is a SIMD intercon-
nection network that uses multiple optical passive star (OPS) couplers. A d 	 d
OPS coupler (see Figure 1) is an all-optical passive device which is capable of re-
ceiving an optical signal from one of its d sources and broadcast it to all of its
d destinations. Being a passive all-optical technology, it benefits from a number of
characteristics such as no opto-electronic conversion, high noise immunity, and low
latency.

The number of processors of the network is denoted by n, and each processor has
a distinct index in
 0 �
�
�
��� n � 1 � . The n processors are partitioned into g � n � d
groups in such a way that processor i belongs to group group � i � : ��� i � d � . It is as-
sumed that d divides n, consequently, each group consists of d processors. For each
pair of groups a � b ��
 0 �
���
��� g � 1 � , a coupler c � b � a � is introduced which has all
the processors of group a as sources and all the processors of group b as destina-
tions. The number of couplers used is g2. Such an architecture will be denoted by
POPS � d � g � (see Figure 2).

Preprint submitted to Elsevier Science 6 June 2003

�����
���	��

�����

�
�

��� �
�

� ���
� ���
�����
� ���

Fig. 1. A 4 � 4 Optical Passive Star (OPS) coupler.

�
�
�
�
�
�

�
�
�
�
�
�

� � �	!"�$#

� � �
!"�$#

� � �	!%�&#

� � �
!%�&#'	�(�	��

) �

'	�(�	��

) �

'	�(�	�

�) �

'	�(�	�

�) �

Fig. 2. A POPS � 3 * 2 � .
For all i �
 0 �
�
�
� � n � 1 � , processor i has g transmitters which are connected to
couplers c � a � group � i ��� , a � 0 ���
�
� � g � 1. Similarly, processor i has g receivers con-
nected to couplers c � group � i � � b � , b � 0 �
�
�
� � g � 1. During a step of computation,
each processor in parallel:

+ Performs some local computations;+ sends a packet to a subset of its transmitters;+ receives a packet from one of its receivers.

In order to avoid conflicts, there shouldn’t be any pair of processors sending a
packet to the same coupler. The time needed to perform such a step is referred to
as a slot.

One of the advantages of a POPS � d � g � network is that its diameter is 1. A packet
can be sent from processor i to processor j, i ,� j, in one slot by using coupler
c � group � j � � group � i �
� . However, its bandwidth varies according to g. In a POPS � n � 1 �
network, only one packet can be sent through the single coupler per slot. On the
other extreme, a POPS � 1 � n � network is a highly expensive, fully interconnected
optical network using n2 OPS couplers.

A one-to-all communication pattern can also be performed in only one slot in
the following way: Processor i (the speaker) sends the packet to all the couplers

2

c � a � group � i �
� , a �
 0 �
�
�
� � g � 1 � , during the same slot all the processors j, j �

 0 �
�
����� n � 1 � , can receive the packet through coupler c � group � j � � group � i �
� .

The POPS network model has been used to develop a number of non trivial al-
gorithms. Several common communication patterns are realized in [2]. Simulation
algorithms for the mesh and hypercube interconnection networks can be found in
[8]. Algorithms for data sum, prefix sum, consecutive sum, adjacent sum, and sev-
eral data movement operations are also described in [8]. An algorithm for matrix
multiplication is provided in [7]. These algorithms are based on sophisticated com-
munication patterns, which have been investigated one by one, and shown to be
routable on a POPS � d � g � network. However, most of these patterns belong to a
more general class of permutation routing problems whose routability on the POPS
network was not known in general. In this paper, we show that a POPS � d � g � net-
work can efficiently route n � dg packets arranged in the n processors according to
any permutation, generalizing and unifying several known results appeared in the
recent literature.

2 Definition of the Problem and Related Work

Let � n : �
 0 � 1 �
�
�
� � n � 1 � denote the set of the first n natural numbers, and let π
be a permutation of the set � n . A permutation routing problem consists of a set of
n packets p0 �
�
�
� � pn � 1. Packet pi is stored in the local memory of processor i, for
all i ��� n , and has a desired destination π � i � . The problem is to route the packets to
their destinations in as few slots as possible.

No general solution has been given for this problem on the POPS network. Efficient
routings are known for a few particular permutations, which have been indepen-
dently attacked, and most of them require one slot when d � 1 and 2 � d � g � slots
when d � 1. Here follow a few examples.

In [2], a characterization is given of the permutation routing problems that can be
routed in a single slot. However, only a very restricted number of permutations fall
in this class. Indeed, if π is such that two packets originating at the same group are
to be routed to the same destination group, then one slot is obviously not enough to
route π.

In [8], several permutation routing problems are considered in the context of the
simulation of hypercube and mesh-connected computers on the POPS network.
Assume that processor i of an n � 2D processor SIMD hypercube is mapped onto
processor i of a POPS � d � g � network, dg � n. For every fixed b, 0 � b � D, a prim-
itive communication pattern is defined such that processor i sends a packet to pro-
cessor i � b 	 , where i � b 	 is the number whose binary representation differs from that
of i only in bit b. Each of the D communication patterns defined is a permutation

3

routing problem. Theorem 1 of [8] shows that all of them can be routed in one slot
when d � 1 and 2 � d � g � slots when d � 1.

The same result has been obtained when considering the problem of simulating
an N 	 N SIMD mesh with wraparound, where data can be moved one processor
up/down along the columns of the mesh, or right/left along the rows of the mesh.
Again, assuming that processor � i � j � of the mesh is mapped onto processor i � jN
of a POPS � d � g � network (dg � N2 and either d or g divides N), Theorem 2 of [8]
shows that one slot when d � 1 and 2 � d � g � slots when d � 1 are enough to route
each of the four permutation routing problems.

The routability of other specific permutation routing problems is investigated in
[7]. For example, a vector reversal (a permutation routing problem, where π � i ���
n � 1 � i, 0 � i � n) is shown to be routable in one slot when d � 1 and 2 � d � g � slots
when d � 1 on a POPS � d � g � network, dg � n, which is optimal when g is even. To
route a matrix transpose, conversely, � d � g � is the optimal number of slots required.

Moreover, [7] considers BPC permutations. A BPC permutation is a rearrangement
of the bits of the source processor index, while some or all of the bits can be com-
plemented. Formally, assume that n is a power of 2, n � 2k, and that the binary
representation of i is � ik � 1ik � 2 ����� i0 � 2, the set of BPC permutations is the smallest
set BPC closed under composition such that:

(1) π � i � ��� iσ � k � 1 	 iσ � k � 2 	 ����� iσ � 0 	�� 2
� BPC, for all σ permutation of � k ;

(2) π � i � � � ik � 1 �	��� i j ����� i0 � 2 � BPC, for all j.

Again, [7] describes how BPC permutations can be routed in one slot when d � 1
and 2 � d � g � slots when d � 1 on a POPS � d � g � network, dg � n.

In this paper we unify, generalize, and simplify the previously known results, by
showing that a POPS � d � g � network, dg � n, can route any permutation in one slot
when d � 1 and 2 � d � g � slots when d � 1. This gives evidence of the versatility of
the network. For example, a consequence of our Theorem 4 is that the simulation
results for hypercube and mesh-connected computers shown in [8] do not depend
on how the processors of the simulated architecture are mapped onto the processors
of the POPS network, provided that it is a one-to-one mapping, which is somewhat
surprising.

3 Routing Permutations in the POPS network

Assume the permutation routing problem defined by π on a POPS � d � g � network,
dg � n, where π is a permutation of Nn. Our goal is to prove that π can be routed in
one slot when d � 1 and 2 � d � g � slots when d � 1.

4

�

�

�

�
�
�
�
�
� �

�
�
�
�
�
�

�

����
���
���
�
	
���
���
��

���
���

���

���

�
�

��	

�
�

�
�

��

�
�

���

Fig. 3. Getting to a fair distribution on a POPS � 3 * 3 � . Packets are drawn as circles next
to their sources on the left. Inside each packet its destination xy can be found, where y is
the index of the destination processor, and x is its group. On the right, the intermediate
destination of the packet as described in Section 3.1.

We start, for the ease of explanation, from the case d � g � �
n. In this case, for

most permutations one slot is not enough to route all the packets to destination.
Take, as an example, the permutation shown in Figure 3. Packets starting from
processor 4 and processor 5, both belonging to group 1, have the same group 0 as
desired destination. If only one slot is allowed, there is an unavoidable conflict on
coupler c � 0 � 1 � . Hence, two slots are necessary to route π.

The above argument suggests a necessary and sufficient condition for a set of pack-
ets to be routable in one slot. We will say that m packets, each with a different
destination, are arranged according to a fair distribution in a POPS � d � g � network if
no two packets are stored in the same processor, and no two packets with the same
destination group are stored in the same group. In this case, we will also say that
the packets are fairly distributed. It is straightforward to see that a fairly distributed
set of packets is routable in one slot. Indeed, no conflict occurs on any coupler.

Fact 1 In a POPS � d � g � network, a fairly distributed set of m packets can be routed
to destination in one slot.

When d � g � �
n, only a very small number of permutations can be routed in one

slot. However, we will show that all of them can be routed in two slots. The idea is
that one slot is always enough to move a set of n packets arranged according to π in
such a way to become fairly distributed. Then, a second one routes all the packets
to destination by Fact 1.

5

Next, in Subsection 3.1, we formalize the above intuition, and demonstrate our
claim, properly generalized in order to deal with any value of d and g. Note that,
for a set of packets to be fairly distributed, we don’t really need to care about their
processor destination. What we need is just to know what group destination each
packet has. Thus, in Subsection 3.1 we can reduce our discussion to source groups
and destination groups. d packets originate at each source group, and d packets
have a specific destination group.

3.1 Permutation Routing: Getting to a Fair Distribution

A list system is a triple � S � T � L � , where S is a set of n1 : ��� S � source nodes, T is a
set of n2 : ���T � target nodes, and L : S 	�� ∆1 �� S assigns a list Ls of ∆1 � n2 not
necessarily distinct elements from S to every source node s � S. We also let l � s � s � �
specify how many times the element s � � S appears into list Ls. A list system is
called proper when n2 divides n1∆1, and ∑s � S l � s � s � � � ∆1 for every s � � S.

Let ∆2 : � n1∆1
n2

. A fair distribution for � S � T � L � is an assignment f : S 	 � ∆1 �� T
such that

�
 f � s � i ��� i � � ∆1 ��� � ∆1 for every s � S; (1)
�
 � s � i � � S 	 � ∆1 � f � s � i � � t ��� � ∆2 for every t � T ; (2)

if � s1 � i1 � ,� � s2 � i2 � and L � s1 � i1 � � L � s2 � i2 � � then
f � s1 � i1 � ,� f � s2 � i2 � � for every s1 � s2 � S and
every i1 � i2 � ∆1.

(3)

Theorem 2 Every proper list system admits a fair distribution.

PROOF. Let S � : �
 s ��� s � � S � . Consider the bipartite multigraph G � � S � S � ;E � , on
node classes S and S � , and having precisely l � s � s � � edges with one endnode in s and
the other in s � . Clearly, for every s � S, E contains precisely ∆1 edges incident with
s, namely the edges
 s � L � s � i � � for i � � ∆1 . Moreover, for every s � � S � , E contains
precisely ∆1 edges incident with s � , since the list system is proper. The problem of
finding a fair distribution for this proper list system can now be translated into the
problem of finding an edge-coloring of G with n2 (∆1 and such that n2 divides
n1∆1) colors and such that each color class has size precisely ∆2 : � n1∆1

n2
.

Let V be a set of n1 � ∆2 new nodes and V � : �
 v � � v � V � . Let H1 � � V � S � ;F1 � be any
bipartite � n2 � n2 � ∆1 � -regular bipartite graph on node classes V and S � . Let H2 �
� V � � S;F2 � be any bipartite � n2 � n2 � ∆1 � -regular bipartite graph on node classes V �
and S. Consider the bipartite n2-regular multigraph G � � S
 V � S ��
 V � ;E
 F1

F2 � . By König’s theorem (1916, see e. g. Theorem 7.1.7. at page 276 of [10]), we
can edge-color G with n2 colors, that is, we can decompose E
 F1
 F2 into n2

6

�

�

�

�

���

���

� �

���

Fig. 4. Bipartite graph G generated, as described in the proof of Theorem 2, from proper
list system � � 4 * � 4 *���� 2 * 2 * 0 * 3 �
*�� 3 * 0 * 1 * 3 �
*�� 1 * 3 * 2 * 0 ��*�� 1 * 2 * 0 * 1 ��� � .
perfect matchings M0 �
�
����� Mn2 � 1 of G. We propose M0 	 F1 	 F2 ���
�
��� Mn2 � 1 	 F1 	 F2

as the required edge-coloring of G. Indeed, M0 	 F1 	 F2 �
�
�
��� Mn2 � 1 	 F1 	 F2 is a
decomposition of E into n2 matchings of G and �Mi 	 F1 	 F2 ��� �Mi � � � �V � � �V � � � �
� n1 � �V � � � 2 �V � � n1 � �V � � n1 � n1 � ∆2 � ∆2, for every i � 0 �
���
��� n2 � 1.

Remark 3 The above proof is algorithmic. The computational bottleneck is in
computing a 1-factorization of a bipartite n2-regular multigraph on n : � 4n1 � 2∆2

nodes and with m : � nn2 edges. This can be done in O � n2m � as in [9] or in
O � m logn2 � m

n2
log m

n2
logn2 � as in [4] and in virtue of the algorithm described

in [6].

To help understand the construction of a fair distribution, consider the following list
system: � S � T � L � � � � 4 � � 4 ��

 2 � 2 � 0 � 3 � ��
 3 � 0 � 1 � 3 � ��
 1 � 3 � 2 � 0 � ��
 1 � 2 � 0 � 1 � � � . This
list system is proper, and, following the proof of Theorem 2, leads to the bipartite
graph G shown in Figure 4. Graph G is 4-regular, therefore the set of its edges can
be decomposed into four perfect matchings M0 �
���
��� M3. Say that M0 is equal to

 � 0 � 0 � � � � 1 � 3 � � � � 2 � 1 � � � � 3 � 2 � � � . We can start building a possible fair distribution f
by mapping all the list elements related to the edges in M0 to the same element in
T , say 0:

f �

�
 ��
 � 0 �

 � �

 0 �

 �

 �

 � �

 0 �

 �

 �

 � �

�
 � 0 �

 �

 � � �

To complete the construction of f , map each list element related to an edge in Mi,
i � 1 � 2 � 3, to i. As an example, say that M1 �
 � 0 � 2 � � � � 1 � 0 � � � � 2 � 3 � � � � 3 � 1 � � � , M2 �

 � 0 � 2 � � � � 1 � 3 � � � � 2 � 0 � � � � 3 � 1 � � � , and M3 �
 � 0 � 3 � � � � 1 � 1 � � � � 2 � 2 � � � � 3 � 0 � � � ; a possible

7

resulting fair distribution f is:

f �

 1 � 2 � 0 � 3 � �

 0 � 1 � 3 � 2 � �

 0 � 1 � 3 � 2 � �

 1 � 0 � 3 � 2 � � �

It is easy to verify that f has all the properties in Equations 1, 2, and 3.

3.2 Permutation Routing: the Main Theorem

The following theorem describes our main result. Note that the routing found by
Theorem 4 has the property that at each step of computation each processor stores
exactly one packet.

Theorem 4 A POPS � d � g � network can route any permutation π among the n � dg
processors using one slot when d � 1 and 2 � d � g � slots when d � 1.

PROOF. When d � 1, a POPS � 1 � n � network is equivalent to an n processor clique,
the network is fully interconnected, and the claim of the theorem is thus trivial.

Now, consider the case when 1 � d � g. We will show that π can be routed in
2 � d � g � � 2 slots. Take the list system � � g � � g � L � , where L : � g 	 � d �� � g is such
that L � h � i � � group � π � i � hd �
� , h � � g � i � � d . The list system is proper, since π
is a permutation, and g clearly divides gd. By Theorem 2, � � g � � g � L � admits a fair
distribution f : � g 	 � d �� � g . Consequently, f maps every pair � h � i � to an integer
from � g in such a way that:

�
 f � h � i ��� i � � d ��� � d for every h � � g ; (4)

�
 � h � i � � � g 	 � d � f � h � i � � j ��� � d

for every j � � g ;
(5)

if � h1 � i1 � ,� � h2 � i2 � and L � h1 � i1 � � L � h2 � i2 � � then
f � h1 � i1 � ,� f � h2 � i2 � � for every h1 � h2 � � g and
every i1 � i2 � � d .

(6)

Permutation π is routed in two slots. During the first slot, n packets are routed
through n of the g2 couplers of the POPS network, and, precisely, the packet orig-
inating at processor i � hd is sent through coupler c � f � h � i � � h � , h � � g � i � � d . No
conflict can occur on any coupler by Equation (4). Moreover, exactly d packets
arrive at group h by Equation (5), hence, it is easy to assign a distinct processor
to read each of the incoming packets. After the first slot, the n packets are fairly

8

distributed by Equation (6). Consequently, a second slot is enough to route all of
them to destination by Fact 1.

Finally, consider the case when d � g. Take the list system � � g � � d � L � , where
L : � g 	 � d �� � g is such that L � h � i � � group � π � i � hd �
� , h � � g � i � � d . The list
system is proper, since π is a permutation, and d clearly divides gd. By Theorem 2,
� � g � � d � L � admits a fair distribution f : � g 	 � d �� � d . Consequently, f maps
every pair � h � i � to an integer from � g in such a way that Equation (4), Equation (6),
and the following Equation (7) hold:

�
 � h � i � � � g 	 � d � f � h � i � � j ��� � d for every j � � d . (7)

Permutation π is routed in � d � g � rounds. Each round k, k � 0 �
�
�
� � � d � g ��� 1, con-
sists of two slots. During the first slot of all rounds but the last one, g2 pack-
ets are routed through the g2 couplers of the POPS network, and, precisely, the
packet originating at processor i � kg � hd is sent through coupler c � f � h � i � kg � � h � ,
h � � g � i � � g . No conflict can occur on any coupler by Equation (4). Moreover,
exactly g packets arrive at group h by Equation (7), hence, it is easy to assign a dis-
tinct processor (among the g which just sent a packet) to read each of the incoming
packets. After the first slot, the g2 packets which moved are fairly distributed by
Equation (6). Consequently, a second slot is enough to route all of them to desti-
nation by Fact 1. The last round is exactly identical to the previous ones when g
divides d. Otherwise, only g � d mod g � packets are routed in a similar way. After
� d � g � rounds all packets are correctly routed to destination.

The routing is completed after � d � g � rounds, and each round consists of two slots.
Consequently, π is routed using one slot when d � 1 and 2 � d � g � slots when d � 1,
as claimed.

The routing described by the previous theorem can be computed efficiently. The
bottleneck consists in finding a fair distribution for the list system described by π,
as in Theorem 2 and Remark 3. It is easy to see that this can be done in O � g3 � or
O � g2 logg � , when 1 � d � g, and in O � dn � or O � n logd � time, when d � g, by using
the algorithms in [9] and [4,6], respectively.

3.3 Optimality

Theorem 4 is not far from optimality for almost all permutations. Indeed, if π is
such that π � i � ,� i for all i, then the routing found by Theorem 4 uses at most the
double of the optimal number of slots.

Proposition 5 If π is such that π � i � ,� i for all i, then a POPS � d � g � network must
use at least � d � g � slots to route π.

9

PROOF. Under the above assumptions, all packet destinations are different from
the source. Hence, at least one slot is needed by each packet to reach the desired
destination. Since a POPS � d � g � network can move at most g2 packets per slot,
� n � g2 � � � d � g � slots must be used to route all the packets.

Moreover, there exist permutations for which Theorem 4 is optimal. One example
is vector reversal (when g is even), the proof can be found in [7]. A straightforward
generalization of the proof in [7] shows that many other permutations have the same
property.

Proposition 6 If π is such that group � i � ,� group � π � i �
� and

group � i � � group � j ��� group � π � i �
� � group � π � j �
�

for all i and j, then a POPS � d � g � network, dg � n, must use at least � 2d � g � slots
to route π.

Finally, also when the assumption that group � i � ,� group � π � i �
� is removed our al-
gorithm gets very close to an optimal number of slots.

Proposition 7 If π is such that π � i � ,� i for all i and

group � i � � group � j ��� group � π � i �
� � group � π � j �
�

for all i and j, then a POPS � d � g � network, dg � n, must use at least � 2d � � 1 � g � �
slots to route π.

PROOF. Suppose that a POPS � d � g � network can route π in t slots. If t � d, then
it is easy to see that t 	 � 2d � � 1 � g � � . Hence, we can assume without loss of gen-
erality that t � d.

Since group � i � � group � j ��� group � π � i �
� � group � π � j ��� , at most t packets per
group can be routed to destination in one slot only. All the other packets, at least
d � t per group, have to perform at least 2 hops to get to destination. Taking into
account that a POPS � d � g � network can move at most g2 packets per slot, then tg2 	
gt � 2g � d � t � , which implies that t 	 � 2d � � 1 � g � � .

4 Conclusion

A few papers appeared in the recent literature describing how data can be moved
efficiently in a POPS � d � g � network. In particular, several permutation routing prob-
lems have been independently attacked in order to show they are routable in one

10

slot when d � 1 and 2 � d � g � slots when d � 1. With Theorem 4, we demonstrate
that exactly the same result holds for any permutation π, and that the routing for
π can be efficiently computed. Moreover, the number of slots used is optimal for
a class of permutations, and at most twice of the number of slots required by any
permutation π such that π � i � ,� i for all i.

References

[1] D. Chiarulli, S. Levitan, R. G. Melhem, J. Teza, and G. Gravenstreter. Multiprocessor
interconnection networks using partitioned optical passive star (POPS) topologies and
distributed control. In Proceedings First International Workshop on Massively Parallel
Processing Using Optical Interconnections, pages 70–80, 1994.

[2] G. Gravenstreter and R. G. Melhem. Realizing common communication patterns
in partitioned optical passive stars networks. IEEE Transactions on Computers,
47(9):998–1013, September 1998.

[3] G. Gravenstreter, R. G. Melhem, D. Chiarulli, S. Levitan, and J. Teza. The partitioned
optical passive star (POPS) topology. In Proceedings Ninth International Parallel
Processing Symposium, pages 4–10, 1995.

[4] A. Kapoor and R. Rizzi. Edge-coloring bipartite graphs. Journal of Algorithms,
34(2):390–396, 2000.

[5] R. G. Melhem, G. Gravenstreter, D. Chiarulli, and S. Levitan. The Communication
Capabilities of Partitioned Optical Passive Star Networks, pages 77–98. Kluwer
Academics Publishers, 1998.

[6] R. Rizzi. Finding 1-factors in bipartite regular graphs, and edge-coloring bipartite
graphs. SIAM Journal on Discrete Mathematics, 15(3):283–288, 2002.

[7] S. Sahni. Matrix multiplication and data routing using a partitioned optical passive
stars network. IEEE Transactions on Parallel and Distributed Systems, 11(7):720–
728, July 2000.

[8] S. Sahni. The partitioned optical passive stars network: Simulations and fundamental
operations. IEEE Transactions on Parallel and Distributed Systems, 11(7):739–748,
July 2000.

[9] A. Schrijver. Bipartite edge-colouring in o � δm � time. SIAM Journal on Computing,
28(3):841–846, 1999.

[10] D. B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ,
1996.

11

