TakustralRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

THORSTEN KOCH

Rapid Mathematical Programming
or
How to Solve Sudoku Puzzles
In a few Seconds

Z1B-Report 05-51 (Dec 2005)

1 Introduction

Using the popular puzzle game of Sudoku, this article highlights some of
the ideas and topics covered in the author’s PhD thesis [§]. The thesis
deals with the implementation and application of out-of-the-box tools in
linear and mixed integer programming. It documents the lessons learned and
conclusions drawn from five years of implementing, maintaining, extending,
and using several computer codes to model and solve real-world industrial
problems.

By means of several examples it is demonstrated how to apply a modeling
language to rapidly devise mathematical models of real-world problems. It
is shown that today’s MIP-solvers are often capable of solving the resulting
mixed integer programs, leading to an approach that delivers results very
quickly, even on problems that required the implementation of specialized
branch-and-cut algorithms a few years ago.

2 The modeling language ZIMPL

The presentation is centered around the newly developed algebraic model-
ing language ZIMPL [8], which is similar in concept to well known languages
like GAMS [2] or AMPL [6]. Algebraic modeling languages allow to describe
a mathematical model in terms of sets depending on parameters. This de-
scription is translated automatically into a mixed integer program which
can be fed into any out-of-the-box MiP-solver.

If AMPL could do this in 1989 why would one bother writing a new
program to do the same in 19997 One reason is that all major modeling
languages for linear and mixed integer programs are commercial products
[7]. None of these languages is available as source code. None can be given
to colleagues or used in classes for free, apart from very limited “student
editions”. Usually, only a limited number of operating systems and architec-
tures are supported. The situation has improved somewhat since 1999 when
the development of ZIMPL started. Today at least one other open source
modeling system is available; the GNU MATHPROG language [13].

What ZiMmPL distinguishes from other modelling languages is the use of
rational arithmetic. With a few exceptions, all computations in ZIMPL are
done with infinite precision rational arithmetic. This ensures that no round-
ing errors can occur. One might think that the use of rational arithmetic
results in a huge increase of computation time and memory. But experience
shows that this seems not to be relevant with current hardware. ZimMpPL

has been successfully used to generate integer programs with more than 30
million non-zero coefficients.

An introduction into modeling with Zimpl together with a complete de-
scription of the language can be found in [§]. Also details of the imple-
mentation are described. Both theoretical and practical considerations are
discussed. Aspects of software engineering, error prevention, and detection
are addressed. ZIMPL is still under active development and available from
the author’s website at www.zib.de/koch/zimpl.

3 Real-world projects

In the second part of the thesis, several real-world projects that employed
the methodology and the tools developed in the first part of the thesis are
examined. Figure[llshows a typical solution process cycle. In our experience
customers, from industry share a few attributes. They

» do not know exactly what they want,
» need it next week,

» have not yet collected the data necessary or do not even have all the
data,

» often need only one shot studies,

» are convinced “our problem is unique”.

This mandates an approach that is fast and flexible. And this is what
general tools are all about: Rapid prototyping of mathematical models,
quick integration of data, and a fast way to check whether the approach
is getting to be feasible. Due to the ongoing advances in hardware and
software, the number of problems that can be successfully tackled with this
approach is steadily increasing.

While most of the research is aimed at improving solution techniques, we
focus on mathematical model building and on how to conveniently translate
the model and the problem data into solver input.

The benefits of this approach are demonstrated in [§] by a detailed pre-
sentation of four projects from telecommunication industry dealing with
facility location and UMTS planning problems. Problems, models, and so-
lutions are discussed. Special emphasis is put on the dependency between
the precision of the input data and the results. Possible reasons for unex-
pected and undesirable solutions are explained. Furthermore, the Steiner
tree packing problem in graphs, a well-known hard combinatorial problem,

Figure 1: Modeling cycle according to [10]

| Analyze Real-) Choose Solution . RUN Sol
world Problem Algorithm un Solver
|}
Identify
Modeling Goal Translate Model
Analyze Output
) to Solver Input
Build Mathe-
. <—
matical Model
4 Translate Data Write
Identify to Solver Input Result Report
Data Sources
§
Collect & || Construct | Interpret
Analyze Data Derived Data Result Report

is revisited. A formerly known, but not yet used model is applied to combine
switchbox wire routing and via minimization in VLSI design. All instances
known from the literature are solved by this approach, as well as some newly
generated bigger problem instances. The results show that the improve-
ments in solver technology, as claimed in [, B], allow our rapid prototyping
strategy to succeed even on difficult problems, provided a suitable model is
chosen.

4 Sudoku

To give an impression of how to use ZIMPL, we demonstrate the approach on
the popular puzzle game Sudoku [5]. The aim of the puzzle is to enter a nu-
meral from 1 through 9 in each cell of a 9 x 9 grid made up of 3 x 3 subgrids.
At the beginning several cells are already given preset numerals. At the end,
each row, column and subgrid must contain each numeral exactly once. Fig-
ure 3(a)] shows an example (for details see, e.g., en.wikipedia.org/wiki/Sudoku).

Obviously, the problem can be stated using constraint programming as a
collection of alldifferent constraints [I1]. But how to formulate this as an
integer program? ZIMPL can automatically generate IP’s for certain con-
structs such as the absolute value of the difference of two variables (vabs).
Using 81 integer variables in the range {1..9} the alldifferent constraint can
be formulated by demanding that the absolute difference of all pairs of rel-
evant variables is greater than or equal to one. This leads to the ZiMPL
program shown in Listing [

Figure 2: Sudoku puzzle and solution

8 9 36 742 5891

113 9 4 2 113 8 9|5 76

) 2 4 8 5916 71|12 3 4

216 8 5 7 4|1 3 2(6 8 9

9 7 6) 9 1 87 4 6|3 2 5

3 6|5 236|599 81417

1 3) 1 8 3|96 4|7 5 2

8 711 6 9 2|8 5 7|1 4 3

4 5 74 5|21 3|9 6 8
(a) Sudoku puzzle (b) Solution

How does the vabs construct work? Given a bounded integer variable
l, <z < ug,, where I, z,u, € Z, two additional binary variables b and
b~ are introduced as indicators for whether x is positive or negative, i.e.,
b™ = 1 if and only if x > 0 and b~ = 1 if and only if x < 0. In case of
x = 0, both b and b~ are zero. Two additional non-negative variables x™"
and x~ are introduced to hold the positive and negative part of x. This can
be formulated as an integer program as follows:

-2 = =z
bt < xt < max(0,uy;)b"
b- < x~ < |min(0,1;)|b™ (1)
bt+b- < 1
bt,o- e {0,1}

Note that the polyhedron described by the linear relaxation of System ([I)
has only integral vertices (see [§] for details).

© 0 N o U A W N R

e i <
g A W N R O

Listing 1: A Z1MPL model to solve Sudoku using integer variables

param p = 3;

set J = {0 .. pxp—1 };

set KK ={0 .. p=1} «x { 0 .. p—1};

set F := { read "fixed.dat” as "<1n,2n>" };
param fixed [F] := read "fixed.dat” as "<1n,2n>3n";
var x [J = J] integer >= 1 <= 9;

subto rows: forall <i,j,k> in JxJxJ with j < k do
vabs(x[i,j]—-x[i, k]) >= 1;

subto cols: forall <i,j,k> in JxJxJ with j < k do
vabs(x[]j,i]=-x[k,i]) >= 1;

subto squares: forall <m,n> in KK do
forall <i,j,k,I> in KK«KK with pxi+j < pxk+| do

vabs (x[mxp+i ,nxp+j] — x[msptk,nxp+l]) >= 1;
subto fixed: forall <i,j> in F do x[i,j] = fixed][i,j];

Using System (), the following functions and relations can be expressed
using r = v—w, where v, w € Z with l, = [, —u,, and u, = u, —l,, whenever
two operands are involved:

abs(z) = ot +a” vAw & bT4b =1
sgn(z) = bt —b" v=w & bT4+b =0
min(v,w) = w-—x~ v<w & bT=0
max(v,w) = zT +w v<w & b =1
v>w & b =0
v>w & bT=1

More information on this topic can be found, for example, in [I2, 9] or at
the GAMS website http://www.gams.com/modlib/libhtml/absmip.htm.

Unfortunately, the 1P resulting from Listing[lis hard to solve. CPLEX 9.03
was not able to find a feasible solution after more than six hours and a mil-
lion branch-and-cut nodes. As an alternative we modeled the problem using
binary variables as shown in Listing Bl With this formulation all Sudoku
puzzles we have tried so far were solved either by preprocessing or at the
root node of the branch-and-bound tree.

Choosing the right formulation is often more important than having
the best solver algorithm. Especially with real-world problems, having the
ability to experiment swiftly with different formulations is essential.

© 0 N o U A W N R

o e
N = O

Listing 2: A Z1MPL model to solve Sudoku using binary variables

param p = 3;

set J = {0 .. pxp—1 };

set KK = {0 .. p—1} « { 0 .. p—-1 };

set F := { read "fixed.dat” as "<1n,2n,3n>" };

var x [J«JxJ] binary;

subto rows: forall <i,j> in JxJ do sum <k> in J:x[i,]j, k]==1;
subto cols: forall <j, k> in JxJ do sum <i> in J:x[i, j, k]==1,;
subto nums: forall <i k> in JxJ do sum <j> in J:x[i,]j, k]==1;
subto fixed:forall <i,j,k> in F do x[i,],k]==1;
subto squares: forall <m,n,k> in KKxJ do

sum <i,j> in KK:x[mkp+i , n*p+j , k]==1,;

5 Conclusion and outlook

It turned out that regarding real-world problems understanding the problem
itself and the limitations presented by the available data are often a bigger
obstacle than building and solving the resulting mathematical model. The
ability to easily experiment with formulations is a key factor for success.

The use of automatically generated constructs in modeling languages
makes it even easier to turn complex problems into models. It seems likely
that future solvers will “understand” these extended functions directly and
either convert them into whatever suits them best or handle them directly
(.

The free availability and the simplicity of use make ZIMPL a well suited
tool for teaching modeling linear and mixed integer programs.

References

[1]

[13]

Tobias Achterberg. SCIP — a framework to integrate constraint and mixed
integer programming. Technical Report 04-19, Zuse Institute Berlin, 2004.
See scip.zib.de.

J. Bisschop and A. Meeraus. On the development of a general algebraic mod-
eling system in a strategic planning environment. Mathematical Programming
Study, 20:1-29, 1982.

Robert E. Bixby. Solving real-world linear programs: A decade and more of
progress. Operations Research, 50(1):3-15, 2002.

Robert E. Bixby, Marc Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wun-
derling. MIP: Theory and practice — closing the gap. In M. J. D. Powell and
S. Scholtes, editors, System Modelling and Optimization: Methods, Theory and
Applications. Kluwer, 2000.

David Eppstein. Nonrepetitive paths and cycles in graphs with application to
Sudoku. ACM Computing Research Repository, 2005.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling Language
for Mathematical Programming. Brooks/Cole, 2nd edition, 2003.

Josef Kallrath, editor. Modeling Languages in Mathematical Optimization.
Kluwer, 2004.

Thorsten Koch. Rapid Mathematical Programming. PhD thesis, Technische
Universitat Berlin, 2004. Corrected version available as ZIB technical report
04-58. Regarding software see www.zib.de/koch/zimpl.

Frank Plastria. Formulating logical implications in combinatorial optimization.
European Journal of Operational Research, 140:338-353, 2002.

Hermann Schichl. Models and the history of modeling. In Josef Kallrath, edi-
tor, Modeling Languages in Mathematical Optimization, pages 25-36. Kluwer,
2004.

W.J. van Hoeve. The alldifferent constraint: A survey. In 6th Annual Workshop
of the ERCIM Working Group on Constraints. Prague, June 2001.

H. Paul Williams and Sally C. Brailsford. Computational logic and integer
programming. In J. E. Beasley, editor, Advances in Linear and Integer Pro-
gramming, pages 249-281. Oxford University Press, 1996.

GNU linear programming toolkit glpsol version 4.7. www.gnu.org/software/glpk.

	Introduction
	The modeling language Zimpl
	Real-world projects
	Sudoku
	Conclusion and outlook

