
Combinatorial
Optimization
(September 18, 1997)

William J. Cook William H. Cunningham
William R. Pulleyblank Alexander Schrijver

(All rights reserved by the authors.)

C o n t e n t s

Preface ix

� Problems and Algorithms �

��� Two Problems �

��� Measuring Running Times �

� Optimal Trees and Paths �

��� Minimum Spanning Trees �

��� Shortest Paths ��

� Maximum Flow Problems ��

��� Network Flow Problems ��

��� Maximum Flow Problems ��

��� Applications of Maximum Flow and Minimum Cut 	�

��� Push�Relabel Maximum Flow Algorithms
�

��� Minimum Cuts in Undirected Graphs ��

����� Global Minimum Cuts ��

����� Cut�Trees ��

��� Multicommodity Flows ��

	 Minimum�Cost Flow Problems ��

��� Minimum�Cost Flow Problems ��

��� Primal Minimum�Cost Flow Algorithms ���

��� Dual Minimum�Cost Flow Algorithms ���

��� Dual Scaling Algorithms ���

v

vi CONTENTS

� Optimal Matchings ���

��� Matchings and Alternating Paths ���

��� Maximum Matching ��	

��� Minimum�Weight Perfect Matchings �		

��� T �Joins and Postman Problems �

��� General Matching Problems ���

��� Geometric Duality and the Goemans�Williamson Algorithm ���

 Integrality of Polyhedra ���

��� Convex hulls ���

��� Polytopes ���

��� Facets ���

��� Integral Polytopes ���

��� Total Unimodularity ���

��� Total Dual Integrality ���

��	 Cutting Planes ���

��
 Separation and Optimization ���

� The Traveling Salesman Problem �	�

	�� Introduction �	�

	�� Heuristics for the TSP �	�

	�� Lower Bounds ���

	�� Cutting Planes �
�

	�� Branch and Bound �
�

� Matroids ���

�� Matroids and the Greedy Algorithm ���

�� Matroids� Properties� Axioms� Constructions ���

�� Matroid Intersection ���

�� Applications of Matroid Intersection ���

�� Weighted Matroid Intersection ���

� NP and NP�Completeness ���

�� Introduction ���

�� Words ���

�� Problems ���

�� Algorithms and Running Time ���

�� The Class NP ��	

CONTENTS vii

��� NP�Completeness ���

��� NP�Completeness of the Satis�ability Problem ���

��� NP�Completeness of Some Other Problems ���

��� Turing Machines ���

APPENDIX A Linear Programming ���

Bibliography ���

Index �	�

viii CONTENTS

P r e f a c e

Combinatorial optimization is a lively �eld of applied mathematics� combining

techniques from combinatorics� linear programming� and the theory of algo�

rithms� to solve optimization problems over discrete structures� There are a

number of classic texts in this �eld� but we felt that there is a place for a new

treatment of the subject� covering some of the advances that have been made

in the past decade� We set out to describe the material in an elementary

text� suitable for a one semester course� The urge to include advanced topics

proved to be irresistible� however� and the manuscript� in time� grew beyond

the bounds of what one could reasonably expect to cover in a single course�

We hope that this is a plus for the book� allowing the instructor to pick and

choose among the topics that are treated� In this way� the book may be suit�

able for both graduate and undergraduate courses� given in departments of

mathematics� operations research� and computer science� An advanced theo�

retical course might spend a lecture or two on chapter � and sections ��� and

���� then concentrate on ���� ��	� 	��� most of chapters
 and � and some of

chapters � and
� An introductory course might cover chapter �� sections ���

to ���� section 	�� and one of 	�� or 	��� and sections
�� through
��� A course

oriented more towards integer linear programming and polyhedral methods

could be based mainly on chapters � and � and would include section ����

The most challenging exercises have been marked in boldface� These should

probably only be used in advanced courses�

The only real prerequisite for reading our text is a certain mathematical

maturity� We do make frequent use of linear programming duality� so a reader

unfamiliar with this subject matter should be prepared to study the linear

programming appendix before proceeding with the main part of the text�

We bene�tted greatly from thoughtful comments given by many of our

colleagues who read early drafts of the book� In particular� we would like

to thank Hernan Abeledo� Dave Applegate� Bob Bixby� Eddie Cheng� Joseph

Cheriyan� Collette Coullard� Satoru Fujishige� Grigor Gasparian� Jim Geelen�

Luis Goddyn� Michel Goemans� Mark Hartmann� Mike J�unger� Jon Lee� Tom

McCormick� Kazuo Murota� Myriam Preissmann� Irwin Pressman� Maurice

ix

x PREFACE

Queyranne� Andr�e Rohe� Andr�as Seb�o� �Eva Tardos� and Don Wagner� Work

on this book was carried out at Bellcore� the University of Bonn� Carleton

University� CWI Amsterdam� IBMWatson Research� Rice University� and the

University of Waterloo�

C H A P T E R �

Problems and Algorithms

�
� TWO PROBLEMS

The Traveling Salesman Problem

An oil company has a �eld consisting of �	 drilling platforms o� the coast of
Nigeria� Each platform has a set of controls that makes it possible to regulate
the amount of crude oil �owing from the wells associated with the platform
back to the onshore holding tanks� Periodically� it is necessary to visit certain
of the platforms� in order to regulate the rates of �ows� This traveling is done
by means of a helicopter which leaves an onshore helicopter base� �ies out to
the required platforms� and then returns to the base�

Helicopters are expensive to operate� The oil company wants to have a
method for routing these helicopters in such a way that the required plat�
forms are visited� and the total �ying time is minimized� If we make the
assumption that the �ying time is proportional to the distance traveled� then
this problem is an example of the Euclidean traveling salesman problem� We
are given a set V of points in the Euclidean plane� Each point has a pair of
�x� y� coordinates� and the distance between points with coordinates �x�� y��
and �x�� y�� is just

p
�x� � x��� � �y� � y���� We wish to �nd a simple circuit

�or tour� passing through all the points in V � for which the length is mini�
mized� We call such a tour optimal� In this case� V consists of the platforms
to be visited� plus the onshore base�

�

� PROBLEMS AND ALGORITHMS

Euclidean Traveling Salesman Problem

Input� A set V of points in the Euclidean plane�
Objective� Find a simple circuit passing through the points for which
the sum of the lengths of the edges is minimized�

There are many methods that attempt to solve this problem� Most simple
ones share the characteristic that they do not work very well� either from a
point of view of solution quality or of running time� For example� suppose
we wish simply to try all possible solutions� and then select the best� This
will certainly �nd the shortest circuit� However� if jV j � n� then there are
�n� ����� di�erent possible solutions �Exercise ����� Suppose we have at our
disposal a computer capable of evaluating a single possibility in one nanosec�
ond �� ���� seconds�� If we had only �� platforms to visit� then it would take
approximately �	
 centuries to run through the possible tours�

Suppose� on the other hand� that we require a faster method� but which
need not be guaranteed to produce the optimal solution� The �Nearest Neigh�
bor Algorithm� proceeds as follows� Pick any starting point� Go to the near�
est point not yet visited� Continue from there to the nearest unvisited point�
Repeat this until all points have been visited� then return to the starting
point� The result of applying this to a sample problem �from Gerd Reinelt�s
TSPLIB� is given in Figure ���� Notice that although each move is locally the

Figure ���� Nearest Neighbor solution

best possible� the overall result can be quite poor� First� it is easy to omit
a point� which must be visited later at great expense� Second� at times you

TWO PROBLEMS �

may �paint yourself into a corner� where you are forced to make a long move
to reach the nearest point where you can continue the tour�

The Matching Problem

A designer of logic circuits will use a plotter to draw a proposed circuit�
so that it can be visually checked� The plotter operates by moving a pen
back and forth and� at the same time� rolling a sheet of paper forwards and
backwards beneath the pen� Each color of line is drawn independently� with
a pen change before each new color� The problem is to minimize the time
required to draw the �gure� This time consists of two parts� �pen�down�
time� when actual drawing is taking place� and �pen�up� time� when the pen
is not contacting the paper� but is simply moving from the end of one line
to be drawn to the start of another� Surprisingly� often more than half of
the time is spent on pen�up movement� We have very little control over the
pen�down time� but we can reduce the pen�up time considerably�

For example� suppose we wish to draw the circuit illustrated in Figure ����
Note �rst that the �gure we are drawing is connected� This simpli�es things�

Figure ���� Circuit diagram

for reasons we discuss later� Can you convince yourself that some amount
of pen�up motion is necessary� We de�ne a node of the �gure to be a point
where two or more lines meet or cross� or where one line ends� In other words�
it is a point of the �gure from which a positive number of lines� other than
two� emanates� We call a node odd if there is an odd number of lines coming
out� and even otherwise� See Figure ����

even nodes

odd nodes

Figure ���� Odd and even nodes

One of the oldest theorems of graph theory implies that there will always
be an even number of odd nodes� Another old theorem� due to Euler� states

	 PROBLEMS AND ALGORITHMS

that the �gure can be traced� returning to the starting point� with no pen�up
motion if and only if it is connected and there are no odd nodes�

We minimize pen�up motion by �nding a set of new lines that we can add
to the �gure turning every odd node into an even node� and such that the
total traversal time of the new lines is as small as possible�

Let t�p� q� be the time required to draw a line from point p to q �pen�up
or pen�down�� If we make the assumption that t�p� q� is proportional to the
Euclidean distance between p and q� then t satis�es the triangle inequality�
for any points p� q� r� we have t�p� r� � t�p� q� � t�q� r�� This is also satis�ed�
for example� when t�p� q� is proportional to whichever direction of motion�
horizontal or vertical�is greater�

Whenever t satis�es the triangle inequality� the optimal set of new lines
will pair up the odd nodes� In the Euclidean case� the problem of �nding
these lines is an example of the Euclidean matching problem�

Euclidean Matching Problem

Input� A set V of points in the Euclidean plane�
Objective� Find a set of lines� such that each point is an end of
exactly one line� and such that the sum of the lengths of the lines is
minimized�

If the original �gure is not connected� then we may add the extra lines and
obtain a �gure having no odd nodes� but which itself is not connected� In
this case� some amount of extra pen�up motion is necessary� Moreover� the
problem of minimizing this motion includes the Euclidean traveling salesman
problem as a special case� For suppose we have an instance of the Euclidean
traveling salesman problem which we wish to solve� We draw a �gure con�
sisting of one tiny circle in the location of each point� If we take one of these
circles to be the pen�s home position� then the problem of minimizing pen�
up time is just the traveling salesman problem� assuming pen travel time is
proportional to Euclidean distance�

Some Similarities and Di�erences

The Euclidean traveling salesman problem and the Euclidean matching
problem are two prominent models in combinatorial optimization� The two
problems have several similarities� First� each involves selecting sets of lines
connecting points in the plane� Second� in both cases� the number of feasible
solutions is far too large to consider them all in a reasonable amount of time�
Third� most simple heuristics for the problems do not perform very well�

There is a major di�erence between the problems lurking under the sur�
face� however� On the one hand� there exists an e�cient algorithm� due to
Edmonds� that will �nd an optimal solution for any instance of the Euclidean

MEASURING RUNNING TIMES �

matching problem� On the other hand� not only is no such algorithm known
for the Euclidean traveling salesman problem� but most researchers believe
that there simply does not exist such an algorithm�

The reason for this pessimistic view of the Euclidean traveling salesman
problem lies in the theory of computational complexity� which we discuss in
Chapter
� Informally� the argument is that if there would exist an e�cient
algorithm for the Euclidean traveling salesman problem� then there would also
exist such an e�cient algorithm for every problem for which we could check
the feasibility of at least one optimal solution e�ciently� This last condition
is not very strong� and just about every combinatorial optimization problem
satis�es it�

Throughout the book� we will be walking the line between problems that
are known to have e�cient algorithms� and problems that are known to be just
as di�cult as the Euclidean traveling salesman problem� Most of our e�ort
will be spent on describing models that lie on the �good side� of the dividing
line� including an in�depth treatment of matching problems in Chapters �
and �� Besides being very important on their own� these �good� models
form the building blocks for attacks on problems that lie on the �bad side��
We will illustrate this with a discussion of the traveling salesman problem in
Chapter 	� after we have assembled a toolkit of optimization techniques�

�
� MEASURING RUNNING TIMES

Although the word �e�cient�� which we used above� is intuitive and would
su�ce for some purposes� it is important to have a means of quantifying this
notion� We follow established conventions by estimating the e�ciency of an
algorithm by giving upper bounds on the number of steps it requires to solve
a problem of a given size� Before we make this precise� a few words of warning
are in order� Bounding the number of steps only provides an estimate of an
algorithm�s e�ciency and it should not be taken as a hard and fast rule that
having a better bound means better performance in practice� The reason for
this is the bounds are taken over all possible instances of a given problem�
whereas in practice you only want your algorithm to solve the instances you
have in hand as quickly as possible� �It may not really concern you that some
pathological examples could cause your algorithm to run and run and run��
A well�known example of this phenomenon is the simplex method for linear
programming� it performs remarkably well on wide classes of problems� yet
there are no good bounds on its behavior in general� It is fair to say� however�
that this idea of the complexity of an algorithm does often point out the
advantages of one method over another� Moreover� the widespread use of this
notion has led to the discovery of many algorithms that turned out to be not
only superior in a theoretical sense� but also much faster in practice� With
this in mind� let us de�ne more precisely what we mean by �giving upper
bounds on the number of steps��

 PROBLEMS AND ALGORITHMS

The concept of an algorithm can be expressed in terms of a Turing Machine
or some other formal model of computation �see Chapter
�� but for now the
intuitive notion of an algorithm as a list of instructions to solve a problem is
su�cient� What we are concerned with is� How long does an algorithm take
to solve a given problem� Rapid changes in computer architecture make it
nearly pointless to measure all running times in terms of a particular machine�
For this reason we measure running times on an abstract computer model
where we count the number of �elementary� operations in the execution of
the algorithm� Roughly speaking� an elementary operation is one for which
the amount of work is bounded by a constant� that is� it is not dependent
on the size of the problem instance� However� for the arithmetic operations
of addition� multiplication� division� and comparison� we sometimes make an
exception to this rule and count such operations as having unit cost� that is�
the length of the numbers involved does not a�ect the cost of the operation�
This is often appropriate� since the numbers occurring in many algorithms
do not tend to grow as the algorithm proceeds� A second� more precise�
model of computation counts the number of �bit operations�� the numbers
are represented in binary notation and the arithmetic operation is carried out
bit by bit� This is more appropriate when the length of the numbers involved
signi�cantly a�ects the complexity of a problem �for example� testing whether
a number is prime��

A combinatorial optimization problem usually consists of a discrete struc�
ture� such as a network or a family of sets� together with a set of numbers
�which may represent costs or capacities� for example�� We measure the size
of such a problem by the length of an encoding of the structure �say in binary
notation� plus the size of the set of numbers� �Either each number is counted
as a single unit �when we are counting arithmetic operations� or we count the
number of digits it takes to write each number in binary notation �when we are
counting bit operations��� This measure� of course� depends on the particular
encoding chosen� but if one is consistent with the types of encodings used�
a robust measure can be obtained� Furthermore� in most cases the various
choices of an encoding will di�er in size by only a constant factor� So given
an instance of a problem� we measure its size by an integer n� representing
the number of bits in the encoding plus the size of the set of numbers� We
can therefore make statements like� �the number of steps is bounded by �n�

� �n��

When analyzing an algorithm� we are mainly interested in its performance
on instances of large size� This is due to the obvious reason that just about any
method would solve a problem of small size� A superior algorithm will really
start to shine when the problem sizes are such that a lesser method would not
be able to handle the instances in any reasonable amount of time� Therefore�
if an algorithm has a running�time bound of �n� � �n� we would often ignore
the �n term� since it is negligible for large values of n� Furthermore� although
a bound of �n� is clearly better than a bound of �	n�� it probably would not
make the di�erence between being able to solve an instance of a problem and

MEASURING RUNNING TIMES �

not being able to solve it� So we normally concentrate on the magnitude of the
bound� describing �n� � �n as �order n��� There is a formal notation for this�
If f�n� and g�n� are positive real�valued functions on the set of nonnegative
integers� we say f�n� is O�g�n�� if there exists a constant c � � such that
f�n� � c � g�n� for all large enough values of n� �The notation O�g�n�� is read
�big oh of g�n���� Thus �n� � �n is O�n�� and ����n � n� is O��n��

As an example of these ideas� consider once again the Nearest Neighbor
Algorithm for the traveling salesman problem� We described this method as
a fast �but sometimes poor� alternative to enumerating all �n� ����� possible
tours� We can quantify this easily with the big oh notation�

Let�s �rst consider the arithmetic operation model� An instance of the
Euclidean traveling salesman problem can be speci�ed by giving the �x� y�
coordinates of the n points to be visited� So the size of an instance is simply
�n�

An easy �albeit somewhat ine�cient� way to implement the Nearest Neigh�
bor Algorithm is to set up an n�element array� where each object in the array

has the three �elds x y mark � We initialize the array by placing the

�x� y� coordinates of each point vi in the ith object and setting all the mark
�elds to �� A general pass of the algorithm takes a point vj �say j � � on the
�rst pass�� scans through all n objects� computing the distance from vi to vj
for all points vi having mark equal to �� while keeping track of the point vi�

that has the least such distance� We then output vi� as the next point in the
tour� set vi� �s mark �eld to � and continue the search from vi� � The algorithm
terminates when we have visited all n points�

The initialization pass takes �n elementary operations �excluding an ap�
proximately equal number of loop and control operations�� A general pass
takes n steps to check the mark �eld� plus at most n�� distance calculations�
each of which takes � additions� � multiplications� and � comparison �to keep
track of the minimum distance�� �Notice that we do not need to calculate a
square root in the distance calculation� since we need only compare the val�
ues �xj � xi�

� � �yj � yi�
� to �nd the point vi� of minimum distance to vj ��

Since we execute the general step n � � times� we obtain an upper bound of
�n��n����n���n���� operations� That is� the Nearest Neighbor Algorithm
takes O�n�� arithmetic operations�

To analyze the algorithm in the bit operation model� we need to measure
the size of the input in a way that takes into acount the number of bits in the
�x� y� coordinates� A standard estimate is �nM � where M is the maximum of
� � dlog�jxj � ��e and � � dlog�jyj� ��e amongst the �x� y� coordinates� �We
take logs with base �� If t is a rational number� then dte is the smallest integer
that is greater than or equal to t and btc is the greatest integer that is less
than or equal to t�� The number of elementary operations in the algorithm
only changes in the fact that we must now read M �bit�long numbers �so the
initialization takes �nM � n steps�� and compute and compare the values

� PROBLEMS AND ALGORITHMS

�xj � xi�
� � �yj � yi�

� bitwise �which takes O�M�� operations�� So a quick
estimate of the number of bit operations is O�n�M���

Our main goal will be to present algorithms that� like the Nearest Neighbor
Algorithm� have running�time bounds of O�nk� for small values of k� whenever
possible� Such �polynomial�time algorithms� have the nice property that
their running times do not increase too rapidly as the problem sizes increase�
�Compare n� and �n for n � �����

The above analysis shows that the Nearest Neighbor Algorithm is� in fact�
polynomial�time in both the arithmetic model and the bit model� This will
occur very often in the book� Typically� we will work with the arithmetic
model� but a simple computation will show that the sizes of the numbers
appearing in the algorithm do not grow too fast �that is� if t is the number of
bits in the problem� then all of the numbers appearing will be O�tk� for some
�xed k�� and so a polynomial�time bound in the arithmetic model will directly
imply a polynomial�time bound in the bit model� Indeed� throughout the text�
whenever we say that an algorithm runs in �polynomial time�� we implicitly
mean that it runs in polynomial time in the bit model� It should be noted�
however� that there are important problems �such as the linear programming
problem� for which polynomial�time algorithms in the bit model are known�
but no algorithm is known that is polynomial�time in the arithmetic model�

We will discuss the issue of computational complexity further in Chapter
�

Exercises

���� Show that there are �n � ����� distinct tours for a Euclidean traveling
salesman problem on n points�

���� Suppose we have a computer capable of evaluating a feasible solution to
a traveling salesman problem in one nanosecond �� ���� seconds�� How
large a problem could we solve in �� hours of computing time� if we tried
all possible solutions� How would the size increase if we had a machine ten
times faster� One hundred times faster�

C H A P T E R �

Optimal Trees and Paths

�
� MINIMUM SPANNING TREES

A company has a number of o�ces and wants to design a communications
network linking them� For certain pairs v� w of o�ces it is feasible to build a
direct link joining v and w� and there is a known �positive� cost cvw incurred if
link vw is built� The company wants to construct enough direct links so that
every pair of o�ces can communicate �perhaps indirectly�� Subject to this
condition� the company would like to minimize the total construction cost�

The above situation can be represented by a diagram �Figure ���� with a
point for each o�ce and a line segment joining v and w for each potential link�
Notice that in this setting� unlike that of the Euclidean traveling salesman
problem� we do not have the possibility of a direct connection between every
pair of points� Moreover� the cost that we associate with the �feasible� pairs
of points need not be just the distance between them� To describe such
optimization problems more accurately we use the language of graph theory�

An �undirected� graph G consists of disjoint �nite sets V �G� of nodes� and
E�G� of edges� and a relation associating with each edge a pair of nodes� its
ends� We say that an edge is incident to each of its ends� and that each end
is adjacent to the other� We may write G � �V�E� to mean that G has node�
set V and edge�set E� although this does not de�ne G� Two edges having
the same ends are said to be parallel� an edge whose ends are the same is
called a loop� graphs having neither loops nor parallel edges are called simple�
We may write e � vw to indicate that the ends of e are v and w� Strictly
speaking� this should be done only if there are no parallel edges� In fact� in
most applications� we can restrict attention to simple graphs� A complete

�

�� OPTIMAL TREES AND PATHS

16
22

20

29

28

31

32

23

35
25

15

12

18

a

b

d

f

g

h

k

Figure ���� Network design problem

graph is a simple graph such that every pair of nodes is the set of ends of
some edge�

A subgraph H of G is a graph such that V �H� � V �G�� E�H� � E�G�� and
each e � E�H� has the same ends in H as in G� Although in general the sets
of nodes and edges do not determine the graph� this is so when we know the
graph is a subgraph of a given graph� So given a graph G and subsets P of
edges and Q of nodes� we may refer unambiguously to �the subgraph �P�Q�
of G�� For A � E� GnA denotes the subgraph H obtained by deleting A� that
is� V �H� � V and E�H� � EnA� Similarly� we can delete a subset B of V �
if we also delete all edges incident with nodes in B� The resulting subgraph
is denoted by GnB or by G�V nB�� it may be referred to as the subgraph of
G induced by V nB� For a � V or E� we may abbreviate Gnfag to Gna� A
subgraph H of G is spanning if V �H� � V �G��

Our standard name for a graph is G� and we often abbreviate V �G� to
V and E�G� to E� We usually reserve the symbols n and m to denote jV j
and jEj� respectively� We extend this and other notation to subscripts and
superscripts� For example� for graphs G� and G�� we use n

� to denote jV �G��j
and V� to denote V �G���

A path P in a graph G is a sequence v�� e�� v�� � � � � ek� vk where each vi is a
node� each ei is an edge� and for � � i � k� the ends of ei are vi�� and vi� We
say that P is from v� to vk� or that it is a �v�� vk��path� It is closed if v� � vk�
it is edge�simple if e�� � � � � ek are distinct� it is simple if v�� � � � � vk are distinct�
it is a circuit if it is closed� v�� � � � � vk�� are distinct� and k � �� We remark
that if there is a path from u to v� then there is a simple one� The length of P
is k� the number of edge�terms of P � The graph G is connected if every pair
of nodes is joined by a path� A node v of a connected graph G is a cut node
if G n v is not connected�

The requirement in the communications network design problem is that
the subgraph consisting of all the centers and of the subset of links that we
choose to build be connected� Suppose that each edge e of a graph G has a
positive cost ce� and the cost of a subgraph is the sum of the costs of its edges�
Then the problem is�

MINIMUM SPANNING TREES ��

Connector Problem

Given a connected graph G and a positive cost ce for each e � E�
�nd a minimum�cost spanning connected subgraph of G�

Using the fact that the costs are positive� we can show that an optimal sub�
graph will be of a special type� First� we make the following observation�

Lemma �
� An edge e � uv of G is an edge of a circuit of G if and only if
there is a path in Gne from u to v�

It follows that if we delete an edge of some circuit from a connected graph�
the new graph is still connected� So an optimal solution to the connector
problem will not have any circuits� A graph having no circuit is called a
forest� a connected forest is called a tree� Hence we can solve the connector
problem by solving the minimum spanning tree �MST� problem�

Minimum Spanning Tree Problem

Given a connected graph G and a real cost ce for each e � E� �nd
a minimum cost spanning tree of G�

We remark that the connector problem and the MST problem are equivalent
for positive edge costs� If we allow negative costs� this is no longer true�
We shall solve the minimum spanning tree problem for arbitrary edge�costs�
The possibility of negative costs in the connector problem is the subject of
Exercise ��	�

A second useful observation is the following�

Lemma �
� A spanning connected subgraph of G is a spanning tree if and
only if it has exactly n� � edges�

We leave its proof as Exercise ����
Surprisingly simple algorithms will �nd a minimum spanning tree� We

describe two such algorithms� both based on a �greedy� principle�that is�
they make the cheapest choice at each step�

Kruskal�s Algorithm for MST

Keep a spanning forest H � �V� F � of G� with F � � initially�
At each step add to F a least�cost edge e �� F such that H remains
a forest�
Stop when H is a spanning tree�

�� OPTIMAL TREES AND PATHS

If we apply Kruskal�s Algorithm to the graph of Figure ���� edges are cho�
sen in the order gk� gh� ab� af� ad� dg� This method was �rst described by
Kruskal ��
���� The second algorithm is known as �Prim�s Algorithm�� and
was described in Jarn !k ��
���� Prim ��
�	�� and Dijkstra ��
�
��

Prim�s Algorithm for MST

Keep a treeH � �V �H�� T � with V �H� initially frg for some r � V �
and T initially ��
At each step add to T a least�cost edge e not in T such that H
remains a tree�
Stop when H is a spanning tree�

If Prim�s Algorithm is applied to the graph of Figure ��� with r � a� edges
are chosen in the order ab� af� ad� dg� gk� gh�

We show� �rst� that these algorithms do �nd a minimum spanning tree�
and� second� that they have e�cient implementations�

Validity of MST Algorithms

We begin with a fundamental characterization of connectivity of a graph�
For a graph G � �V� E� and A � V � we denote by ��A� the set fe � E� e has
an end in A and an end in V nAg and by ��A� the set fe � E � both ends of
e are in Ag� A set of the form ��A� for some A is called a cut of G�

Theorem �
� A graph G � �V� E� is connected if and only if there is no
set A � V� � 	� A 	� V � with ��A� � ��

Proof� It is easy to see that� if ��A� � � and u � A� v �� A� then there can
be no path from u to v� and hence� if � 	� A 	� V� G is not connected�

We must show that� if G is not connected� then there exists such a set
A� Choose u� v � V such that there is no path from u to v� De�ne A to
be fw � V � there exists a path from u to wg� Then u � A and v �� A� so
� 	� A 	� V � We claim ��A� � �� For� if not� suppose that p � A� q �� A� and
e � pq � E� Then adding e� q to any path from u to p gives a path from u to
q� contradicting the fact that q �� A�

The following result allows us to show that both of the above minimum span�
ning tree algorithms �and� incidentally� a variety of others� work correctly�
Let us call a subset A of edges of G extendible to an MST if A is contained in
the edge�set of some MST of G�

Theorem �
	 Suppose that B � E� that B is extendible to an MST� and
that e is a minimum�cost edge of some cut D satisfying D
 B � �� Then
B � feg is extendible to an MST�

MINIMUM SPANNING TREES ��

Before proving Theorem ���� we use it to prove that both algorithms are
correct�

Theorem �
� For any connected graph G with arbitrary edge costs c� Prim�s
Algorithm �nds a minimum spanning tree�

Proof� We begin by showing that at each step� ��V �H�� is the set of edges f
such that adding f to T preserves the tree property of H � This follows from
the fact that adding f creates a circuit if and only if both ends of f are in
V �H�� by Lemma ���� and adding f makes H not connected if and only if
neither end of f is in V �H�� by Theorem ���� Hence the algorithm chooses
e � ��V �H�� such that ce is minimum� Now ��V �H�� cannot be empty until
H is spanning� since G is connected� Therefore� the �nal H determined by
the algorithm is a spanning tree of G� Moreover� since � is extendible to an
MST� at each step of the algorithm B � T � e� and D � ��V �H�� satisfy the
hypotheses of Theorem ���� Therefore� the edge�set of the spanning tree H
constructed by the algorithm is extendible to an MST� and hence H is an
MST�

For each node v of a graph G� let Cv be the set of nodes w such that there
is a �v� w��path in G� It is easy to see that v � Cw if and only if w � Cv� so
every node is in exactly one such set� The subgraphs of G of the form G�Cv �
are called the components of G� Obviously if G is connected� then it is its
only component�

Theorem �

 For any connected graph G with arbitrary edge costs c� Kruskal�s
Algorithm �nds a minimum spanning tree�

Proof� Let S�� � � � � Sk be the node�sets of the components of H � �V� F � at
a given step of the algorithm� Then f � E can be added to F and preserve
the forest property of H if and only if� by Lemma ���� the ends of f are in
di�erent Si� In particular� any element of ��Si�� for some i� has this property�
It follows that the algorithm does construct a spanning tree� since if H is not
connected and there is no such edge f � then ��Si� � � and � 	� Si 	� V � which
would imply that G is not connected� Moreover� if e is an edge chosen by the
algorithm� B is the edge�set of the current spanning forestH when e is chosen�
Si is the node�set of a component of H containing an end of e� and D � ��Si��
then ce � minfcf � f � Dg� Hence� since � is extendible to an MST� each
E�H� occurring in the algorithm is extendible to an MST by Theorem ���� It
follows that the tree constructed by the algorithm is an MST�

Finally� we need to provide a proof of Theorem ���� We use the following
lemma� whose proof is left as an exercise�

Lemma �
� Let H � �V� T � be a spanning tree of G� let e � vw be an edge
of G but not H� and let f be an edge of a path in T from v to w� Then the
subgraph H � � �V� �T � feg�nffg� is a spanning tree of G�

�	 OPTIMAL TREES AND PATHS

Proof of Theorem �
	� Let H � �V� T � be an MST such that B � T � If
e � T � then we are done� so suppose not� Let P be a path in H from v to w�
where vw � e� Since there is no path in GnD from v to w� there is an edge f
of P such that f � D� Then cf � ce� and so by Lemma ��	� �V� �T �feg�nffg�
is also an MST� Since D
B � �� it follows that f �� B� so B�feg is extendible
to an MST� as required�

E�ciency of Minimum Spanning Tree Algorithms

Let us begin by describing a standard way to store a graph G � �V� E� in a
computer� We keep for each v � V a list Lv of the edges incident with v� and
the other end of each edge� �Often the latter is enough to specify the edge��
If there is a cost associated with each edge� this is also stored with the edge�
Notice that this means that each edge and cost is stored twice� in two di�erent
lists� In all complexity estimations we assume that n � O�m� and that m �
O�n��� Situations in which these assumptions do not hold are usually trivial�
from the point of view of the problems we consider� Prim�s Algorithm can be
restated� using an observation from the proof of Theorem ���� as follows�

Prim�s Algorithm

Initialize H � �V �H�� T � as �frg� ���
While H is not a spanning tree

Add to T a minimum�cost edge from ��V �H���

Here is a straightforward implementation of this algorithm� We keep V �H�
as a characteristic vector x� �That is� xu � � if u � V �H�� and xu � �
if u �� V �H��� At each step we run through E� checking for each f � uv
whether f � ��V �H�� by checking whether xu 	� xv � and if so comparing cf
to the current minimum encountered� So e can be chosen in O�m� time� Then
x is updated by putting xv � � where v is the end of e for which xv was ��
This will be done n� � times� so we have a running time of O�nm��

Now we describe the improvement to this running time found by Prim and
Dijkstra� We keep� for each v �� V �H�� an edge h�v� joining v to a node of
H such that ch�v� is minimum� Then e can be chosen as the h�v� that has
smallest cost� The advantage of this is that only O�n� elementary steps are
required to choose e� The disadvantage is that the values h�v� need to be
changed after each step� Say that w was added to V �H� and v remains in
V nV �H�� Then h�v� may have to be changed� but only if there is an edge
f � wv with cf � ch�v�� We can do all of these changes by going through
Lw once� which is again O�n� work� So we do O�n� elementary steps per
step of the algorithm and get a running time of O�n��� an improvement on

MINIMUM SPANNING TREES ��

O�nm�� Further improvements are presented� for example� in the monograph
of Tarjan ��

���

Now we turn to the implementation of Kruskal�s Algorithm� Notice that�
once an edge e � vw becomes unavailable to add to F � that is� H contains a
path from v to w� it remains so� This means that �nding the next edge to be
added can be done simply by considering the edges in order of cost� That is�
Kruskal�s Algorithm can be restated� as follows�

Kruskal�s Algorithm for MST

Order E as fe�� � � � � emg� where ce� � ce� � � � � � cem �
Initialize H � �V� F � as �V� ���
For i � � to m

If the ends of ei are in di�erent components of H
Add ei to F �

Therefore� implementation of Kruskal�s Algorithm requires �rst sorting m
numbers� This can be accomplished in O�m logm� time by any one of a
number of sorting algorithms�

To do the other step� we keep the partition of V into �blocks�� the node�
sets of components of H � The operations to be performed are �m ��nds��
steps in which we �nd the block P containing a given v� and n� � �merges��
steps in which two blocks P� Q are replaced by P � Q� because an edge uv
with u � P� v � Q has been added to F � We keep for each v the name block�v�
of the block containing v� so each merge can be done by changing block�v� to
block�u� for every v � P and some u � Q� It is important always to do this for
the smaller of the two blocks being merged� that is� we take jP j � jQj �and so
we need to keep the cardinalities of the blocks�� To �nd the elements of blocks
quickly� we keep each block also as a linked list� After a merge� the lists can
also be updated in constant time� It is easy to see that the main work in this
phase of the algorithm is the updating of block�v�� which could require as much
as n�� elementary steps for a single merge� However� it can be proved that for
each v� block�v� changes at most logn times� See Exercise ����� Therefore� the
total work in the second phase of the algorithm is O�m logn� � O�m logm��
and we get a running time for Kruskal�s Algorithm of O�m logm�� Again� a
discussion of further improvements can be found in Tarjan ��

���

Minimum Spanning Trees and Linear Programming

There is an interesting connection between minimum spanning trees and
linear programming� Namely� there is a linear�programming problem for which
every minimum spanning tree provides an optimal solution� This fact will be
useful in Chapter 	� in connection with the traveling salesman problem�

�
 OPTIMAL TREES AND PATHS

Consider the following linear�programming problem� �For any set A and
vector p � RA and any B � A� we use the abbreviation p�B� to meanP

�pj � j � B�� We denote the set of real numbers by R� the set of integers
by Z� the set of nonnegative integers by Z��

Minimize cTx �����

subject to

x���S�� � jSj � �� for all S� � 	� S � V �����

x�E� � jV j � � �����

xe � �� for all e � E� �����

�Do not be alarmed by the number of constraints�� Let S be a nonempty
subset of nodes� let T be the edge�set of a spanning tree� and let x� be the
characteristic vector of T � Notice that x����S�� is just jT
 ��S�j� and since
T contains no circuit� this will be at most jSj � �� Also x� � � and x��E� �
jV j � �� so x� is a feasible solution of ������ Moreover� cTx� � c�T �� that is�
this feasible solution has objective value equal to the cost of the corresponding
spanning tree� So� in particular� the optimal objective value of ����� is a lower
bound on the cost of an MST� But in fact these two values are equal� a theorem
of Edmonds ��
	���

Theorem �
� Let x� be the characteristic vector of an MST with respect to
costs ce� Then x� is an optimal solution of ���	
�

Proof� We begin by writing an equivalent form of ����� that is easier to deal
with� For a subset A of the edges� let 	�A� denote the number of components
of the subgraph �V�A� of G� Consider the problem

Minimize cTx �����

subject to

x�A� � jV j � 	�A�� for all A � E �����

x�E� � jV j � � ���	�

xe � �� for all e � E� ���
�

We claim that the two problems have exactly the same feasible solutions�
and thus the same optimal solutions� It is easy to see that every constraint
of the form x���S�� � jSj � � is implied by an inequality of the type ������
namely take A � ��S� and observe that 	���S�� � jV n Sj � �� On the
other hand� we will show that every constraint of the form ����� is implied
by a combination of constraints from ����� and ������ Let A � E� and let
S�� � � � � Sk be the node�sets of the components of the subgraph �V�A�� Then

x�A� �Pk
i	� x���Si�� �

Pk
i	��jSij � �� � jV j � k�

Now it is enough to show that x� is optimal for problem ������ and further�
it is enough to show that this is true where x� is the characteristic vector of

MINIMUM SPANNING TREES ��

a spanning tree T generated by Kruskal�s Algorithm� We will show in this
case that x� is optimal by showing that Kruskal�s Algorithm can be used to
compute a feasible solution of the dual linear�programming problem to �����
that satis�es complementary slackness with x�� It is easier to write the dual
of ����� if we �rst replace minimize cTx by the equivalent maximize �cTx�
Now the dual problem is

Minimize
P

A�E�jV j � 	�A��yA ���
�

subject toP
�yA � e � A� � �ce� for all e � E ������

yA � �� for all A � E� ������

Notice that yE is not required to be nonnegative� Let e�� � � � � em be the order
in which Kruskal�s Algorithm considers the edges� �Here we are following the
second version of the statement of the algorithm�� Let Ri denote fe�� � � � � eig
for � � i � m� Here is the de�nition of our dual solution y�� We let y�A � �
unless A is one of the Ri� we put y�Ri

� cei�� � cei � for � � i � m� �� and we
put y�Rm

� �cem � It follows from the ordering of the edges that y�A � � for
A 	� E� Now consider the constraints ������� Then� where e � ei� we have

X
�y�A � e � A� �

mX
j	i

y�Rj
�

m��X
j	i

�cei�� � cei�� cem � �cei � �ce�

In other words� all of these inequalities hold with equality� So we now know
that y� is a feasible solution to ���
�� and also that the complementary slack�
ness conditions of the form� x�e � � implies equality in the corresponding
dual constraint� are satis�ed� There is only one more condition to check� that
y�A � � implies that x� satis�es ����� with equality� For this� we know that
A � Ri for some i� If ����� is not an equality for this Ri� then there is some
edge of Ri whose addition to T
Ri would decrease the number of components
of �V� T
Ri�� But such an edge would have ends in two di�erent components
of �V�Ri
 T �� and therefore would have been added to T by Kruskal�s Algo�
rithm� Therefore� x� and y� satisfy the complementary slackness conditions�
It follows that x� is an optimal solution to ������ and hence to ������

Notice that� since any spanning tree that provides an optimal solution of the
linear�programming problem must be an MST� and since the proof used only
the fact that T was generated by Kruskal�s Algorithm� we have actually given
a second proof that Kruskal�s Algorithm computes an MST�

Exercises

���� Find a minimum spanning tree in the graph of Figure ��� using� �a�
Kruskal�s Algorithm� �b� Prim�s Algorithm with the indicated choice of r�

�� OPTIMAL TREES AND PATHS

15

7

4

17

13

5

2

9

6

3

12

10

16

8

14

11

a

b

d

f

g

h
p

q

r

Figure ���� MST exercise

���� Find a dual solution to the linear�programming problem ��� for the graph
of Figure ����

���� Show that we may assume in the MST problem that the input graph is
simple�

���� Prove Lemma ����

���� Prove Lemma ��	�

���� Give an algorithm to �nd a minimum�cost forest of a graph� where edge�
costs are not assumed to be positive�

��	� Give an algorithm to solve the connector problem where negative costs
are allowed�

��
� Show that any MST problem can be reduced to an MST problem with
positive edge�costs�

��
� Prove that if H � �V� T � is an MST� and e � T � then there is a cut D
with e � D and ce � minfcf � f � Dg�

����� Prove that a spanning tree H � �V� T � of G is an MST if and only if for
every e � vw � EnT and every edge f of a �v� w� path in T � ce � cf �

����� Show that the following algorithm �nds an MST of a connected graph
G� Begin with H � G� At each step� �nd �if one exists� a maximum�cost
edge e such that Hne is connected� and delete e from H � Try this algorithm
on the example of Exercise ����

����� Show that there is an O�m� algorithm to �nd some spanning tree of a
connected graph�

����� In the implementation of Prim�s Algorithm� suppose we keep for each
v � V �H� an edge h�v� joining v to a node of V nV �H� whose cost is
minimum� Does this idea lead to an O�n�� running time�

����� For the implementation of Kruskal�s Algorithm described in the text�
show that for each v � V � block�v� is changed at most logn times�

����� Here is another way to do �nds and merges in Kruskal�s Algorithm�
Each block S has a distinguished node name�S� � S� Each v � S di�er�
ent from name�S� has a predecessor p�v� � S such that evaluating p�v��

SHORTEST PATHS ��

then p�p�v��� � � � � we eventually get to name�S�� With each name�S�� we
also keep jSj� Show how this idea can be used to implement Kruskal�s
Algorithm� so that the running time is O�m logm��

����� Suppose that� instead of the sum of the costs of edges of a spanning tree�
we wish to minimize the maximum cost of an edge of a spanning tree� That
is� we want the most expensive edge of the tree to be as cheap as possible�
This is called the minmax spanning tree problem� Prove that every MST
actually solves this problem� Is the converse true�

���	� Here is a di�erent and more general way to solve the minmax spanning
tree problem of Exercise ����� Show that the optimal value of the objective
is the smallest cost ce such that ff � f � E� cf � ceg contains the edge�set
of a spanning tree of G� Use this observation and the result of Exercise ����
to design an O�m�� algorithm� Can you improve it to O�m logm��

�
� SHORTEST PATHS

Suppose that we wish to make a table of the minimum driving distances from
the corner of Bay Street and Baxter Road to every other street corner in the
city of Bridgetown� Barbados� By this we mean that the routes must follow
city streets� obeying the directions on one�way streets� We can associate
a graph with the �network� of the city streets� but the notion of direction
imposed by the one�way streets leads to the idea of a directed graph�

A directed graph or digraph G consists of disjoint �nite sets V � V �G� of
nodes and E � E�G� of arcs� and functions associating to each e � E a tail
t�e� � V and a head h�e� � V � In other words� each arc has two end nodes�
to which it is said to be incident� and a direction from one to the other� The
street map of Bridgetown de�nes a digraph whose nodes are the street corners�
There is an arc for each section of street joining �directly� two corners� and
for each direction in which it is legal to drive along it�

The terminology and notation of digraph theory is similar to that of graph
theory� In fact� to every digraph there corresponds a graph� obtained by
letting the arcs be the edges and ignoring the arc directions� Whenever we
use a digraph term or notation without de�nition� it means what it does for
the associated undirected graph� Hence we get immediately notions like loop
and path in a digraph� In addition� notions of subdigraph and deletion of arcs
and nodes are de�ned exactly in analogy with corresponding terms for graphs�
But some di�erences also appear� Two arcs of a digraph are parallel if they
have the same head and the same tail� and a digraph is simple if it has no
loops or parallel arcs� Hence a digraph may be simple as a digraph� but not
as a graph� When we write e � vw for an arc of a digraph G� we mean that
v � t�e�� w � h�e�� An arc ei of a path P � v�� e�� v�� � � � � ek� vk is forward if
t�ei� � vi�� and h�ei� � vi and is reverse otherwise� A path in which every
arc is forward is a directed path or dipath� A dicircuit is a dipath that is also

�� OPTIMAL TREES AND PATHS

a circuit� If each e � E has a real cost ce� the cost c�P � �with respect to c� of

the dipath P is de�ned to be
Pk

i	� cei � In Figure ��� a digraph with arc�costs
is represented pictorially�

3

1

1

2

r

a

b

d

Figure ���� A Digraph with arc�costs

Shortest Path Problem

Input� A digraph G� a node r � V � and a real cost vector �ce � e �
E��
Objective� To �nd� for each v � V � a dipath from r to v of least
cost �if one exists��

There are many direct applications of shortest path problems� We shall see
that there are also many more di�cult problems in combinatorial optimization
for which solution algorithms use shortest path algorithms as subroutines�

One reason that a least�cost dipath to some v � V may not exist� is that
G has no dipath at all from r to v� We could modify the algorithms we shall
describe to detect this� but it is more convenient to be able to assume that it
never happens� One way to do this is to check for this condition in advance
by a graph�theoretic method� Instead� however� we can modify the given G so
that there is an arc from r to v for every v � V � Where this requires adding a
new arc� we assign it a su�ciently large cost �how large�� so that a least�cost
dipath will include it only if there was no dipath from r to v in the original
digraph G� So we assume that dipaths exist from r to all the nodes� Notice
that we may also assume that G is simple� �Why��

Here is the basic idea behind all the methods for solving the shortest path
problem� Suppose we know that there exists a dipath from r to v of cost yv
for each v � V � and we �nd an arc vw � E satisfying yv � cvw � yw� Since
appending vw to the dipath to v gives a dipath to w� we know that there
is a cheaper dipath to w� of cost yv � cvw� In particular� it follows that if
yv� v � V � is the least cost of a dipath to v� then y satis�es

yv � cvw � yw� for all vw � E� ������

SHORTEST PATHS ��

We call y � �yv � v � V � a feasible potential if it satis�es ������ and yr �
�� Notice that ������ is the essential requirement� since subtracting yr from
each yv preserves ������ and makes yr � �� Feasible potentials provide lower
bounds for shortest path costs� as the following result shows�

Proposition �
� Let y be a feasible potential and let P be a dipath from r
to v� Then c�P � � yv�

Proof� Suppose that P is v�� e�� v�� � � � � ek� vk� where v� � r and vk � v�
Then

c�P � �

kX
i	�

cei �
kX
i	�

�yvi � yvi��� � yvk � yv� � yv�

Here is another simple but useful observation� Since we want dipaths from
r to many other nodes� it may seem that the paths might use many arcs
altogether� In fact� however� all the shortest paths can be assumed to use
just one arc having head v for each node v 	� r� The reason is that subpaths
of shortest paths are shortest paths� that is� if v is on the least�cost dipath
P from r to w� then P splits into a dipath P� from r to v and a dipath P�
from v to w� Obviously� if P� is not a least�cost dipath from r to v� then
replacing it by a better one would also lead to a better dipath to w� Hence�
the only arc having head v that we really need is the last arc of one least�cost
dipath to v� Moreover� because there will be exactly n � � such arcs� and
the corresponding subgraph contains a path from r to every other node� it is
the arc�set of a spanning tree of G� So� just as in the connector problem of
Section ���� the solution takes the form of a spanning tree of G� However�
there are two crucial di�erences� First� not every spanning tree provides a
feasible solution to the shortest path problem� We need a directed spanning
tree rooted at r� meaning that it contains a dipath from r to v for every v � V �
Second� our objective here� in terms of the spanning tree� is not to minimize
the sum of the costs of its arcs� see Exercise ���
�

Ford�s Algorithm

Proposition ��
 provides a stopping condition for a shortest path algorithm�
Namely� if we have a feasible potential y and� for each v � V � a dipath from
r to v of cost yv� we know that each dipath is of least cost� Moreover� we
have already described the essence of a �descent� algorithm � if y describes
dipath costs and we �nd an arc vw violating ������� we replace yw by yv�cvw�
We can initialize such an algorithm with yr � � and yv �
 for v 	� r� Here
yv �
 simply means that we do not yet know a dipath to v� and
 satis�es
a�
 �
 and a �
 for all real numbers a� Since we wish� at termination
of the algorithm with an optimal y� to obtain also the optimal dipaths� we
add one more re�nement to the algorithm� The arcs vw of a least�cost dipath

�� OPTIMAL TREES AND PATHS

will satisfy yv � cvw � yw� so the last arc of the optimal path to w will be
the arc vw such that yw was most recently lowered to yv � cvw� Moreover�
the least�cost dipath to w must consist of a least�cost dipath to v with the
arc vw appended� so knowing this �last�arc� information at each node allows
us to trace �in reverse� the optimal dipath from r �because G is simple�� For
this reason� we keep a �predecessor� p�w� for each w � V and set p�w� to
v whenever yw is set to yv � cvw� Let us call an arc vw violating ������
incorrect� To correct vw means to set yw � yv � cvw and to set p�w� � v� To
initialize y and p means to set yr � �� p�r� � �� yv �
 and p�v� � �� for
v � V nfrg� �We are using p�v� � �� to mean that the predecessor of v is not
�yet� de�ned� but we want to distinguish r from such nodes� We are assuming
that ���� �� V �� The resulting algorithm is due to Ford ��
����

Ford�s Algorithm

Initialize y� p�
While y is not a feasible potential

Find an incorrect arc vw and correct it�

On the digraph of Figure ���� Ford�s Algorithm might execute as indicated
in Table ���� At termination� we do have a feasible potential y and paths of

Start vw � ra vw � r vw � ad vw � ba vw � ad

y p y p y p y p y p y p

r � � � � � � � � � � � �
a � �� � r � r � rb � b � b

b � �� � �� � r � r � r � r

d � �� � �� � �� � a � a � a

Table ���� Ford�s Algorithm applied to the �rst example

cost yv given �in reverse� by tracing the values of p back to r� and so we have
solved this �trivial� example� Notice that we must have yv � yp�v� � cp�v�v at
termination� but that this need not be true at all times � consider v � d after
the fourth iteration� In fact� yv � yp�v� � cp�v�v holds throughout� �Proof� It
held with equality when yv and p�v� were assigned their current values and
after that yp�v� can only decrease��

Figure ��� shows a second example and Table ��� represents the �rst few
iterations of Ford�s Algorithm on that instance� It shows a situation in which
the algorithm goes very badly wrong�

It is not hard to see that vw can be chosen as

ab� bd� da� ab� bd� da� ab� � � �

SHORTEST PATHS ��

2

-3

1

1

r

a

b

d

Figure ���� A second example

Start vw � ra vw � ab vw � bd vw � da vw � ab

y p y p y p y p y p y p

r � � � � � � � � � � � �
a � �� � r � r � r � d � d

b � �� � �� � a � a � a � a

d � �� � �� � �� � b � b � b

Table ���� Ford�s Algorithm applied to second example

inde�nitely� that the algorithm will not terminate� and that certain yv will
become arbitrarily small �that is� will go to �
�� This should not be such a
surprise� since if we are asked to �nd a least�cost dipath from r to a we can
repeat the sequence a� b� d as many times as we like before stopping at a� That
is� there are arbitrarily cheap dipaths to a� so there is no least�cost one� It is
apparent that if �G� c� has a negative�cost closed dipath �as in this example��
then there exist nodes to which no least�cost dipath exists� In addition to
wanting an algorithm that always terminates �quickly� we hope��� we want
the algorithm to recognize when a negative�cost dicircuit exists� �Exercise�
There is a negative�cost closed dipath if and only if there is a negative�cost
dicircuit��

In fact� not only are there many important applications in which negative
costs really arise� but there are several in which a negative�cost dicircuit is
actually the object of interest� As an example� consider the common situation
of currency exchange rates where� for each pair v� w of currencies� we are
quoted a rate rvw� the number of units of currency w that can be purchased
for one unit of currency v� Notice that if we convert a unit of currency � into
currency �� and then convert all of that into currency �� we shall have r��r��
units of currency �� This suggests looking for a sequence v�� v�� v�� � � � � vk

of currencies with v� � vk such that
kQ
i	�

rvi��vi � �� for on the associated

sequence of exchanges we would make money� We form a digraph G whose
nodes are the currencies� with an arc vw of cost cvw � � log rvw for each pair
v� w� Then such a sequence is money�making if and only if the associated

�	 OPTIMAL TREES AND PATHS

closed dipath of G has cost �
kP
i	�

log rvi��vi � � log

�
kQ
i	�

rvi��vi

�
� �� So we

can check for the existence of a money�making sequence by checking for the
existence of a negative�cost dicircuit in G�

Validity of Ford�s Algorithm

We shall show that� provided no negative�cost dicircuit exists� Ford�s Al�
gorithm does terminate and that it terminates with least�cost dipaths� This
algorithm is itself too crude to be directly useful� But all of the algorithms
we treat later are re�nements of it� so it is worthwhile �but a bit tedious� to
establish its properties� The main step is the following�

Proposition �
�� If �G� c� has no negative�cost dicircuit� then at any stage
of the execution of Ford�s Algorithm we have�

�i
 If yv 	�
� then it is the cost of a simple dipath from r to v�

�ii
 If p�v� 	� ��� then p de�nes a simple dipath from r to v of cost at most
yv�

Proof� Let yjv be the value of yv after j iterations� We know that yjv is the
cost of a dipath �if yjv 	�
�� so suppose that the dipath is not simple� Then
there is a sequence v�� v�� � � � � vk of nodes with v� � vk and iteration numbers
q� � q� � � � � � qk such that

yqi��vi�� � cvi��vi � yqivi � � � i � k�

The cost of the resulting closed dipath is

X
cvi��vi �

X�
yqivi � yqi��vi��

�
� yqkvk � yq�v� �

But yvk was lowered at iteration qk� so this dipath has negative cost� a con�
tradiction� and �i� is proved� Notice that it follows from �i� that yr � ��

The proof of �ii� is similar� If p does not de�ne a simple dipath from r to v�
then there is a sequence v�� v�� � � � � vk with v� � vk and p�vi� � vi�� for � �
i � k� The cost of the resulting closed dipath is � � since cp�v�v � yv � yp�v�
always holds� But consider the most recent predecessor assignment on the
dipath� say yp�v� was lowered� Then the above inequality is strict� so we have
a negative�cost closed dipath� a contradiction�

Finally� we need to show that the simple dipath to v has cost at most yv �
Let the dipath be v�� e�� v�� � � � � ek� vk where v� � r� vk � v and p�vi� � vi��
for � � i � k� Then its cost is �P�yvi � yvi��� � yv � yr � yv� as required�

SHORTEST PATHS ��

Theorem �
�� If �G� c� has no negative�cost dicircuit� then Ford�s Algorithm
terminates after a �nite number of iterations� At termination� for each v �
V� p de�nes a least�cost dipath from r to v of cost yv�

Proof� There are �nitely many simple dipaths in G� Therefore� by Proposi�
tion ����� there are a �nite number of possible values for the yv � Since at each
step one of them decreases �and none increases�� the algorithm terminates�
At termination� for each v � V � p de�nes a simple dipath from r to v of cost
� yv� But no dipath to v can have smaller cost than yv by Proposition ��
�

A consequence of the correctness of Ford�s Algorithm is the following fun�
damental fact� Notice that it applies even without any assumption about the
existence of dipaths�

Theorem �
�� �G� c� has a feasible potential if and only if it has no negative�
cost dicircuit�

Proof� We have already observed that if G has a feasible potential� then it
can have no negative�cost dicircuit� Now suppose that G has no negative�cost
dicircuit� Add a new node r to G with arcs from r to v of cost zero for every
v � V � Where G� is the new digraph and c� is the new cost vector� �G�� c�� has
no negative�cost dicircuit� because no dicircuit of G� goes through r� Now we
can apply Ford�s Algorithm to �G�� c��� and since there is a dipath from r to
all other nodes� it will terminate with a feasible potential� which clearly gives
a feasible potential for �G� c��

If there is no least�cost dipath to some node v� it is because there are
arbitrarily cheap nonsimple dipaths to v� So it is natural to ask why we do
not try to �nd a least�cost simple one� �One exists� because the number of
simple dipaths is �nite�� However� this problem is di�cult �unless there is no
negative�cost dicircuit� in the same sense that the traveling salesman problem
is di�cult� In fact� a solution to it could be used quite directly to solve the
Euclidean traveling salesman problem �Exercise ������

We shall see that Ford�s Algorithm� although it can be modi�ed to recognize
the existence of negative�cost dicircuits and hence made �nite in all cases
�Exercise ������ does not have acceptable e�ciency� �See Exercise ������ We
shall discuss a number of re�nements that have better e�ciency� although
several of them work only in special cases� All of them specify more narrowly
the order in which the arcs are considered in the basic step of the algorithm�
However� there is one simple observation that can be made for the case in
which the arc�costs are integers� Then each step of Ford�s Algorithm decreases
some yv by at least �� since all of these values are integer or
� We let C
denote �max�jcej � e � E� � �� Then we can prove the following�

Proposition �
�� If c is integer�valued� C is as de�ned above� and G has no
negative�cost dicircuit� then Ford�s Algorithm terminates after at most Cn�

arc�correction steps�

�
 OPTIMAL TREES AND PATHS

The proof of Proposition ���� is left to Exercise ���	� Several of the other
exercises investigate better bounds that can be obtained via arguments that
assume integral arc�costs and work with the size of the numbers� We shall see
in the text that there are good bounds that do not depend on the size of the
costs�

Feasible Potentials and Linear Programming

We have seen that feasible potentials provide lower bounds for dipath costs�
But in fact at termination of Ford�s Algorithm we have a feasible potential
and dipaths for which equality holds� One possible statement of this fact is
the following�

Theorem �
�	 Let G be a digraph� r� s � V and c � RE� If there exists a
least�cost dipath from r to v for every v � V � then

minfc�P � � P a dipath from r to sg � maxfys � y a feasible potentialg�

We wish to point out the connection between this statement and linear�
programming duality� The maximization in the theorem statement is obvi�
ously a linear�programming problem� It is convenient to drop the requirement
that yr � � and write that linear�programming problem as�

Maximize ys � yr ������

subject to

yw � yv � cvw� for all vw � E�

Where bv is de�ned to be � if v � s� �� if v � r and � otherwise� the dual
linear�programming problem of ������ is

Minimize
P

�cexe � e � E� ������

subject toP
�xwv � w � V� wv � E��P�xvw � w � V� vw � E� � bv � for all v � V

xvw � �� for all vw � E�

The Duality Theorem says that if one of the optimal values in ������� ������
exists� then they both do� and they are equal� Notice that any dipath P from
r to s provides a feasible solution to ������� as follows� De�ne �xPe � e � E�
by� xPe is the number of times that arc e is used in P � �In particular� if P is
simple� then xP is f�� �g�valued� and is the characteristic vector of P �� Then
the objective function of ������ for x � xP is just the cost of P � Therefore�
Theorem ���� implies that� when shortest paths exist� ������ has an optimal

SHORTEST PATHS ��

solution that is the characteristic vector of a simple dipath� As we shall see
�Chapter 	�� this result is equivalent to the statement that the vertices of the
polyhedron of feasible solutions to ������ are characteristic vectors of simple
dipaths�

Since we have solved the linear�programming problem ������ with Ford�s
Algorithm� one might wonder whether there is any connection between that
algorithm and the simplex algorithm� The simplex algorithm keeps a set T
of �basic� arcs �corresponding to the variables in ������ that are basic�� a
feasible solution x of ������� and a vector y � RV satisfying

xe � �� for all e �� T ������

yv � yw � cvw� for all vw � T� ������

In each iteration it proceeds to a new such set by replacing one of the arcs
in the set by one outside the set� The set T of basic arcs must correspond
to a maximal linearly independent set of columns �that is� a column basis�
fae � e � Tg of the constraint matrix A � fae � e � Eg of the equality
constraints of ������� This matrix is called the incidence matrix of G� Its
column bases can be characterized in a very nice way� We state the result
here and leave the proof to Exercise ���
�

Proposition �
�� Let G be a connected digraph and A � fae � e � Eg be
its incidence matrix� A set fae � e � Tg is a column basis of A if and only if
T is the arc�set of a spanning tree of G�

Ford�s Algorithm� once it has found paths to all nodes� does have such a set
T � namely� fp�v�v � v � V nfrgg� �It is possible to require that the simplex
method for ������ keep such a directed spanning tree�� Moreover� the dipath
from r to s determined by p uses only arcs from T � so its characteristic vector
xP satis�es ������� However� for this T � ������ becomes yp�v� � cp�v�v � yv �
a relation that is generally not enforced by Ford�s Algorithm� Notice that
enforcing this �and yr � �� would mean that the dipath to v determined by
p would have cost exactly yv� A spanning tree encountered by the simplex
method need not have the property that every node other than r is the head
of exactly one arc� but if it does encounter such a tree� then there is always
a choice of the arc to delete �namely� the arc of the tree having the same
head as the incoming arc� so that the property is kept� So �a version of� the
simplex method moves from spanning tree to spanning tree� as does Ford�s
Algorithm� but the former method keeps the path costs determined by the
current tree� In fact Ford�s Algorithm may do a correction step on an arc of
the form p�v�v� so that the tree does not change� but y does� In this sense�
each step of the simplex algorithm could be regarded as a sequence of steps
of Ford�s Algorithm� one ordinary step followed by several steps that do not
change the tree� until y �catches up� to the tree� We will learn more about
such �network� versions of the simplex method in Chapter ��

�� OPTIMAL TREES AND PATHS

Re�nements of Ford�s Algorithm

The basic step of Ford�s Algorithm could be written as

Choose an arc e�
If e is incorrect� then correct it�

Notice that� assuming that we store the values of y and p appropriately� we
can perform each basic step in constant time� But the number of basic steps
depends crucially on the order in which arcs e are chosen� Suppose that
arcs are chosen in the sequence f�� f�� f�� � � � � f�� which we denote by S� �In
general� there will be repetitions�� There are choices for S that result in very
bad performance of the algorithm� �For example� see Exercise ������ The
basic idea for looking for good choices for S is simple� Denote by P the
dipath v�� e�� v�� � � � � ek� vk from r � v� to v � vk� After the �rst time that
Ford�s Algorithm considers the arc e� we will have yv� � yr � ce� � ce� �
After the �rst subsequent time that the algorithm considers e�� we will have
yv� � yv��ce� � ce��ce� � Continuing� once e�� e�� � � � � ek have been considered
in that order� we will have yv � c�P �� We say that P is embedded in S if its arcs
occur �in the right order� but not necessarily consecutively� as a subsequence
of S� Our discussion can be summarized as follows�

Proposition �
�
 If Ford�s Algorithm uses the sequence S� then for every
v � V and for every path P from r to v embedded in S� we have yv � c�P ��

It follows that� if S has the property that for every node v there is a least�cost
dipath to v embedded in S� then S will bring the algorithm to termination�
We want S to have this property� and we also want S to be short� since its
length will be the running time of the algorithm�

The Ford�Bellman Algorithm

A simple way to use Proposition ���� is to observe that every simple dipath
in G is embedded in S��S�� � � � �Sn��� where for each i� Si is an ordering of
E� When we use such an ordering in Ford�s Algorithm we speak of a sequence
of �passes� through E� Since each arc is handled in constant time per pass�
we get a shortest path algorithm that runs in time O�mn�� We call it the
Ford�Bellman Algorithm� because Bellman ��
�
� seems to have been the �rst
to prove a polynomial bound for such an algorithm� We want the algorithm
also to recognize whether there exists a negative�cost dicircuit� We know
that� if there is no negative�cost dicircuit� then n� � passes are su�cient to
determine a feasible potential� Therefore� if y is not a feasible potential after
n� � passes� then there exists a negative�cost dicircuit�

SHORTEST PATHS ��

Ford�Bellman Algorithm

Initialize y� p�
Set i � ��
While i � n and y is not a feasible potential

Replace i by i� ��
For e � E

If e is incorrect
Correct e�

Theorem �
�� The Ford�Bellman Algorithm correctly computes a least�cost
dipath from r to v for all v � V �if i � n at termination
� or correctly detects
that there is a negative�cost dicircuit �if i � n at termination
� In either case
it runs in time O�mn��

We shall see that the running time of O�mn� can be improved if special
assumptions are made about G or c� However� in the general case� no better
bound is currently known� Here we mention some further re�nements that
speed up the algorithm in practice� Most of them are based on the natural idea
of scanning nodes� that is� considering consecutively all the arcs having the
same tail� �We point out that the simplex method is not based on scanning�
For another such example� see Exercise ������

A usual representation of a digraph is to store all the arcs having tail v in
a list Lv� To scan v means to do the following�

For vw � Lv
If vw is incorrect

Correct vw�

A natural further re�nement of the Ford�Bellman Algorithm is to replace the
last three lines in its statement by

For v � V
Scan v�

It is obvious that� if yv has not decreased since the last time v was scanned�
then v need not be scanned� Taking advantage of this observation saves time�
One way to do that is to keep a set Q of nodes to be scanned� adding a
node v to Q when yv is decreased �if v �� Q� and choosing the next node
to be scanned from Q �and deleting it from Q�� Initially Q � frg� and the
algorithm terminates when Q becomes empty� We keep Q both as a list and

�� OPTIMAL TREES AND PATHS

a

b

d

f g

hi

j

Figure ���� Digraph having a topological sort

a characteristic vector� so that we can add� delete� and check membership
in Q in constant time� In order to do the �rst two operations in constant
time� we add and delete at the ends of Q� If we add at one end� the �back��
and delete at the other� the �front�� we are keeping Q as a ��rst in� �rst
out� list or a queue� In this case it can be checked �Exercise ����� that the
algorithm is equivalent to a re�nement of the Ford�Bellman Algorithm and
so has a running time of O�mn�� This re�nement also works well in practice�
but there are some variants that are even faster� The paper of Gallo and
Pallottino ��

�� contains more information�

Acyclic Digraphs

Suppose that the nodes of G can be ordered from left to right so that all
arcs go from left to right� More precisely� suppose that there is an ordering
v�� v�� � � � � vn of V so that vivj � E implies i � j� We call such an ordering a
topological sort� In the digraph of Figure ���� d� h� i� g� j� b� a� f is a topological
sort�

If we order E in the sequence S so that vivj precedes vkv� if i � k� then
every dipath of G is embedded in S� It follows that Ford�s Algorithm will
solve the shortest path problem in just one pass through E� There is a simple
description of the class of digraphs for which this observation works� It is
obvious that if G has a topological sort� then it has no dicircuit at all �and
hence no negative�cost dicircuit�� in other words� G is acyclic� Conversely�
we claim that every acyclic digraph has a topological sort� To see this� �rst
observe that each acyclic digraph has a candidate for v�� that is� a node v
such that uv � E for no u � V � �Why�� Moreover� since Gnv is acyclic� this
can be repeated� This idea can be turned into an O�m� algorithm to �nd a
topological sort �Exercise ������ Notice that� if r � vi with i � �� then there
can be no dipath from r to v�� � � � � vi��� so these can be deleted� Hence we
may assume that v� � r�

SHORTEST PATHS ��

Shortest Paths in an Acyclic Digraph

Find a topological sort v�� � � � � vn of G with r � v��
Initialize y� p�
For i � � to n

Scan vi�

Theorem �
�� The shortest path problem on an acyclic digraph can be solved
in time O�m��

Nonnegative Costs

In many applications of the shortest path problem we know that c � ��
In fact� probably this is the situation more often than not� so this is an
extremely important special case� Again it is possible to design a correct
�one�pass� algorithm� Moreover� the ordering is determined from an ordering
of the nodes as in the acyclic case� However� this ordering is computed during
the course of execution� Namely� if v�� v�� � � � � vi have been determined and
scanned� then vi�� is chosen to be the unscanned node v for which yv is
minimum� In this situation we have the following result�

Proposition �
�� For each w � V � let y�w be the value of yw when w is
chosen to be scanned� If u is scanned before v� then y�u � y�v�

Proof� Suppose y�v � y�u and let v be the earliest node scanned for which
this is true� When u was chosen to be scanned� we had y�u � yu � yv � so
yv was lowered to a value less than y�u after u was chosen to be scanned but
before v was chosen� So yv was lowered when some node w was scanned� and
it was set to y�w � cwv� By choice of v� y�w � y�u and since cwv � �� we have
y�v � y�u� a contradiction�

We claim that after all nodes are scanned� we have yv � cvw � yw for all
vw � E� Suppose not� Since this was true when v was scanned� it must be
that yv was lowered after v was scanned� say while q was being scanned� But
then yv � y�q � cqv � y�v since q was scanned later than v and cqv � �� a
contradiction� So the following algorithm� due to Dijkstra ��
�
�� is valid�

�� OPTIMAL TREES AND PATHS

2

4

3

1

3

2

2

4r

a

b

p

q

Figure ���� Example for Dijkstra�s Algorithm

Dijkstra�s Algorithm

Initialize y� p�
Set S � V �
While S 	� �

Choose v � S with yv minimum�
Delete v from S�
Scan v�

For example� in the digraph of Figure ���� the nodes will be scanned in the
order r� a� p� b� q�

Actually� one can slightly improve the algorithm by observing that� for
w �� S� yv � cvw � yw follows from yv � yw� So the test that yv � cvw � yw
could be done only for w � S� The running time of the algorithm is O�m�
plus the time to �nd v� But this simple step requires considerable time� k� �
comparisons when jSj � k and n� � � n� � � � � � � � � O�n�� comparisons
in all� So the running time of a straightforward implementation is O�n���

Theorem �
�� If c � �� then the shortest path problem can be solved in time
O�n���

A number of improvements are discussed in Tarjan ��

���
Shortest path problems with nonnegative costs arise frequently in appli�

cations� so it is convenient to have a notation for the time required to solve
them� We use S�n�m� for the time needed to solve a nonnegative�cost shortest
path problem on a digraph having n nodes and m arcs�

Feasible Potentials and Nonnegative Costs

If we happen to know a feasible potential y� we can use it to transform
the cost vector c to a nonnegative one c�� Namely� put c�vw � cvw � yv � yw�
This does not a�ect the least�cost dipaths� since any �r� s��dipath P satis�es
c��P � � c�P � � yr � ys� Hence Dijkstra�s Algorithm can be used�

SHORTEST PATHS ��

There are several applications of this simple idea� We shall see an important
one in Chapter �� Meanwhile� here is another useful one� The �all pairs�
shortest path problem is to �nd a least�cost dipath from r to v for every
choice of r and v� There are direct algorithms for this problem but� from the
point of view of running time� it seems to be better just to use a standard
algorithm n times� Hence we get a running time of O�nS�n�m�� in the case
of nonnegative costs� and O�n�m� in general� But the latter time can be
improved� We �nd a feasible potential in time O�nm� with Ford�Bellman�
then transform to nonnegative costs� and then use Dijkstra n �or n��� times�
resulting in an overall running time of O�nS�n�m���

Unit Costs and Breadth�First Search

The problem of �nding a dipath from r to v having as few arcs as possible
is� of course� a kind of shortest path problem� namely� it is the case where
all arc�costs are �� It is interesting to see how Dijkstra�s Algorithm can be
improved in this situation�

Proposition �
�� If each ce � �� then in Dijkstra�s Algorithm the �nal value
of yv is the �rst �nite value assigned to it� Moreover� if v is assigned its �rst
�nite yv before w is� then yv � yw�

Proof� Notice that these statements are obviously true for v � r� If v 	� r�
the �rst �nite value assigned to yv is y�w��� where y�w is the �nal value of yw�
Moreover� any node j scanned later than w has y�j � y�w by Proposition ���
�
so yv will not be further decreased� Similarly� any node q assigned its �rst
�nite yq after v� will have yq � y�j � � � y�w � � � yv�

When picking v � S such that yv is minimum� we choose among the set
Q of those unscanned nodes v having yv �nite� Proposition ���� tells us that
we can simply choose the element of Q that was added to Q �rst� that is� we
can keep Q as a queue� and v can be found in constant time� So Dijkstra�s
Algorithm has a running time of O�m� in this case� Notice that we no longer
need to maintain the yv �although we may want to�� This algorithm is often
called breadth��rst search�

�	 OPTIMAL TREES AND PATHS

Breadth��rst Search

Initialize p�
Set Q � frg�
While Q 	� �

Delete v from the front of Q�
For vw � L�v�

If p�w� � ��
Add w to the back of Q�
Set p�w� � v�

Exercises

���
� Show by an example that a spanning directed tree rooted at r can be of
minimum cost but not contain least�cost dipaths to all nodes� Also show
the converse� that it may contain least�cost dipaths but not be of minimum
cost�

���
� Show by an example that a subpath of a shortest simple dipath need
not be a shortest simple dipath� if a negative�cost dicircuit exists�

����� Modify Ford�s Algorithm �in a simple way� so that it always terminates�
recognizing the existence of a negative�cost dicircuit if there is one�

����� Solve the shortest path problem for the digraph described by the fol�
lowing lists� using �a� Ford�Bellman using node�scanning and a queue� �b�
the acyclic algorithm� �c� Dijkstra� V � fr� a� b� d� f� g� h� j� kg� and for each
v � V the elements of the list Lv are the pairs �w� cvw� for which vw � E�
Lr � �a� ��� �k� 	�� �b� ��� La � �d�
�� �f� ��� Lb � �k� ��� �f� ��� Ld � �h� ��� Lf �
�g� ��� �j� 	�� Lg � �h� ��� �j� ��� Lj � �k� ��� �h� ��� Lk � �d� ��� �h�
�� �g� ��� �f� ���
�Lh is empty��

����� We are given a digraph G � �V�E�� c � RE � and disjoint sets R� S � V �
The problem is to �nd a least�cost dipath joining a node in R to a node
in S� Show that this problem can be reduced to an ordinary shortest path
problem�

����� Suppose that we are given a shortest path problem on a digraph G such
that a node w is incident with exactly two arcs� Explain how the solution
of a shortest path problem on a smaller digraph yields the solution to the
given problem�

����� There are certain street corners in Bridgetown such that the street on
which a car leaves the intersection may depend on the street on which it
entered �for example� �no left turn��� How can a digraph� and arc costs�
be de�ned so that the dipaths correspond to legal routes�

SHORTEST PATHS ��

�
��
 �Edmonds� Consider the digraph Gk of Figure ��	� Show that Ford�s
Algorithm �in fact� the simplex method� can take more than �k steps to
solve the shortest path problem on Gk� Hint� Use induction� Try to make
the algorithm solve the problem on Gk�� twice�

0

0

1

0 0 0

0 0 0

2 k 2 k-1 2

2 k 2 k-1 2

r

Figure ��	� A bad example for the Ford and simplex algorithms

����� Prove that the problem of �nding a least�cost simple dipath joining two
�xed nodes in a digraph is hard� assuming only that the traveling salesman
problem is hard�

���	� Prove Proposition �����

�
��
 Prove Proposition ����� Hint� To prove that if T does not contain the
arc�set of a circuit� then the corresponding columns are linearly indepen�
dent� use the fact that if a forest has at least one arc� then there is a node
incident to just one of its arcs�

���
� Generalize Proposition ��
 in the following way� Suppose that we have
dipath costs yv� v � V such that for every arc vw we have yw�cvw�yv � K�
Prove that for each node v� yv is within Kn of being optimal�

����� A �scaling� approach to improving the complexity of Ford�s Algorithm
for integral arc�costs might work as follows� For some integer p suppose
that in �stage p�� we do correction steps only for arcs vw that satisfy
yw� yv � cvw � �p� If there are no more arcs of this sort� then we decrease
p by �� When we get to p � � we are just doing Ford�s Algorithm� Use
Exercise ���
 to prove a bound on the number of steps in each stage after
the �rst one� Then choose the �rst value of p so that the bound also applies
for the �rst stage� What is the overall running time�

�
��
 Here is a variant on the approach of doing only large correction steps in
Ford�s Algorithm� Suppose that at each step we choose to correct the arc
that maximizes yw� cvw�yv� �Of course� this requires some extra work to
identify the arc�� Let gap�k� denote the di�erence between the value after k
iterations of

P
�yv � v � V � and its minimum value� What will happen in

the �rst n� � iterations� To analyze the number of subsequent iterations�
use the result of Exercise ���
 to prove that gap�k��� � gap�k������n���
and hence prove a bound on the number of steps� �You may need the
inequality �� x � e�x��

�
 OPTIMAL TREES AND PATHS

����� Prove that the version of Ford�s Algorithm that uses node�scanning and
a queue to store the nodes to be scanned� has a running time of O�nm��

����� Give an O�m� algorithm to �nd in a digraph either a dicircuit or a
topological sort�

����� We are given numbers a�� � � � � an� We want to �nd i and j� � � i � j �
n� �� so that

j��P
k	i

ak is minimized� Give an O�n� algorithm�

����� Suppose that we are given tasks t�� t�� � � � � tk� Each task ti has a pro�
cessing time pi� For certain pairs �i� j�� ti must precede tj � that is� the
processing of tj cannot begin until the processing of ti is completed� We
wish to schedule the processing of the tasks so that all of the tasks are
completed as soon as possible� Solve this problem as a maximum feasible
potential problem on an acyclic digraph�

����� Give an example to show that Dijkstra�s Algorithm can give incorrect
results if negative costs are allowed�

���	� Consider the least cost path problem for undirected graphs� Show that
if the costs can be assumed to be nonnegative� then this problem can be
solved by reducing it to a digraph problem� When costs are allowed to be
negative� what di�culty arises�

���
� Consider the problem of �nding a minimum cost dipath with an odd
�even� number of arcs from r to s in a digraph G having nonnegative arc
costs� Notice that the dipath may not be simple� Show how to solve this
problem by solving a shortest path problem in a digraph having two nodes
for each node di�erent from r and s�

���
� Consider the minmax path problem� Given a digraph G with arc�costs
and nodes r and s� �nd an �r� s� dipath P whose maximum arc�cost is as
small as possible� Show how the idea of Exercise ���	 can be applied to
solve this problem� What is the running time�

�
	�
 Try to adapt Dijkstra�s Algorithm to solve the minmax path problem�
Prove that your algorithm works and give the running time�

����� Describe a direct all�pairs shortest�path algorithm based on the following
idea� Given a set S � V � let yvw� for v� w � V � denote the least cost of a
�v� w��dipath whose internal nodes are from S� Compute this information
beginning with S � �� adding one node at a time to S until S � V �

����� Consider the following re�nement of Ford�s Algorithm� Let v�� � � � � vn
be an ordering of V � with r � v�� Split E into E� and E�� where E� �
fvivj � i � jg� Now order E� into a sequence S�� so that vivj precedes vkv�
if i � k and order E� into a sequence S� so that vivj precedes vkv� if i � k�
Now use the sequence S��S��S��S�� � � � in Ford�s Algorithm� How does the
running time compare to that of Ford�Bellman�

B i b l i o g r a p h y

��
	�� A�V� Aho� J�E� Hopcroft� and J�D� Ullman� The Design and Analysis
of Computer Algorithms� Addison�Wesley� Reading� �
	��

��

	� R�P� Anstee� �A polynomial algorithm for b�matchings� An alterna�
tive approach�� Information Processing Letters �� ��

	� ���#��	�

��

�� D� Applegate� R� Bixby� V� Chv atal� and W� Cook� �Finding cuts in
the TSP�� DIMACS Technical Report
����� �

��

��

�� D� Applegate and W� Cook� �Solving large�scale matching problems��
in� Algorithms for Network Flows and Matching �D�S� Johnson and
C�C� McGeoch� eds��� American Mathematical Society� �

�� pp� ��	#
�	��

��

�� J� Ar aoz� W�H� Cunningham� J� Edmonds� and J� Green�Kr otki� �Re�
ductions to ��matching polyhedra�� Networks �� ��

�� ���#�
��

��

�� M�O� Ball and U� Derigs� �An analysis of alternative strategies for
implementing matching algorithms�� Networks �� ��

�� ��	#��
�

��

� F� Barahona and W�H� Cunningham� �On dual integrality in match�
ing problems�� Operations Research Letters
 ��

� ���#��

��
�
� R�E� Bellman� �On a routing problem�� Quarterly of Applied Mathe�
matics �� ��
�
�
	#
��

��
�	� C� Berge� �Two theorems in graph theory�� Proceedings of the Na�
tional Academy of Sciences �U�S�A�� �� ��
�	�
��#
���

��
�
� C� Berge� �Sur le couplage maximum d�un graphe�� Comptes Rendus
de l�Acad�emie des Sciences Paris� series 	� Math�ematique ��	 ��
�
��
��
#��
�

��

�� D� Bertsimas� C� Teo� and R� Vohra� �Nonlinear relaxations and im�
proved randomized approximation algorithms for multicut problems��
in� Proceedings of the �th IPCO Conferences �E� Balas and J� Clausen�
eds��� Lecture Notes in Computer Science
��� Springer� �

�� pp� �
#
�
�

��
��� G� Birkho�� �Tres observaciones sobre el algebra lineal�� Revista Fac�
ultad de Ciencias Exactas� Puras y Aplicadas Universidad Nacional
de Tucuman� Serie A �Matematicas y Fisica Teorica
 � ��
��� ��	#
����

���

��� BIBLIOGRAPHY

��
��� R�G� Busacker and P�J� Gowen� �A procedure for determining a family
of minimal cost network �ow patterns�� Technical Paper ��� Opera�
tions Research O�ce� �
���

��

�� R�W� Chen� Y� Kajitani� and S�P� Chan� �A graph theoretic via mini�
mization algorithm for two�layer printed circuit boards�� IEEE Trans�
actions on Circuits and Systems �� ��

�� �
�#�

�

��

	� C�S� Chekuri� A�V� Goldberg� D�R� Karger� M�S� Levine� and C� Stein�
�Experimental study of minimum cut algorithms�� in� Proceedings of
the �th Annual ACM�SIAM Symposium on Discrete Algorithms� �

	�
pp� ���#����

��

� J� Cheriyan and S�N� Maheshwari� �Analysis of pre�ow push algo�
rithms for maximum network �ow�� SIAM Journal on Computing �

��

� ���	#��
��

��
	�� N� Christo�des� �Worst�case analysis of a new heuristic for the trav�
elling salesman problem�� Report �

� Graduate School of Industrial
Administration� Carnegie Mellon University� Pittsburgh� PA� �
	��

��
	�� V� Chv atal� �Edmonds polytopes and a hierarchy of combinatorial
problems�� Discrete Mathematics � ��
	�� ���#��	�

��
	�a� V� Chv atal� �Edmonds polytopes and weakly hamiltonian graphs��
Mathematical Programming � ��
	�� �
#���

��

�� V� Chv atal� Linear Programming� Freeman� New York� �

��

��

�� V� Chv atal� �Cutting planes in combinatorics�� European Journal of
Combinatorics � ��

�� ��	#����

��

� V� Chv atal� W� Cook and M� Hartmann� �On cutting�plane proofs
in combinatorial optimization�� Linear Algebra and its Applications
���)��� ��

� ���#�

�

��

	� W� Cook and A� Rohe� �Computing minimum�weight perfect match�
ings�� Report Number
	
��� Research Institute for Discrete Mathe�
matics� Universit(at Bonn� �

	�

��
	�� W�H� Cunningham��A network simplex method�� Mathematical Pro�
gramming �� ��
	�� ���#����

��
	
� W�H� Cunningham� �Theoretical properties of the network simplex
method�� Mathematics of Operations Research � ��
	
� �
�#��
�

��
	
� W�H� Cunningham and A�B� Marsh III� �A primal algorithm for op�
timum matching�� Mathematical Programming Study
 ��
	
� ��#	��

��
��� G� Dantzig� R� Fulkerson� and S� Johnson� �Solution of a large�scale
traveling�salesman problem�� Operations Research � ��
��� �
�#����

��

�� U� Derigs and A� Metz� �Solving �large scale� matching problems
combinatorially�� Mathematical Programming �� ��

�� ���#����

��
�
� E� Dijkstra� �A note on two problems in connexion with graphs��
Numerische Mathematik � ��
�
� ��
#�	��

BIBLIOGRAPHY ���

��
	�� E�A� Dinits� �Algorithm for solution of a problem of maximum �ow
in a network with power estimation�� Soviet Mathematics Doklady ��
��
	�� ��		#��
��

��

	� H� Edelsbrunner� Algorithms in Combinatorial Geometry� Springer�
Verlag� Berlin� �

	�

��
��� J� Edmonds� �Paths� trees� and �owers�� Canadian Journal of Math�
ematics �	 ��
��� ��
#��	�

��
��a� J� Edmonds� �Maximum matching and a polyhedron with �� ��
vertices�� Journal of Research of the National Bureau of Standards
�B� �
 ��
��� ���#����

��
	�� J� Edmonds� �Matroids� submodular functions� and certain polyhe�
dra�� in� Combinatorial Structures and Their Applications �R�K� Guy�
H� Hanani� N� Sauer� and J� Sch(onheim� eds��� Gordon and Breach�
New York� �
	�� pp� �
#
	�

��
	�� J� Edmonds� �Matroids and the greedy algorithm�� Mathematical
Programming � ��
	�� ��	#����

��
��� J� Edmonds and D�R�Fulkerson� �Transversal and matroid partition��
Journal of Research of the National Bureau of Standards B �
 ��
���
��	#����

��
		� J� Edmonds and R� Giles� �A min�max relation for submodular func�
tions on graphs�� in� Studies in Integer Programming �P�L� Hammer�
et al� eds��� Annals of Discrete Mathematics � ��
		� �
�#����

��
	�� J� Edmonds and E�L� Johnson� �Matching� A well�solved class of
integer linear programs�� in� Combinatorial Structures and their Ap�
plications �R�K� Guy� H� Hanani� N� Sauer� and J� Sch(onheim� eds���
Gordon and Breach� New York� �
	�� pp�

#
��

��
	�� J� Edmonds and E�L� Johnson� �Matching� Euler tours� and the Chi�
nese postman�� Mathematical Programming � ��
	��

#����

��
�
� J� Edmonds� E�L� Johnson� and S�C� Lockhart� �Blossom I� a code for
matching�� unpublished report� IBM T�J� Watson Research Center�
Yorktown Heights� New York�

��
	�� J� Edmonds and R�M� Karp� �Theoretical improvements in algorith�
mic e�ciency for network �ow problems�� Journal of the Association
for Computing Machinery �
 ��
	�� ��
#����

��
��� L�R� Ford� Jr�� �Network �ow theory�� Paper P�
��� RAND Corpo�
ration� Santa Monica� California� �
���

��
��� L�R� Ford� Jr� and D�R� Fulkerson� �Maximal �ow through a net�
work�� Canadian Journal of Mathematics
 ��
��� �

#����

��
�	� L�R� Ford� Jr� and D�R� Fulkerson� �A primal�dual algorithm for the
capacitated Hitchcock problem�� Naval Research Logistics Quarterly
� ��
�	� �	#���

�	� BIBLIOGRAPHY

��
�
� L�R� Ford� Jr� and D�R� Fulkerson� �Suggested computation for max�
imal multi�commodity network �ows�� Management Science � ��
�
�

	#����

��
��� L�R� Ford� Jr� and D�R� Fulkerson� Flows in Networks� Princeton
University Press� Princeton� New Jersey� �
���

��

�� A� Frank� �A weighted matroid intersection algorithm�� Journal of
Algorithms � ��

�� ��
#����

��

�� S� Fujishige� �A capacity�rounding algorithm for the minimum�cost
circulation problem� A dual framework for the Tardos algorithm��
Mathematical Programming �� ��

�� �

#��
�

��

�� H� Gabow� �Data structures for weighted matching and nearest com�
mon ancestors�� in� Proceedings of the 	st Annual ACM�SIAM Sym�
posium on Discrete Algorithms� ACM� New York� �

�� pp� ���#����

��
�	� D� Gale� �A theorem on �ows in networks�� Paci�c Journal of Math�
ematics 	 ��
�	� ��	�#��
��

��

�� G� Gallo and S� Pallottino� �Shortest path methods� A unifying ap�
proach�� Mathematical Programming Study �� ��

�� �
#���

��
	
� M�R� Garey and D�S� Johnson� Computers and Intractability� A
Guide to the Theory of NP�completeness� Freeman� San Francisco�
�
	
�

��

�� A�M�H�Gerards� �Matching�� in� Network Models �M�O� Ball� T�L�
Magnanti� C�L� Monma� and G�L� Nemhauser� eds��� North Holland�
Amsterdam� �

��

��

�� A�M�H� Gerards and A� Schrijver� �Matrices with the Edmonds�
Johnson property�� Combinatorica � ��

�� ���#��	�

��
	
� F�R� Giles and W�R� Pulleyblank� �Total dual integrality and integer
polyhedra�� Linear Algebra and its Applications �� ��
	
� �
�#�
��

��

�� M�X� Goemans and D�P� Williamson� �A general approximation tech�
nique for constrained forest problems�� SIAM Journal on Computing
�� ��

�� �
�#��	�

��

�� A�V� Goldberg� �A new max��ow algorithm�� Technical ReportMIT)�
LCS)TM �
�� Laboratory for Computer Science� M�I�T� ��

���

��

� A�V� Goldberg and R�E� Tarjan� �A new approach to the maximum
�ow problem�� Journal of the Association for Computing Machinery
�� ��

�
��#
���

��

� A�V� Goldberg and R�E� Tarjan� �Finding minimum�cost circulations
by canceling negative cycles�� Journal of the Association for Comput�
ing Machinery �� ��

�
	�#

��

��
��� R�E� Gomory� �Solving linear programming problems in integers�� in�
Combinatorial Analysis �R� Bellman and M� Hall� eds��� Proceedings of
Symposia in Applied Mathematics X� American Mathematical Society�
Providence� �
��� pp� ���#����

BIBLIOGRAPHY �	�

��
��� R�E� Gomory and T�C� Hu� �Multi�terminal network �ows�� SIAM
Journal on Applied Mathematics
 ��
��� ���#����

��

� M� Gr(otschel and O� Holland� �Solution of large�scale symmetric trav�
elling salesman problems��Mathematical Programming �� ��

�� ���#
����

��

� M� Gr(otschel� L� Lov asz� and A� Schrijver� Geometric Algorithms and
Combinatorial Optimization� Springer�Verlag� Berlin� �

�

��
	
� M� Gr(otschel and M�W� Padberg� �On the symmetric travelling sales�
man problem II� Lifting theorems and facets��Mathematical Program�
ming �� ��
	
� �
�#����

��

�� M� Gr(otschel and M�W� Padberg� �Polyhedral theory�� in� The Trav�
eling Salesman Problem �E�L� Lawler� J�K� Lenstra� A�H�G� Rinnooy
Kan� and D� Shmoys� eds��� Wiley� Chichester� �

�� pp� ���#����

��

�� M� Gr(otschel and W�R� Pulleyblank� �Clique tree inequalities and the
symmetric travelling salesman problem�� Mathematics of Operations
Research �� ��

�� ��	#��
�

��

�� D� Gus�eld� �Very simple methods for all pairs network �ow analysis��
SIAM Journal on Computing �
 ��

�� ���#����

��
	�� F�O� Hadlock� �Finding a maximum cut in a planar graph in polyno�
mial time�� SIAM Journal on Computing � ��
	�� ���#����

��

�� X� Hao and J�B� Orlin� �A faster algorithm for �nding the minimum
cut in a graph�� Proceedings of the �rd SIAM�ACM Symposium on
Discrete Algorithms� �

�� pp� ���#�	��

��
	�� M� Held and R�M� Karp� �The traveling�salesman problem and min�
imum spanning trees�� Operations Research �
 ��
	�� ���
#�����

��
	�� M� Held and R�M� Karp� �The traveling�salesman problem and min�
imum spanning trees� Part II�� Mathematical Programming � ��
	��
�#���

��
	�� M� Held� P� Wolfe� and H�P� Crowder� �Validation of subgradient
optimization�� Mathematical Programming � ��
	�� ��#

�

��
��� A�J� Ho�man� �Some recent applications of the theory of linear in�
equalities to extremal combinatorial analysis�� Proceedings of Sym�
posia on Applied Mathematics �� ��
��� ���#��	�

��
	�� A�J� Ho�man� �A generalization of max �ow�min cut�� Mathematical
Programming � ��
	�� ���#��
�

��
��� A�J� Ho�man and J�B� Kruskal� �Integral boundary points of convex
polyhedra�� in� Linear Inequalities and Related Systems �H�W� Kuhn
and A�W� Tucker� eds��� Princeton University Press� Princeton� �
���
pp� ���#����

��

	� O� Holland� Schnittebenenverfahren f�ur Travelling�Salesman� und ver�
wandte Probleme� Ph�D� Thesis� Universit(at Bonn� Germany� �

	�

�	� BIBLIOGRAPHY

��
	�� J�E� Hopcroft and R�M� Karp� �An n
�� algorithm for maximum
matching in bipartite graphs�� SIAM Journal on Computing � ��
	��
���#����

��
��� V� Jarn !ik� �O jist em probl emu minim aln !im�� Pr�ace Moravsk�e
P�r��irodov�edeck�e Spole�cnosti � ��
��� �	#���

��

	� D�S� Johnson� J�L� Bentley� L�A� McGeoch� and E�E� Rothberg� in
preparation�

��

	� D�S� Johnson and L�A� McGeoch� �The traveling salesman problem�
A case study in local optimization�� in� Local Search in Combinatorial
Optimization �E�H�L� Aarts and J�K� Lenstra� eds��� Wiley� New York�
�

	� pp� ���#����

��

�� M� J(unger and W� Pulleyblank� �Geometric duality and combinato�
rial optimization�� in� Jahrbuck �Uberblicke Mathematik �S�D� Chat�
terji� B� Fuchssteiner� U� Kluish� and R� Liedl� eds��� Vieweg� Brun�
schweig)Wiesbaden� �

�� pp� �#���

��

�� M� J(unger� G� Reinelt� and G� Rinaldi� �The traveling salesman
problem�� in� Handbook on Operations Research and Management
Sciences� Networks �M� Ball� T� Magnanti� C�L� Monma� and G�
Nemhauser� eds��� North�Holland� �

�� pp� ���#����

��

�� M� J(unger� G� Reinelt� and S� Thienel� �Provably good solutions for
the traveling salesman problem�� Zeitschrift f�ur Operations Research
�� ��

�� �
�#��	�

��
��� L�V� Kantorovich� �On the translocation of masses�� CR de
l�Academie des Sciences de l�URSS� �
���

��

�� D�R� Karger� �Global min�cuts in RNC and other rami�cations of a
simple mincut algorithm�� in� Proceedings of the �th Annual ACM�
SIAM Symposium on Discrete Algorithms� ACM�SIAM� �

�� pp�
�#

��

��

�� D�R� Karger and C� Stein� �An $O�n�� algorithm for minimum cuts��
in� Proceedings of the ��th ACM Symposium on the Theory of Com�
puting� ACM Press� �

�� pp� 	�	#	���

��
	�� R�M� Karp� �Reducibility among combinatorial problems�� in� Com�
plexity of Computer Computations �R�E� Miller and J�W� Thatcher�
eds��� Plenum Press� New York� �
	�� pp�
�#����

��
��� D� K(onig� �Graphok es matrixok�� Matematikai �es Fizikai Lapok �

��
��� ���#��
�

��

�� B� Korte� L� Lov asz� H�J� Pr(omel� and A� Schrijver� eds�� Paths� Flows�
and VLSI�Layout� Springer� Berlin� �

��

��
��� A� Kotzig� �S uvislost� a Pravidelin a S uvislost� Kone0cn ych Grafor��
Bratislava� Vysok�a �Skola Ekonomick�a ��
����

BIBLIOGRAPHY �	�

��
��� J�B� Kruskal� �On the shortest spanning subtree of a graph and the
traveling salesman problem�� Proceedings of the American Mathemat�
ical Society 	 ��
��� �
#���

��
��� H�W� Kuhn� �The Hungarian method for the assignment problem��
Naval Research Logistics Quarterly � ��
���
�#
	�

��
	�� E�L� Lawler� �Matroid intersection algorithms�� Mathematical Pro�
gramming
 ��
	�� ��#���

��

�� E�L� Lawler� J�K� Lenstra� A�H�G� Rinnooy Kan� and D� Shmoys� The
Traveling Salesman Problem� Wiley� Chichester� �

��

��
	�� S� Lin and B�W� Kernighan� �An e�ective heuristic algorithm for the
traveling salesman problem�� Operations Research �� ��
	�� �

#����

��
	
� L� Lov asz� �Graph theory and integer programming�� in� Discrete
Optimization I �P�L� Hammer� E�L� Johnson� and B�H� Korte� eds��
Annals of Discrete Mathematics � ��
	
� ���#��
�

��

�� L� Lov asz and M� Plummer� Matching Theory� North Holland� Ams�
terdam� �

��

��

�� K��T� Mak and A�J� Morton� �A modi�ed Lin�Kernighan traveling�
salesman heuristic�� Operations Research Letters �� ��

�� ��	#����

��
	
� A�B� Marsh III� Matching Algorithms� Ph�D� Thesis� Johns Hopkins
University� Baltimore�

��

�� O� Martin and S�W� Otto� �Combining simulated annealing with local
search heuristics�� Annals of Operations Research �� ��

�� �	#	��

��

�� O� Martin� S�W� Otto� and E�W� Felten� �Large�step Markov chains
for the TSP incorporating local search heuristics�� Operations Re�
search Letters �� ��

�� ��
#����

��

�� S� Micali and V�V� Vazirani� �An O�
pjV jjEj� algorithm for �nding

maximum matching in general graphs�� Proceedings of the �	st An�
nual Symposium on Foundations of Computer Science� IEEE� �

��
pp� �	#�	�

��

�� D�L� Miller and J�F� Pekney� �A staged primal�dual algorithm for per�
fect b�matching with edge capacities�� ORSA Journal on Computing
	 ��

�� �

#����

��
�	� J� Munkres� �Algorithms for the assignment and transportation prob�
lems�� SIAM Journal on Applied Mathematics � ��
�	� ��#�
�

��

�� D� Naddef� �Handles and teeth in the symmetric traveling salesman
polytope�� in� Polyhedral Combinatorics �W� Cook and P�D� Sey�
mour� eds��� American Mathematical Society� �

�� pp� ��#	��

��

�� H� Nagamochi and T� Ibaraki� �Computing edge connectivity in multi�
graphs and capacitated graphs�� SIAM Journal on Discrete Mathe�
matics � ��

�� ��#���

�		 BIBLIOGRAPHY

��
��� C�St�J�A� Nash�Williams� �An application of matroids to graph the�
ory�� in� Theory of Graphs �P� Rosenstiehl� ed�� Dunod� Paris� �
���
pp� ���#����

��

� G�L� Nemhauser and L�A� Wolsey� Integer and Combinatorial Opti�
mization� Wiley� New York� �

�

��

�� J�B� Orlin� �On the simplex algorithm for networks and generalized
networks�� Mathematical Programming Study �� ��

�� ���#�	
�

��

� J�B� Orlin� �A faster strongly polynomial minimum cost �ow algo�
rithm�� Proceedings of the ��th ACM Symposium on Theory of Com�
puting� ACM Press� �

� pp� �		#�
	�

��

�� J�G� Oxley� Matroid Theory� Oxford University Press� Oxford� �

��

��

�� M�W� Padberg and M�R� Rao� �Odd minimum cut�sets and b�
matchings�� Mathematics of Operations Research 	 ��

�� �	#
��

��

�� M� Padberg and G� Rinaldi� �An e�cient algorithm for the minimum
capacity cut problem�� Mathematical Programming �	 ��

�� �
#���

��

�� M� Padberg and G� Rinaldi� �A branch�and�cut algorithm for the res�
olution of large�scale symmetric traveling salesman problems�� SIAM
Review �� ��

�� ��#����

��
		� C� Papadimitriou and K� Steiglitz� �On the complexity of local search
for the traveling salesman problem�� SIAM Journal on Computing �
��
		� 	�#
��

��
	�� J��C� Picard� �Maximal closure of a graph and applications to com�
binatorial problems�� Management Science �� ��
	�� ���
#��	��

��

�� R�Y� Pinter� �Optimal layer assignment for interconnect�� Journal
VLSI Comput� Syst� � ��

�� ���#��	�

��
��� H� Poincar e� �Second compl ement 1a l�analysis situs�� Proceedings of
the London Mathematical Society �� ��
��� �		#��
�

��
�	� B�T� Polyak� �A general method of solving extremum problems� �in
Russian�� Doklady Akademmi Nauk SSSR �	� ��� ��
�	� ��#���

��
�	� R�C� Prim� �Shortest connection networks and some generalizations��
Bell System Technical Journal �� ��
�	� ��

#�����

��
	�� W�R� Pulleyblank� Faces of Matching Polyhedra� Ph�D� Thesis� De�
partment of Combinatorics and Optimization� University of Waterloo�
Waterloo� Ontario� �
	��

��
	�� W�R� Pulleyblank and J� Edmonds� �Facets of ��matching polyhe�
dra�� in� Hypergraph Seminar �C� Berge and D� Ray�Chaudhuri� eds���
Springer� Berlin� �
	�� pp� ���#����

��
��� R� Rado� �A theorem on independence relations�� Quarterly Journal
of Mathematics Oxford �� ��
���
�#

�

BIBLIOGRAPHY �	�

��
�	� R� Rado� �A note on independence functions�� Proceedings of the
London Mathematical Society 	 ��
�	� ���#����

��

�� G� Reinelt� �TSPLIB�A traveling salesman problem library�� ORSA
Journal on Computing � ��

�� �	�#�
��

��

�� G� Reinelt� The Traveling Salesman� Computational Solutions for
TSP Applications� Springer�Verlag� Berlin� �

��

��
	�� J� Rhys� �A selection problem of shared �xed costs and network
�ows�� Management Science �	 ��
	�� ���#��	�

��
		� D�J� Rosenkrantz� R�E� Stearns� and P�M� Lewis II� �An analysis of
several heuristics for the traveling salesman problem�� SIAM Journal
on Computing � ��
		� ���#�
��

��

�� A� Schrijver� �On cutting planes�� in� Combinatorics ��� Part II �M�
Deza and I�G� Rosenberg� eds��� Annals of Discrete Mathematics

��

�� �
�#�
��

��

�� A� Schrijver� �Short proofs on the matching polytope�� Journal of
Combinatorial Theory �Series B
 �� ��

�� ���#��
�

��

�a� A� Schrijver� �Min�max results in combinatorial optimization�� in�
Mathematical Programming� the State of the Art� Bonn 	��� �A�
Bachem� M� Gr(otschel� and B� Korte� eds��� Springer�Verlag� Berlin�
�

�� pp� ��
#����

��

�� A� Schrijver� �Total dual integrality from directed graphs� crossing
families� and sub� and supermodular functions�� in� Progress in Com�
binatorial Optimization �W�R� Pulleyblank� ed��� Academic Press�
Toronto� �

�� pp� ���#����

��

�� A� Schrijver� Theory of Linear and Integer Programming� Wiley�
Chichester� �

��

��

�� P�D� Seymour� �Decomposition of regular matroids�� Journal of Com�
binatorial Theory �Series B
 �
 ��

�� ���#��
�

��

�� P�D� Seymour� �On odd cuts and plane multicommodity �ows�� Pro�
ceedings of the London Mathematical Society ��

�� �	
#�
��

��
		� T�H�C� Smith and G�L� Thompson� �A LIFO implicit enumeration
search algorithm for the symmetric traveling salesman problem using
Held and Karp�s ��tree relaxation�� in� Studies in Integer Program�
ming �P�L� Hammer � et al� eds��� Annals of Discrete Mathematics �
��
		� �	
#�
��

��

�� M� Stoer and F� Wagner� �A simple min cut algorithm�� to appear�

��

	� R� Tamassia� �On embedding a graph in the grid with the minimum
number of bends�� SIAM Journal on Computing �� ��

	� ���#����

��

�� E� Tardos� �A strongly polynomial minimum cost circulation algo�
rithm�� Combinatorica � ��

�� ��	#����

�	
 BIBLIOGRAPHY

��

�� R�E� Tarjan� Data Structures and Network Algorithms� SIAM�
Philadelphia� �

��

��

�� L� Tun'cel� �On the complexity of pre�ow�push algorithms for the
maximum �ow problem�� Algorithmica �� ��

�� ���#��
�

��
�	� W�T� Tutte� �The factorization of linear graphs�� Journal of the Lon�
don Mathematical Society �� ��
�	� ��	#����

��
��� W�T� Tutte� �A short proof of the factor theorem for �nite graphs��
Canadian Journal of Mathematics � ��
��� ��	#����

��
��� W�T� Tutte� �Lectures on matroids�� Journal of Research of the Na�
tional Bureau of Standards �B� �
 ��
��� �#�	�

��
�
� A�F� Veinott and G�B� Dantzig� �Integral extreme points�� SIAM Re�
view �� ��
�
� �	�#�	��

��
	�� D�J�A� Welsh� Matroid Theory� Academic Press� London� �
	��

��

�� D�B� West� Introduction to Graph Theory� Prentice Hall� Upper Sad�
dle River� �

�

��
	�� N� Zadeh� �A bad network problem for the simplex method and other
minimum cost �ow algorithms�� Mathematical Programming � ��
	��
���#����

