Combinatorial
Optimization

(September 18, 1997)

William J. Cook William H. Cunningham
William R. Pulleyblank Alexander Schrijver

(All rights reserved by the authors.)

Contents

Preface

1 Problems and Algorithms

1.1
1.2

Two Problems

Measuring Running Times

2 Optimal Trees and Paths

2.1 Minimum Spanning Trees
2.2 Shortest Paths
3 Maximum Flow Problems
3.1 Network Flow Problems
3.2 Maximum Flow Problems
3.3 Applications of Maximum Flow and Minimum Cut

34
3.5

Push-Relabel Maximum Flow Algorithms
Minimum Cuts in Undirected Graphs
3.5.1 Global Minimum Cuts

3.5.2 Cut-Trees

3.6 Multicommodity Flows
4 Minimum-Cost Flow Problems
4.1 Minimum-Cost Flow Problems

4.2
4.3
4.4

Primal Minimum-Cost Flow Algorithms
Dual Minimum-Cost Flow Algorithms
Dual Scaling Algorithms

ix

19

37
37
38
47
62
71
71
78
85

91
91
101
112
119

vi

CONTENTS

Optimal Matchings 127
5.1 Matchings and Alternating Paths 127
5.2 Maximum Matching 134
5.3 Minimum-Weight Perfect Matchings 144
5.4 T-Joins and Postman Problems 166
5.5 General Matching Problems 182

5.6 Geometric Duality and the Goemans-Williamson Algorithm 191

Integrality of Polyhedra 199
6.1 Convex hulls 199
6.2 Polytopes 203
6.3 Facets 211
6.4 Integral Polytopes 218
6.5 Total Unimodularity 220
6.6 Total Dual Integrality 225
6.7 Cutting Planes 228
6.8 Separation and Optimization 237
The Traveling Salesman Problem 241
7.1 Introduction 241
7.2 Heuristics for the TSP 242
7.3 Lower Bounds 252
7.4 Cutting Planes 261
7.5 Branch and Bound 268
Matroids 273
8.1 Matroids and the Greedy Algorithm 273
8.2 Matroids: Properties, Axioms, Constructions 282
8.3 Matroid Intersection 287
8.4 Applications of Matroid Intersection 295
8.5 Weighted Matroid Intersection 297
NP and NP-Completeness 309
9.1 Introduction 309
9.2 Words 311
9.3 Problems 312
9.4 Algorithms and Running Time 312

9.5 The Class NP 314

CONTENTS

9.6 N'P-Completeness
9.7 N'P-Completeness of the Satisfiability Problem
9.8 AN'P-Completeness of Some Other Problems
9.9 Turing Machines

APPENDIX A Linear Programming

Bibliography

Index

vii

315
316
318
321
325
337

347

viii CONTENTS

Preface

Combinatorial optimization is a lively field of applied mathematics, combining
techniques from combinatorics, linear programming, and the theory of algo-
rithms, to solve optimization problems over discrete structures. There are a
number of classic texts in this field, but we felt that there is a place for a new
treatment of the subject, covering some of the advances that have been made
in the past decade. We set out to describe the material in an elementary
text, suitable for a one semester course. The urge to include advanced topics
proved to be irresistible, however, and the manuscript, in time, grew beyond
the bounds of what one could reasonably expect to cover in a single course.
We hope that this is a plus for the book, allowing the instructor to pick and
choose among the topics that are treated. In this way, the book may be suit-
able for both graduate and undergraduate courses, given in departments of
mathematics, operations research, and computer science. An advanced theo-
retical course might spend a lecture or two on chapter 2 and sections 3.1 and
3.2, then concentrate on 3.3, 3.4, 4.1, most of chapters b and 6 and some of
chapters 8 and 9. An introductory course might cover chapter 2, sections 3.1
to 3.3, section 4.1 and one of 4.2 or 4.3, and sections 5.1 through 5.3. A course
oriented more towards integer linear programming and polyhedral methods
could be based mainly on chapters 6 and 7 and would include section 3.6.

The most challenging exercises have been marked in boldface. These should
probably only be used in advanced courses.

The only real prerequisite for reading our text is a certain mathematical
maturity. We do make frequent use of linear programming duality, so a reader
unfamiliar with this subject matter should be prepared to study the linear
programming appendix before proceeding with the main part of the text.

We benefitted greatly from thoughtful comments given by many of our
colleagues who read early drafts of the book. In particular, we would like
to thank Hernan Abeledo, Dave Applegate, Bob Bixby, Eddie Cheng, Joseph
Cheriyan, Collette Coullard, Satoru Fujishige, Grigor Gasparian, Jim Geelen,
Luis Goddyn, Michel Goemans, Mark Hartmann, Mike Junger, Jon Lee, Tom
McCormick, Kazuo Murota, Myriam Preissmann, Irwin Pressman, Maurice

1x

X PREFACE

Queyranne, André Rohe, Andrés Sebd, Eva Tardos, and Don Wagner. Work
on this book was carried out at Bellcore, the University of Bonn, Carleton
University, CWI Amsterdam, IBM Watson Research, Rice University, and the
University of Waterloo.

CHAPTER 1

Problems and Algorithms

1.1 TWO PROBLEMS

The Traveling Salesman Problem

An oil company has a field consisting of 47 drilling platforms off the coast of
Nigeria. Each platform has a set of controls that makes it possible to regulate
the amount of crude oil flowing from the wells associated with the platform
back to the onshore holding tanks. Periodically, it is necessary to visit certain
of the platforms, in order to regulate the rates of flows. This traveling is done
by means of a helicopter which leaves an onshore helicopter base, flies out to
the required platforms, and then returns to the base.

Helicopters are expensive to operate! The oil company wants to have a
method for routing these helicopters in such a way that the required plat-
forms are visited, and the total flying time is minimized. If we make the
assumption that the flying time is proportional to the distance traveled, then
this problem is an example of the Fuclidean traveling salesman problem. We
are given a set V' of points in the Euclidean plane. Each point has a pair of
(z,y) coordinates, and the distance between points with coordinates (z1,y1)
and (72, y2) is just \/(z1 — 22)2 + (y1 — y2)2. We wish to find a simple circuit
(or tour) passing through all the points in V, for which the length is mini-
mized. We call such a tour optimal. In this case, V' consists of the platforms
to be visited, plus the onshore base.

2 PROBLEMS AND ALGORITHMS

Euclidean Traveling Salesman Problem

Input: A set V of points in the Euclidean plane.
Objective: Find a simple circuit passing through the points for which
the sum of the lengths of the edges is minimized.

There are many methods that attempt to solve this problem. Most simple
ones share the characteristic that they do not work very well, either from a
point of view of solution quality or of running time. For example, suppose
we wish simply to try all possible solutions, and then select the best. This
will certainly find the shortest circuit. However, if |V| = n, then there are
(n —1)!/2 different possible solutions (Exercise 1.1). Suppose we have at our
disposal a computer capable of evaluating a single possibility in one nanosec-
ond (= 1072 seconds). If we had only 23 platforms to visit, then it would take
approximately 178 centuries to run through the possible tours!

Suppose, on the other hand, that we require a faster method, but which
need not be guaranteed to produce the optimal solution. The “Nearest Neigh-
bor Algorithm” proceeds as follows. Pick any starting point. Go to the near-
est point not yet visited. Continue from there to the nearest unvisited point.
Repeat this until all points have been visited, then return to the starting
point. The result of applying this to a sample problem (from Gerd Reinelt’s
TSPLIB) is given in Figure 1.1. Notice that although each move is locally the

Figure 1.1. Nearest Neighbor solution

best possible, the overall result can be quite poor. First, it is easy to omit
a point, which must be visited later at great expense. Second, at times you

TWO PROBLEMS 3

may “paint yourself into a corner” where you are forced to make a long move
to reach the nearest point where you can continue the tour.

The Matching Problem

A designer of logic circuits will use a plotter to draw a proposed circuit,
so that it can be visually checked. The plotter operates by moving a pen
back and forth and, at the same time, rolling a sheet of paper forwards and
backwards beneath the pen. Each color of line is drawn independently, with
a pen change before each new color. The problem is to minimize the time
required to draw the figure. This time consists of two parts: “pen-down”
time, when actual drawing is taking place, and “pen-up” time, when the pen
is not contacting the paper, but is simply moving from the end of one line
to be drawn to the start of another. Surprisingly, often more than half of
the time is spent on pen-up movement. We have very little control over the
pen-down time, but we can reduce the pen-up time considerably.

For example, suppose we wish to draw the circuit illustrated in Figure 1.2.
Note first that the figure we are drawing is connected. This simplifies things,

1
N

Figure 1.2. Circuit diagram

for reasons we discuss later. Can you convince yourself that some amount
of pen-up motion is necessary? We define a node of the figure to be a point
where two or more lines meet or cross, or where one line ends. In other words,
it is a point of the figure from which a positive number of lines, other than
two, emanates. We call a node odd if there is an odd number of lines coming
out, and even otherwise. See Figure 1.3.

. odd nodes

® even nodes

Figure 1.3. Odd and even nodes

One of the oldest theorems of graph theory implies that there will always
be an even number of odd nodes. Another old theorem, due to Euler, states

4 PROBLEMS AND ALGORITHMS

that the figure can be traced, returning to the starting point, with no pen-up
motion if and only if it is connected and there are no odd nodes.

We minimize pen-up motion by finding a set of new lines that we can add
to the figure turning every odd node into an even node, and such that the
total traversal time of the new lines is as small as possible.

Let t(p,q) be the time required to draw a line from point p to ¢ (pen-up
or pen-down). If we make the assumption that ¢(p, q) is proportional to the
Euclidean distance between p and ¢, then ¢ satisfies the triangle inequality:
for any points p, q,r, we have t(p,r) < t(p,q) + t(g,r). This is also satisfied,
for example, when t(p, q) is proportional to whichever direction of motion—
horizontal or vertical—is greater.

Whenever t satisfies the triangle inequality, the optimal set of new lines
will pair up the odd nodes. In the Euclidean case, the problem of finding
these lines is an example of the Euclidean matching problem.

Euclidean Matching Problem

Input: A set V of points in the Euclidean plane.

Objective: Find a set of lines, such that each point is an end of
exactly one line, and such that the sum of the lengths of the lines is
minimized.

If the original figure is not connected, then we may add the extra lines and
obtain a figure having no odd nodes, but which itself is not connected. In
this case, some amount of extra pen-up motion is necessary. Moreover, the
problem of minimizing this motion includes the Fuclidean traveling salesman
problem as a special case. For suppose we have an instance of the Euclidean
traveling salesman problem which we wish to solve. We draw a figure con-
sisting of one tiny circle in the location of each point. If we take one of these
circles to be the pen’s home position, then the problem of minimizing pen-
up time is just the traveling salesman problem, assuming pen travel time is
proportional to Euclidean distance.

Some Similarities and Differences

The Euclidean traveling salesman problem and the Euclidean matching
problem are two prominent models in combinatorial optimization. The two
problems have several similarities. First, each involves selecting sets of lines
connecting points in the plane. Second, in both cases, the number of feasible
solutions is far too large to consider them all in a reasonable amount of time.
Third, most simple heuristics for the problems do not perform very well.

There is a major difference between the problems lurking under the sur-
face, however. On the one hand, there exists an efficient algorithm, due to
Edmonds, that will find an optimal solution for any instance of the Euclidean

MEASURING RUNNING TIMES 5

matching problem. On the other hand, not only is no such algorithm known
for the Euclidean traveling salesman problem, but most researchers believe
that there simply does not exist such an algorithm!

The reason for this pessimistic view of the Euclidean traveling salesman
problem lies in the theory of computational complexity, which we discuss in
Chapter 9. Informally, the argument is that if there would exist an efficient
algorithm for the Euclidean traveling salesman problem, then there would also
exist such an efficient algorithm for every problem for which we could check
the feasibility of at least one optimal solution efficiently. This last condition
is not very strong, and just about every combinatorial optimization problem
satisfies it.

Throughout the book, we will be walking the line between problems that
are known to have efficient algorithms, and problems that are known to be just
as difficult as the Euclidean traveling salesman problem. Most of our effort
will be spent on describing models that lie on the “good side” of the dividing
line, including an in-depth treatment of matching problems in Chapters 5
and 6. Besides being very important on their own, these “good” models
form the building blocks for attacks on problems that lie on the “bad side.”
We will illustrate this with a discussion of the traveling salesman problem in
Chapter 7, after we have assembled a toolkit of optimization techniques.

1.2 MEASURING RUNNING TIMES

Although the word “efficient,” which we used above, is intuitive and would
suffice for some purposes, it is important to have a means of quantifying this
notion. We follow established conventions by estimating the efficiency of an
algorithm by giving upper bounds on the number of steps it requires to solve
a problem of a given size. Before we make this precise, a few words of warning
are in order. Bounding the number of steps only provides an estimate of an
algorithm’s efficiency and it should not be taken as a hard and fast rule that
having a better bound means better performance in practice. The reason for
this is the bounds are taken over all possible instances of a given problem,
whereas in practice you only want your algorithm to solve the instances you
have in hand as quickly as possible. (It may not really concern you that some
pathological examples could cause your algorithm to run and run and run.)
A well-known example of this phenomenon is the simplex method for linear
programming: it performs remarkably well on wide classes of problems, yet
there are no good bounds on its behavior in general. It is fair to say, however,
that this idea of the complexity of an algorithm does often point out the
advantages of one method over another. Moreover, the widespread use of this
notion has led to the discovery of many algorithms that turned out to be not
only superior in a theoretical sense, but also much faster in practice. With
this in mind, let us define more precisely what we mean by “giving upper
bounds on the number of steps.”

6 PROBLEMS AND ALGORITHMS

The concept of an algorithm can be expressed in terms of a Turing Machine
or some other formal model of computation (see Chapter 9), but for now the
intuitive notion of an algorithm as a list of instructions to solve a problem is
sufficient. What we are concerned with is: How long does an algorithm take
to solve a given problem? Rapid changes in computer architecture make it
nearly pointless to measure all running times in terms of a particular machine.
For this reason we measure running times on an abstract computer model
where we count the number of “elementary” operations in the execution of
the algorithm. Roughly speaking, an elementary operation is one for which
the amount of work is bounded by a constant, that is, it is not dependent
on the size of the problem instance. However, for the arithmetic operations
of addition, multiplication, division, and comparison, we sometimes make an
exception to this rule and count such operations as having unit cost, that is,
the length of the numbers involved does not affect the cost of the operation.
This is often appropriate, since the numbers occurring in many algorithms
do not tend to grow as the algorithm proceeds. A second, more precise,
model of computation counts the number of “bit operations”: the numbers
are represented in binary notation and the arithmetic operation is carried out
bit by bit. This is more appropriate when the length of the numbers involved
significantly affects the complexity of a problem (for example, testing whether
a number is prime).

A combinatorial optimization problem usually consists of a discrete struc-
ture, such as a network or a family of sets, together with a set of numbers
(which may represent costs or capacities, for example). We measure the size
of such a problem by the length of an encoding of the structure (say in binary
notation) plus the size of the set of numbers. (Either each number is counted
as a single unit [when we are counting arithmetic operations] or we count the
number of digits it takes to write each number in binary notation [when we are
counting bit operations].) This measure, of course, depends on the particular
encoding chosen, but if one is consistent with the types of encodings used,
a robust measure can be obtained. Furthermore, in most cases the various
choices of an encoding will differ in size by only a constant factor. So given
an instance of a problem, we measure its size by an integer n, representing
the number of bits in the encoding plus the size of the set of numbers. We
can therefore make statements like, “the number of steps is bounded by 5n?
+ 3n.”

When analyzing an algorithm, we are mainly interested in its performance
on instances of large size. This is due to the obvious reason that just about any
method would solve a problem of small size. A superior algorithm will really
start to shine when the problem sizes are such that a lesser method would not
be able to handle the instances in any reasonable amount of time. Therefore,
if an algorithm has a running-time bound of 5n? + 3n, we would often ignore
the 3n term, since it is negligible for large values of n. Furthermore, although
a bound of 5n? is clearly better than a bound of 17n2, it probably would not
make the difference between being able to solve an instance of a problem and

MEASURING RUNNING TIMES 7

not being able to solve it. So we normally concentrate on the magnitude of the
bound, describing 5n? + 3n as “order n2.” There is a formal notation for this:
If f(n) and g(n) are positive real-valued functions on the set of nonnegative
integers, we say f(n) is O(g(n)) if there exists a constant ¢ > 0 such that
f(n) < c-g(n) for all large enough values of n. (The notation O(g(n)) is read
“big oh of g(n)”.) Thus 5n? + 3n is O(n?) and 35-2" + n? is O(2").

As an example of these ideas, consider once again the Nearest Neighbor
Algorithm for the traveling salesman problem. We described this method as
a fast (but sometimes poor) alternative to enumerating all (n — 1)!/2 possible
tours. We can quantify this easily with the big oh notation.

Let’s first consider the arithmetic operation model. An instance of the
Euclidean traveling salesman problem can be specified by giving the (z,y)
coordinates of the n points to be visited. So the size of an instance is simply
2n.

An easy (albeit somewhat inefficient) way to implement the Nearest Neigh-
bor Algorithm is to set up an n-element array, where each object in the array

has the three fields | T | Y | mark | . We initialize the array by placing the

(z,y) coordinates of each point v; in the it" object and setting all the mark
fields to 0. A general pass of the algorithm takes a point v; (say j =1 on the
first pass), scans through all n objects, computing the distance from v; to v;
for all points v; having mark equal to 0, while keeping track of the point v;«
that has the least such distance. We then output v;» as the next point in the
tour, set v;+’s mark field to 1 and continue the search from v;«. The algorithm
terminates when we have visited all n points.

The initialization pass takes 3n elementary operations (excluding an ap-
proximately equal number of loop and control operations). A general pass
takes n steps to check the mark field, plus at most n — 1 distance calculations,
each of which takes 3 additions, 2 multiplications, and 1 comparison (to keep
track of the minimum distance). (Notice that we do not need to calculate a
square root, in the distance calculation, since we need only compare the val-
ues (z; — x;)? + (y; — yi)? to find the point v;+ of minimum distance to v;.)
Since we execute the general step n — 1 times, we obtain an upper bound of
3n+(n—1)(n+6(n—1)) operations. That is, the Nearest Neighbor Algorithm
takes O(n?) arithmetic operations.

To analyze the algorithm in the bit operation model, we need to measure
the size of the input in a way that takes into acount the number of bits in the
(z,y) coordinates. A standard estimate is 2nM, where M is the maximum of
1+ [log(Jz| + 1)] and 1 + [log(Jy| + 1)] amongst the (z,y) coordinates. (We
take logs with base 2. If ¢ is a rational number, then [#] is the smallest integer
that is greater than or equal to ¢ and |t] is the greatest integer that is less
than or equal to ¢.) The number of elementary operations in the algorithm
only changes in the fact that we must now read M-bit-long numbers (so the
initialization takes 2nM + n steps), and compute and compare the values

8 PROBLEMS AND ALGORITHMS

(z; — z;)* + (y; — yi)? bitwise (which takes O(M?) operations). So a quick
estimate of the number of bit operations is O(n?M?).

Our main goal will be to present algorithms that, like the Nearest Neighbor
Algorithm, have running-time bounds of O(n*) for small values of k, whenever
possible. Such “polynomial-time algorithms” have the nice property that
their running times do not increase too rapidly as the problem sizes increase.
(Compare n® and 2" for n = 100.)

The above analysis shows that the Nearest Neighbor Algorithm is, in fact,
polynomial-time in both the arithmetic model and the bit model. This will
occur very often in the book. Typically, we will work with the arithmetic
model, but a simple computation will show that the sizes of the numbers
appearing in the algorithm do not grow too fast (that is, if ¢ is the number of
bits in the problem, then all of the numbers appearing will be O(t*) for some
fixed k), and so a polynomial-time bound in the arithmetic model will directly
imply a polynomial-time bound in the bit model. Indeed, throughout the text,
whenever we say that an algorithm runs in “polynomial time,” we implicitly
mean that it runs in polynomial time in the bit model. It should be noted,
however, that there are important problems (such as the linear programming
problem) for which polynomial-time algorithms in the bit model are known,
but no algorithm is known that is polynomial-time in the arithmetic model.

We will discuss the issue of computational complexity further in Chapter 9.

Exercises

1.1. Show that there are (n — 1)!/2 distinct tours for a Euclidean traveling
salesman problem on n points.

1.2. Suppose we have a computer capable of evaluating a feasible solution to
a traveling salesman problem in one nanosecond (= 107 seconds). How
large a problem could we solve in 24 hours of computing time, if we tried
all possible solutions? How would the size increase if we had a machine ten
times faster? One hundred times faster?

CHAPTER 2

Optimal Trees and Paths

2.1 MINIMUM SPANNING TREES

A company has a number of offices and wants to design a communications
network linking them. For certain pairs v, w of offices it is feasible to build a
direct link joining v and w, and there is a known (positive) cost ¢y, incurred if
link vw is built. The company wants to construct enough direct links so that
every pair of offices can communicate (perhaps indirectly). Subject to this
condition, the company would like to minimize the total construction cost.
The above situation can be represented by a diagram (Figure 2.1) with a
point for each office and a line segment joining v and w for each potential link.
Notice that in this setting, unlike that of the Euclidean traveling salesman
problem, we do not have the possibility of a direct connection between every
pair of points. Moreover, the cost that we associate with the “feasible” pairs
of points need not be just the distance between them. To describe such
optimization problems more accurately we use the language of graph theory.
An (undirected) graph G consists of disjoint finite sets V(G) of nodes, and
E(G) of edges, and a relation associating with each edge a pair of nodes, its
ends. We say that an edge is incident to each of its ends, and that each end
is adjacent to the other. We may write G = (V, E) to mean that G has node-
set V and edge-set E, although this does not define G. Two edges having
the same ends are said to be parallel; an edge whose ends are the same is
called a loop; graphs having neither loops nor parallel edges are called simple.
We may write e = vw to indicate that the ends of e are v and w. Strictly
speaking, this should be done only if there are no parallel edges. In fact, in
most applications, we can restrict attention to simple graphs. A complete

9

10 OPTIMAL TREES AND PATHS

Figure 2.1. Network design problem

graph is a simple graph such that every pair of nodes is the set of ends of
some edge.

A subgraph H of G is a graph such that V(H) C V(G), E(H) C E(G), and
each e € E(H) has the same ends in H as in G. Although in general the sets
of nodes and edges do not determine the graph, this is so when we know the
graph is a subgraph of a given graph. So given a graph G and subsets P of
edges and @ of nodes, we may refer unambiguously to “the subgraph (P, Q)
of G.” For A C E, G\A denotes the subgraph H obtained by deleting A, that
is, V(H) =V and E(H) = E\A. Similarly, we can delete a subset B of V,
if we also delete all edges incident with nodes in B. The resulting subgraph
is denoted by G\B or by G[V\B]; it may be referred to as the subgraph of
G induced by V\B. For a € V or E, we may abbreviate G\{a} to G\a. A
subgraph H of G is spanning if V(H) = V(G).

Our standard name for a graph is G, and we often abbreviate V(G) to
V and E(G) to E. We usually reserve the symbols n and m to denote |V|
and |E|, respectively. We extend this and other notation to subscripts and
superscripts. For example, for graphs G’ and G, we use n’ to denote |V (G')|
and V; to denote V(Gy).

A path P in a graph G is a sequence vy, €1, 01, - - ., €k, U Where each v; is a
node, each e; is an edge, and for 1 < i < k, the ends of e; are v;_; and v;. We
say that P is from v to vy, or that it is a (vo,vg)-path. It is closed if vy = vy;
it is edge-simple if ey, . .., ey are distinct; it is simple if vy, ..., vy, are distinct;
it is a circuit if it is closed, vg,...,vi_1 are distinct, and £ > 1. We remark
that if there is a path from u to v, then there is a simple one. The length of P
is k, the number of edge-terms of P. The graph G is connected if every pair
of nodes is joined by a path. A node v of a connected graph G is a cut node
if G\ v is not connected.

The requirement in the communications network design problem is that
the subgraph consisting of all the centers and of the subset of links that we
choose to build be connected. Suppose that each edge e of a graph G has a
positive cost ¢, and the cost of a subgraph is the sum of the costs of its edges.
Then the problem is:

MINIMUM SPANNING TREES 11

Connector Problem

Given a connected graph G and a positive cost c. for each e € E,
find a minimum-cost spanning connected subgraph of G.

Using the fact that the costs are positive, we can show that an optimal sub-
graph will be of a special type. First, we make the following observation.

Lemma 2.1 An edge e = uv of G is an edge of a circuit of G if and only if
there is a path in G\e from u to v. |

It follows that if we delete an edge of some circuit from a connected graph,
the new graph is still connected. So an optimal solution to the connector
problem will not have any circuits. A graph having no circuit is called a
forest; a connected forest is called a tree. Hence we can solve the connector
problem by solving the minimum spanning tree (MST) problem:

Minimum Spanning Tree Problem

Given a connected graph G and a real cost ¢, for each e € E, find
a minimum cost spanning tree of G.

We remark that the connector problem and the MST problem are equivalent
for positive edge costs. If we allow negative costs, this is no longer true.
We shall solve the minimum spanning tree problem for arbitrary edge-costs.
The possibility of negative costs in the connector problem is the subject of
Exercise 2.7.

A second useful observation is the following.

Lemma 2.2 A spanning connected subgraph of G is a spanning tree if and
only if it has exactly n — 1 edges. |

We leave its proof as Exercise 2.4.

Surprisingly simple algorithms will find a minimum spanning tree. We
describe two such algorithms, both based on a “greedy” principle—that is,
they make the cheapest choice at each step.

Kruskal’s Algorithm for MST

Keep a spanning forest H = (V, F) of G, with F' = () initially.

At each step add to F' a least-cost edge e ¢ F such that H remains
a forest.

Stop when H is a spanning tree.

12 OPTIMAL TREES AND PATHS

If we apply Kruskal’s Algorithm to the graph of Figure 2.1, edges are cho-
sen in the order gk, gh,ab,af,ad,dg. This method was first described by
Kruskal [1956]. The second algorithm is known as “Prim’s Algorithm”, and
was described in Jarnik [1930], Prim [1957], and Dijkstra [1959].

Prim’s Algorithm for MST

Keep a tree H = (V(H),T) with V(H) initially {r} for some r € V,
and T initially 0.

At each step add to T a least-cost edge e not in T such that H
remains a tree.

Stop when H is a spanning tree.

If Prim’s Algorithm is applied to the graph of Figure 2.1 with r = a, edges
are chosen in the order ab, af, ad,dg, gk, gh.

We show, first, that these algorithms do find a minimum spanning tree,
and, second, that they have efficient implementations.

Validity of MST Algorithms

We begin with a fundamental characterization of connectivity of a graph.
For a graph G = (V, E) and A CV, we denote by §(A) the set {e € E: e has
an end in A and an end in V\A} and by v(A) the set {e € E : both ends of
e are in A}. A set of the form 6(A) for some A is called a cut of G.

Theorem 2.3 A graph G = (V, E) is connected if and only if there is no
set ACV, 0 £ A#V, with §(A) = 0.

Proof: It is easy to see that, if 5(A) = and u € A, v ¢ A, then there can
be no path from u to v, and hence, if) # A #V, G is not connected.

We must show that, if G is not connected, then there exists such a set
A. Choose u,v € V such that there is no path from u to v. Define A to
be {w € V: there exists a path from u to w}. Then v € A and v ¢ A, so
0 #A+#V. We claim §(A) = (). For, if not, suppose that p € 4, ¢ ¢ A, and
e = pq € E. Then adding e, ¢ to any path from u to p gives a path from u to
g, contradicting the fact that ¢ ¢ A. |

The following result allows us to show that both of the above minimum span-
ning tree algorithms (and, incidentally, a variety of others) work correctly.
Let us call a subset A of edges of G extendible to an MST if A is contained in
the edge-set of some MST of G.

Theorem 2.4 Suppose that B C E, that B is extendible to an MST, and
that e is a minimum-cost edge of some cut D satisfying D N B = (). Then
B U {e} is extendible to an MST.

MINIMUM SPANNING TREES 13

Before proving Theorem 2.4, we use it to prove that both algorithms are
correct.

Theorem 2.5 For any connected graph G with arbitrary edge costs ¢, Prim’s
Algorithm finds a minimum spanning tree.

Proof: We begin by showing that at each step, 6(V (H)) is the set of edges f
such that adding f to T preserves the tree property of H. This follows from
the fact that adding f creates a circuit if and only if both ends of f are in
V(H), by Lemma 2.1, and adding f makes H not connected if and only if
neither end of f is in V/(H), by Theorem 2.3. Hence the algorithm chooses
e € 0(V(H)) such that ¢, is minimum. Now §(V (H)) cannot be empty until
H is spanning, since G is connected. Therefore, the final H determined by
the algorithm is a spanning tree of G. Moreover, since) is extendible to an
MST, at each step of the algorithm B = T, e, and D = §(V (H)) satisfy the
hypotheses of Theorem 2.4. Therefore, the edge-set of the spanning tree H
constructed by the algorithm is extendible to an MST, and hence H is an
MST. |

For each node v of a graph G, let C, be the set of nodes w such that there
is a (v,w)-path in G. It is easy to see that v € C,, if and only if w € C,, so
every node is in exactly one such set. The subgraphs of G of the form G[C,]
are called the components of G. Obviously if G is connected, then it is its
only component.

Theorem 2.6 For any connected graph G with arbitrary edge costs ¢, Kruskal’s
Algorithm finds a minimum spanning tree.

Proof: Let Si,...,Sk be the node-sets of the components of H = (V, F) at
a given step of the algorithm. Then f € F can be added to F' and preserve
the forest property of H if and only if, by Lemma 2.1, the ends of f are in
different S;. In particular, any element of §(S;), for some i, has this property.
It follows that the algorithm does construct a spanning tree, since if H is not
connected and there is no such edge f, then 6(S;) =0 and § # S; # V, which
would imply that G is not connected. Moreover, if e is an edge chosen by the
algorithm, B is the edge-set of the current spanning forest H when e is chosen,
S; is the node-set of a component of H containing an end of e, and D = 4(S;),
then ¢, = min{cy : f € D}. Hence, since () is extendible to an MST, each
E(H) occurring in the algorithm is extendible to an MST by Theorem 2.4. Tt
follows that the tree constructed by the algorithm is an MST. |

Finally, we need to provide a proof of Theorem 2.4. We use the following
lemma, whose proof is left as an exercise.

Lemma 2.7 Let H = (V,T) be a spanning tree of G, let e = vw be an edge
of G but not H, and let f be an edge of a path in T from v to w. Then the
subgraph H' = (V, (T U {eP)\{f}) is a spanning tree of G. |

14 OPTIMAL TREES AND PATHS

Proof of Theorem 2.4: Let H = (V,T) be an MST such that B C T. If
e € T, then we are done, so suppose not. Let P be a path in H from v to w,
where vw = e. Since there is no path in G\ D from v to w, there is an edge f
of P such that f € D. Then ¢; > ¢, and so by Lemma 2.7, (V, (TU{e})\{f})
is also an MST. Since DNB = {), it follows that f ¢ B, so BU{e} is extendible
to an MST, as required.

Efficiency of Minimum Spanning Tree Algorithms

Let us begin by describing a standard way to store a graph G = (V, E) in a
computer. We keep for each v € V a list L, of the edges incident with v, and
the other end of each edge. (Often the latter is enough to specify the edge.)
If there is a cost associated with each edge, this is also stored with the edge.
Notice that this means that each edge and cost is stored twice, in two different
lists. In all complexity estimations we assume that n = O(m) and that m =
O(n?). Situations in which these assumptions do not hold are usually trivial,
from the point of view of the problems we consider. Prim’s Algorithm can be
restated, using an observation from the proof of Theorem 2.5, as follows.

Prim’s Algorithm

Initialize H = (V(H),T) as ({r}, 0);
While H is not a spanning tree
Add to T a minimum-cost edge from 0(V (H)).

Here is a straightforward implementation of this algorithm. We keep V (H)
as a characteristic vector . (That is, z, = 1 if w € V(H), and 2, = 0
if w ¢ V(H).) At each step we run through E, checking for each f = wv
whether f € §(V(H)) by checking whether z, # z,, and if so comparing c
to the current minimum encountered. So e can be chosen in O(m) time. Then
x is updated by putting x, = 1 where v is the end of e for which x, was 0.
This will be done n — 1 times, so we have a running time of O(nm).

Now we describe the improvement to this running time found by Prim and
Dijkstra. We keep, for each v ¢ V(H), an edge h(v) joining v to a node of
H such that cj(,) is minimum. Then e can be chosen as the h(v) that has
smallest cost. The advantage of this is that only O(n) elementary steps are
required to choose e. The disadvantage is that the values h(v) need to be
changed after each step. Say that w was added to V(H) and v remains in
VAV(H). Then h(v) may have to be changed, but only if there is an edge
f = wv with ¢y < cp(,). We can do all of these changes by going through
L, once, which is again O(n) work. So we do O(n) elementary steps per
step of the algorithm and get a running time of O(n?), an improvement on

MINIMUM SPANNING TREES 15

O(nm). Further improvements are presented, for example, in the monograph
of Tarjan [1983].

Now we turn to the implementation of Kruskal’s Algorithm. Notice that,
once an edge e = vw becomes unavailable to add to F', that is, H contains a
path from v to w, it remains so. This means that finding the next edge to be
added can be done simply by considering the edges in order of cost. That is,
Kruskal’s Algorithm can be restated, as follows.

Kruskal’s Algorithm for MST

Order E as {e1,...,em}, where ¢, < ¢, <...<¢Ce,;
Initialize H = (V, F) as (V, 0);
Fort=1tom
If the ends of e; are in different components of H
Add e; to F.

Therefore, implementation of Kruskal’s Algorithm requires first sorting m
numbers. This can be accomplished in O(mlogm) time by any one of a
number of sorting algorithms.

To do the other step, we keep the partition of V' into “blocks”: the node-
sets of components of H. The operations to be performed are 2m “finds”:
steps in which we find the block P containing a given v, and n — 1 “merges”:
steps in which two blocks P, @ are replaced by P U @, because an edge uv
with u € P, v € @ has been added to F. We keep for each v the name block(v)
of the block containing v, so each merge can be done by changing block(v) to
block(u) for every v € P and some u € . It is important always to do this for
the smaller of the two blocks being merged, that is, we take |P| < |@Q| (and so
we need to keep the cardinalities of the blocks). To find the elements of blocks
quickly, we keep each block also as a linked list. After a merge, the lists can
also be updated in constant time. It is easy to see that the main work in this
phase of the algorithm is the updating of block(v), which could require as much
as n/2 elementary steps for a single merge. However, it can be proved that for
each v, block(v) changes at most logn times. See Exercise 2.14. Therefore, the
total work in the second phase of the algorithm is O(mlogn) = O(mlogm),
and we get a running time for Kruskal’s Algorithm of O(mlogm). Again, a
discussion of further improvements can be found in Tarjan [1983].

Minimum Spanning Trees and Linear Programming

There is an interesting connection between minimum spanning trees and
linear programming. Namely, there is a linear-programming problem for which
every minimum spanning tree provides an optimal solution. This fact will be
useful in Chapter 7, in connection with the traveling salesman problem.

16 OPTIMAL TREES AND PATHS

Consider the following linear-programming problem. (For any set A and
vector p € R4 and any B C A, we use the abbreviation p(B) to mean
> (pj : j € B). We denote the set of real numbers by R, the set of integers
by Z, the set of nonnegative integers by Z. .

Minimize ¢’z (2.1)
subject to
z(y(S)) <|S|—1, forall S, P £SCV (2.2)
z(E)=|V|-1

xe >0, foralle € E.

(Do not be alarmed by the number of constraints.) Let S be a nonempty
subset of nodes, let T' be the edge-set of a spanning tree, and let 2° be the
characteristic vector of T'. Notice that z°(y(S)) is just |7 N v(S)|, and since
T contains no circuit, this will be at most |S| — 1. Also 2° > 0 and 2°(E) =
|V| -1, so z° is a feasible solution of (2.1). Moreover, c'z® = ¢(T), that is,
this feasible solution has objective value equal to the cost of the corresponding
spanning tree. So, in particular, the optimal objective value of (2.1) is a lower
bound on the cost of an MST. But in fact these two values are equal, a theorem
of Edmonds [1971].

Theorem 2.8 Let 2° be the characteristic vector of an MST with respect to
costs co. Then z° is an optimal solution of (2.1).

Proof: We begin by writing an equivalent form of (2.1) that is easier to deal
with. For a subset A of the edges, let K(A) denote the number of components
of the subgraph (V, A) of G. Counsider the problem

Minimize ¢!z (2.5)
subject to
z(A) < |V|—k(A), forall ACE (2.6)
z(E)=1V|-1 .
z, >0, foralle € E. (2.8)

We claim that the two problems have exactly the same feasible solutions,
and thus the same optimal solutions. It is easy to see that every constraint
of the form z(vy(S)) < |S| — 1 is implied by an inequality of the type (2.6);
namely take A = v(S) and observe that x(y(S)) > |V \ S| + 1. On the
other hand, we will show that every constraint of the form (2.6) is implied
by a combination of constraints from (2.2) and (2.4). Let A C E, and let
S1,...,Sk be the node-sets of the components of the subgraph (V, A). Then
2(4) < T 2(v(S)) € iy (1Si] - 1) = V| - k.

Now it is enough to show that z° is optimal for problem (2.5), and further,
it is enough to show that this is true where z° is the characteristic vector of

MINIMUM SPANNING TREES 17

a spanning tree T' generated by Kruskal’s Algorithm. We will show in this
case that 20 is optimal by showing that Kruskal’s Algorithm can be used to
compute a feasible solution of the dual linear- programming problem to (2.5)
that satisfies complementary slackness with 0. It is easier to write the dual
of (2.5) if we first replace minimize ¢’z by the equivalent maximize —c’z.

Now the dual problem is

Minimize),z (|[V| = &(4))ya (2.9)

sub}ect to
S(ya: e€ A) > —c,, foralle e E (2.10)
ya >0, forall A C E. (2.11)
Notice that yg is not required to be nonnegative. Let ey, ..., e, be the order
in which Kruskal’s Algorithm considers the edges. (Here we are following the
second version of the statement of the algorithm.) Let R; denote {e1,...,e;}

for 1 < i < m. Here is the definition of our dual solution y°. We let y4 =0
unless A is one of the R;, we put y%i = Ce;py — Ce;r for 1 <i <m—1, and we
put y%m = —c,,,. It follows from the ordering of the edges that y% > 0 for
A # E. Now consider the constraints (2.10). Then, where e = e;, we have

-1

m
Z(yA: EEA :Z z+1_cei)_cem:_cei:_ce.

] i

3

In other words, all of these inequalities hold with equality. So we now know
that y° is a feasible solution to (2.9), and also that the complementary slack-
ness conditions of the form, 22 > 0 implies equality in the corresponding
dual constraint, are satisfied. There is only one more condition to check, that
y% > 0 implies that z° satisfies (2.6) with equality. For this, we know that
A = R; for some i. If (2.6) is not an equality for this R;, then there is some
edge of R; whose addition to TN R; would decrease the number of components
of (V,TNR;). But such an edge would have ends in two different components
of (V,R;NT), and therefore would have been added to T by Kruskal’s Algo-
rithm. Therefore, z° and y° satisfy the complementary slackness conditions.
It follows that z° is an optimal solution to (2.5), and hence to (2.1). |

Notice that, since any spanning tree that provides an optimal solution of the
linear-programming problem must be an MST, and since the proof used only
the fact that T" was generated by Kruskal’s Algorithm, we have actually given
a second proof that Kruskal’s Algorithm computes an MST.

Exercises

2.1. Find a minimum spanning tree in the graph of Figure 2.2 using: (a)
Kruskal’s Algorithm; (b) Prim’s Algorithm with the indicated choice of r.

18 OPTIMAL TREES AND PATHS

7 12

15 ‘7 9

Figure 2.2. MST exercise

2.2. Find a dual solution to the linear-programming problem 2.1 for the graph
of Figure 2.2.

2.3. Show that we may assume in the MST problem that the input graph is
simple.

2.4. Prove Lemma 2.2.

2.5. Prove Lemma 2.7.

2.6. Give an algorithm to find a minimum-cost forest of a graph, where edge-
costs are not assumed to be positive.

2.7. Give an algorithm to solve the connector problem where negative costs
are allowed.

2.8. Show that any MST problem can be reduced to an MST problem with
positive edge-costs.

2.9. Prove that if H = (V,T) is an MST, and e € T, then there is a cut D
with e € D and ¢, = min{cy : f € D}.

2.10. Prove that a spanning tree H = (V,T') of G is an MST if and ounly if for
every e = vw € E\T and every edge f of a (v,w) pathin T, ¢, > cy.

2.11. Show that the following algorithm finds an MST of a connected graph
G. Begin with H = G. At each step, find (if one exists) a maximum-cost
edge e such that H\e is connected, and delete e from H. Try this algorithm
on the example of Exercise 2.1.

2.12. Show that there is an O(m) algorithm to find some spanning tree of a
connected graph.

2.13. In the implementation of Prim’s Algorithm, suppose we keep for each
v € V(H) an edge h(v) joining v to a node of V\V(H) whose cost is
minimum. Does this idea lead to an O(n?) running time?

2.14. For the implementation of Kruskal’s Algorithm described in the text,
show that for each v € V', block(v) is changed at most logn times.

2.15. Here is another way to do finds and merges in Kruskal’s Algorithm.
Each block S has a distinguished node name(S) € S. Each v € S differ-
ent from name(S) has a predecessor p(v) € S such that evaluating p(v),

SHORTEST PATHS 19

then p(p(v)),..., we eventually get to name(S). With each name(S), we
also keep |S|. Show how this idea can be used to implement Kruskal’s
Algorithm, so that the running time is O(m logm).

2.16. Suppose that, instead of the sum of the costs of edges of a spanning tree,
we wish to minimize the mazimum cost of an edge of a spanning tree. That
is, we want the most expensive edge of the tree to be as cheap as possible.
This is called the minmaz spanning tree problem. Prove that every MST
actually solves this problem. Is the converse true?

2.17. Here is a different and more general way to solve the minmax spanning
tree problem of Exercise 2.16. Show that the optimal value of the objective
is the smallest cost ¢, such that {f : f € E, ¢y < c.} contains the edge-set
of a spanning tree of G. Use this observation and the result of Exercise 2.12
to design an O(m?) algorithm. Can you improve it to O(m logm)?

2.2 SHORTEST PATHS

Suppose that we wish to make a table of the minimum driving distances from
the corner of Bay Street and Baxter Road to every other street corner in the
city of Bridgetown, Barbados. By this we mean that the routes must follow
city streets, obeying the directions on one-way streets. We can associate
a graph with the “network” of the city streets, but the notion of direction
imposed by the one-way streets leads to the idea of a directed graph.

A directed graph or digraph G consists of disjoint finite sets V = V(G) of
nodes and E = E(G) of arcs, and functions associating to each e € E a tail
t(e) € V and a head h(e) € V. In other words, each arc has two end nodes,
to which it is said to be incident, and a direction from one to the other. The
street map of Bridgetown defines a digraph whose nodes are the street corners.
There is an arc for each section of street joining (directly) two corners, and
for each direction in which it is legal to drive along it.

The terminology and notation of digraph theory is similar to that of graph
theory. In fact, to every digraph there corresponds a graph, obtained by
letting the arcs be the edges and ignoring the arc directions. Whenever we
use a digraph term or notation without definition, it means what it does for
the associated undirected graph. Hence we get immediately notions like loop
and path in a digraph. In addition, notions of subdigraph and deletion of arcs
and nodes are defined exactly in analogy with corresponding terms for graphs.
But some differences also appear. Two arcs of a digraph are parallel if they
have the same head and the same tail, and a digraph is simple if it has no
loops or parallel arcs. Hence a digraph may be simple as a digraph, but not
as a graph. When we write e = vw for an arc of a digraph G, we mean that
v =t(e), w= h(e). An arc e; of a path P : wvg,e1,v1,...,er, v is forward if
t(e;) = vi—1 and h(e;) = v; and is reverse otherwise. A path in which every
arc is forward is a directed path or dipath. A dicircuit is a dipath that is also

20 OPTIMAL TREES AND PATHS

a circuit. If each e € E has a real cost c., the cost ¢(P) (with respect to ¢) of

the dipath P is defined to be Ele Ce;. In Figure 2.3 a digraph with arc-costs
is represented pictorially.

Figure 2.3. A Digraph with arc-costs

Shortest Path Problem

Input: A digraph G, a node r € V, and a real cost vector (c, : e €
Objective: To find, for each v € V, a dipath from r to v of least
cost (if one exists).

There are many direct applications of shortest path problems. We shall see
that there are also many more difficult problems in combinatorial optimization
for which solution algorithms use shortest path algorithms as subroutines.

One reason that a least-cost dipath to some v € V may not exist, is that
G has no dipath at all from r to v. We could modify the algorithms we shall
describe to detect this, but it is more convenient to be able to assume that it
never happens. One way to do this is to check for this condition in advance
by a graph-theoretic method. Instead, however, we can modify the given G so
that there is an arc from r to v for every v € V. Where this requires adding a
new arc, we assign it a sufficiently large cost (how large?) so that a least-cost
dipath will include it only if there was no dipath from r to v in the original
digraph G. So we assume that dipaths exist from r to all the nodes. Notice
that we may also assume that G is simple. (Why?)

Here is the basic idea behind all the methods for solving the shortest path
problem. Suppose we know that there exists a dipath from r to v of cost y,
for each v € V, and we find an arc vw € E satisfying y, + cyu < Yu. Since
appending vw to the dipath to v gives a dipath to w, we know that there
is a cheaper dipath to w, of cost y, + cyw- In particular, it follows that if
Yu, U €V, is the least cost of a dipath to v, then y satisfies

Yo + Cow > Yu, for all vw € E. (2.12)

SHORTEST PATHS 21

We call y = (y, : v € V) a feasible potential if it satisfies (2.12) and y, =
0. Notice that (2.12) is the essential requirement, since subtracting y, from
each y, preserves (2.12) and makes y, = 0. Feasible potentials provide lower
bounds for shortest path costs, as the following result shows.

Proposition 2.9 Let y be a feasible potential and let P be a dipath from r
to v. Then ¢(P) > y,.

Proof: Suppose that P is vg,e1,v1,...,€x, v, where vg = r and v, = v.
Then

k k
C(P) = Zcei Z Z(yvi - yvi—l) = Yvi = Yvo = Yu-
i=1 i=1
|

Here is another simple but useful observation. Since we want dipaths from
r to many other nodes, it may seem that the paths might use many arcs
altogether. In fact, however, all the shortest paths can be assumed to use
just one arc having head v for each node v # r. The reason is that subpaths
of shortest paths are shortest paths, that is, if v is on the least-cost dipath
P from r to w, then P splits into a dipath P; from r to v and a dipath P
from v to w. Obviously, if P; is not a least-cost dipath from r to v, then
replacing it by a better one would also lead to a better dipath to w. Hence,
the only arc having head v that we really need is the last arc of one least-cost
dipath to v. Moreover, because there will be exactly n — 1 such arcs, and
the corresponding subgraph contains a path from r to every other node, it is
the arc-set of a spanning tree of G. So, just as in the connector problem of
Section 2.1, the solution takes the form of a spanning tree of G. However,
there are two crucial differences. First, not every spanning tree provides a
feasible solution to the shortest path problem: We need a directed spanning
tree rooted at r, meaning that it contains a dipath from r to v for every v € V.
Second, our objective here, in terms of the spanning tree, is not to minimize
the sum of the costs of its arcs; see Exercise 2.18.

Ford’s Algorithm

Proposition 2.9 provides a stopping condition for a shortest path algorithm.
Namely, if we have a feasible potential y and, for each v € V, a dipath from
r to v of cost y,, we know that each dipath is of least cost. Moreover, we
have already described the essence of a “descent” algorithm — if y describes
dipath costs and we find an arc vw violating (2.12), we replace ¥, by Yy + Cyw-
We can initialize such an algorithm with y, = 0 and y,, = oo for v # r. Here
Y, = oo simply means that we do not yet know a dipath to v, and oo satisfies
a+ 0o = 0o and a < oo for all real numbers a. Since we wish, at termination
of the algorithm with an optimal y, to obtain also the optimal dipaths, we
add one more refinement to the algorithm. The arcs vw of a least-cost dipath

22 OPTIMAL TREES AND PATHS

will satisfy y, + ¢yw = Yw, SO the last arc of the optimal path to w will be
the arc vw such that y,, was most recently lowered to ¥, + cyw. Moreover,
the least-cost dipath to w must consist of a least-cost dipath to v with the
arc vw appended, so knowing this “last-arc” information at each node allows
us to trace (in reverse) the optimal dipath from r (because G is simple). For
this reason, we keep a “predecessor” p(w) for each w € V and set p(w) to
v whenever y,, is set to y, + ¢yw. Let us call an arc vw violating (2.12)
incorrect. To correct vw means to set Y, = Yy + €y and to set p(w) = v. To
initialize y and p means to set y, = 0, p(r) =0, y, = oo and p(v) = —1 for
v € V\{r}. (We are using p(v) = —1 to mean that the predecessor of v is not
(yet) defined, but we want to distinguish 7 from such nodes. We are assuming
that 0,—1 ¢ V.) The resulting algorithm is due to Ford [1956].

Ford’s Algorithm

Initialize y, p;
While y is not a feasible potential
Find an incorrect arc vw and correct it.

On the digraph of Figure 2.3, Ford’s Algorithm might execute as indicated
in Table 2.1. At termination, we do have a feasible potential y and paths of

Start vw=ra |vw=r w=ad pw =ba pw = ad
Y p Y p Yy p Yy p Yy p Y p
r 0 0 0 0 0 0 0 0 0 0|0 0
a oo -1 3 r 3 r 3 rb |2 b 2 b
b oo —-1|oc0 -1 1 r 1 r 1 r 1 r
d oo —-1]oo —-1|o0 -—-11[5 a 5 a |4 a

Table 2.1. Ford’s Algorithm applied to the first example

cost y, given (in reverse) by tracing the values of p back to r, and so we have
solved this (trivial) example. Notice that we must have y, = yp,(v) + Cp(v)o at
termination, but that this need not be true at all times — consider v = d after
the fourth iteration. In fact, ¥, > y,(v) + cp(v)v holds throughout. (Proof: It
held with equality when y, and p(v) were assigned their current values and
after that y,(,) can only decrease.)

Figure 2.4 shows a second example and Table 2.2 represents the first few
iterations of Ford’s Algorithm on that instance. It shows a situation in which
the algorithm goes very badly wrong.

It is not hard to see that vw can be chosen as

ab, bd, da, ab, bd, da, ab,...

SHORTEST PATHS 23

T
Figure 2.4. A second example
Start vw=ra |[vw=ab pw=>bd pw=da pw = ab
Y p Y p Y p y p |y P |Y p
r 0 0 0 0 0 0 0 0[O0 0 0 0
a oo -1 2 r 2 r 2 r 1 d 1 d
b oo —-1|oc0 -—-1] 3 a 3 a |3 a 2 a
d oo —-1]oo —-1]oo -—-11]0 b |0 b 0 b

Table 2.2. Ford’s Algorithm applied to second example

indefinitely, that the algorithm will not terminate, and that certain y, will
become arbitrarily small (that is, will go to —o0). This should not be such a
surprise, since if we are asked to find a least-cost dipath from r to a we can
repeat the sequence a, b, d as many times as we like before stopping at a. That
is, there are arbitrarily cheap dipaths to a, so there is no least-cost one. It is
apparent that if (G, c) has a negative-cost closed dipath (as in this example),
then there exist nodes to which no least-cost dipath exists. In addition to
wanting an algorithm that always terminates (quickly, we hope!), we want
the algorithm to recognize when a negative-cost dicircuit exists. (Exercise:
There is a negative-cost closed dipath if and only if there is a negative-cost
dicircuit.)

In fact, not only are there many important applications in which negative
costs really arise, but there are several in which a negative-cost dicircuit is
actually the object of interest. As an example, consider the common situation
of currency exchange rates where, for each pair v,w of currencies, we are
quoted a rate 7y, the number of units of currency w that can be purchased
for one unit of currency v. Notice that if we convert a unit of currency 1 into
currency 2, and then convert all of that into currency 3, we shall have r157r23
units of currency 3. This suggests looking for a sequence vy, vy, va,. .., U

k
of currencies with vy = vy such that [] ry,_,»; > 1, for on the associated

i=1
sequence of exchanges we would make money. We form a digraph G whose
nodes are the currencies, with an arc vw of cost ¢y, = — log Ty, for each pair
v,w. Then such a sequence is money-making if and only if the associated

24 OPTIMAL TREES AND PATHS

k k

closed dipath of G has cost — > logry,_,», = —log (H rvi_lvi> < 0. So we
i=1 =1

can check for the existence of a money-making sequence by checking for the

existence of a negative-cost dicircuit in G.

Validity of Ford’s Algorithm

We shall show that, provided no negative-cost dicircuit exists, Ford’s Al-
gorithm does terminate and that it terminates with least-cost dipaths. This
algorithm is itself too crude to be directly useful. But all of the algorithms
we treat later are refinements of it, so it is worthwhile (but a bit tedious) to
establish its properties. The main step is the following.

Proposition 2.10 If (G, c) has no negative-cost dicircuit, then at any stage
of the execution of Ford’s Algorithm we have:

(i) If y, # oo, then it is the cost of a simple dipath from r to v;

(ii) If p(v) # —1, then p defines a simple dipath from r to v of cost at most
Yo

Proof: Let yJ be the value of y, after j iterations. We know that yJ is the
cost of a dipath (if yJ # 00), so suppose that the dipath is not simple. Then
there is a sequence vg, v1, ..., v of nodes with vy = v, and iteration numbers
o < q1 < ...< q such that

Yol +Cu g, = Ya, 150 <k

The cost of the resulting closed dipath is

E _E 9 _ 0 %i—-1) — 4k _ 5,90
cvi—lvi - (yvl yvi—l) - yvk yvo‘

But y,, was lowered at iteration g, so this dipath has negative cost, a con-
tradiction, and (i) is proved. Notice that it follows from (i) that y, = 0.

The proof of (ii) is similar. If p does not define a simple dipath from r to v,
then there is a sequence wvg,v1, ..., v, with vg = v and p(v;) = v;—q for 1 <
i < k. The cost of the resulting closed dipath is < 0 since ¢,(v)s < Yo — Yp(v)
always holds. But consider the most recent predecessor assignment on the
dipath; say y,(,) was lowered. Then the above inequality is strict, so we have
a negative-cost closed dipath, a contradiction.

Finally, we need to show that the simple dipath to v has cost at most y,,.
Let the dipath be vg,e1,v1,...,ex, v where vg = r, v = v and p(v;) = v
for 1 < i < k. Then its cost is < > (Yv; — Yvi_,) = Yv — Yr = Yy, as required.

SHORTEST PATHS 25

Theorem 2.11 If (G, c¢) has no negative-cost dicircuit, then Ford’s Algorithm
terminates after a finite number of iterations. At termination, for each v €
V, p defines a least-cost dipath from r to v of cost y,.

Proof: There are finitely many simple dipaths in GG. Therefore, by Proposi-
tion 2.10, there are a finite number of possible values for the y,. Since at each
step one of them decreases (and none increases), the algorithm terminates.
At termination, for each v € V, p defines a simple dipath from r to v of cost
< y,. But no dipath to v can have smaller cost than y, by Proposition 2.9. 1

A consequence of the correctness of Ford’s Algorithm is the following fun-
damental fact. Notice that it applies even without any assumption about the
existence of dipaths.

Theorem 2.12 (G, c) has a feasible potential if and only if it has no negative-
cost dicircuit.

Proof: We have already observed that if G has a feasible potential, then it
can have no negative-cost dicircuit. Now suppose that G has no negative-cost
dicircuit. Add a new node r to G with arcs from r to v of cost zero for every
v € V. Where G’ is the new digraph and ¢’ is the new cost vector, (G’,¢') has
no negative-cost dicircuit, because no dicircuit of G’ goes through r. Now we
can apply Ford’s Algorithm to (G',¢'), and since there is a dipath from r to
all other nodes, it will terminate with a feasible potential, which clearly gives
a feasible potential for (G, ¢).

If there is no least-cost dipath to some node v, it is because there are
arbitrarily cheap nonsimple dipaths to v. So it is natural to ask why we do
not try to find a least-cost simple one. (One exists, because the number of
simple dipaths is finite.) However, this problem is difficult (unless there is no
negative-cost dicircuit) in the same sense that the traveling salesman problem
is difficult. In fact, a solution to it could be used quite directly to solve the
Euclidean traveling salesman problem (Exercise 2.26).

We shall see that Ford’s Algorithm, although it can be modified to recognize
the existence of negative-cost dicircuits and hence made finite in all cases
(Exercise 2.20), does not have acceptable efficiency. (See Exercise 2.25.) We
shall discuss a number of refinements that have better efficiency, although
several of them work only in special cases. All of them specify more narrowly
the order in which the arcs are considered in the basic step of the algorithm.
However, there is one simple observation that can be made for the case in
which the arc-costs are integers. Then each step of Ford’s Algorithm decreases
some y, by at least 1, since all of these values are integer or co. We let C'
denote 2max(|ce| : e € E) + 1. Then we can prove the following.

Proposition 2.13 If ¢ is integer-valued, C' is as defined above, and G has no
negative-cost dicircuit, then Ford’s Algorithm terminates after at most Cn?
arc-correction steps. |

26 OPTIMAL TREES AND PATHS

The proof of Proposition 2.13 is left to Exercise 2.27. Several of the other
exercises investigate better bounds that can be obtained via arguments that
assume integral arc-costs and work with the size of the numbers. We shall see
in the text that there are good bounds that do not depend on the size of the
costs.

Feasible Potentials and Linear Programming

We have seen that feasible potentials provide lower bounds for dipath costs.
But in fact at termination of Ford’s Algorithm we have a feasible potential
and dipaths for which equality holds. One possible statement of this fact is
the following.

Theorem 2.14 Let G be a digraph, r,s € V and ¢ € RF. If there exists a
least-cost dipath from r to v for every v € V, then

min{c(P) : P a dipath from r to s} = max{ys : y a feasible potential}.

We wish to point out the connection between this statement and linear-
programming duality. The maximization in the theorem statement is obvi-
ously a linear-programming problem. It is convenient to drop the requirement
that y, = 0 and write that linear-programming problem as:

Maximize y; — y» (2.13)
subject to

Yuw — Yo < Cyu, for all vw € E.

Where b, is defined to be 1 if v = s, —1 if v = r and 0 otherwise, the dual
linear-programming problem of (2.13) is

Minimize Y (c.z. : e € E) (2.14)
subject to
Y@y :w €€V, wv € E) =Y (zyw :w €V, vw € E) =by, forallveV
Tyw > 0, for all vw € E.

The Duality Theorem says that if one of the optimal values in (2.13), (2.14)
exists, then they both do, and they are equal. Notice that any dipath P from
7 to s provides a feasible solution to (2.14), as follows. Define (zf' : e € E)
by: xF is the number of times that arc e is used in P. (In particular, if P is
simple, then z¥ is {0,1}-valued, and is the characteristic vector of P.) Then
the objective function of (2.14) for z = z¥ is just the cost of P. Therefore,

Theorem 2.14 implies that, when shortest paths exist, (2.14) has an optimal

SHORTEST PATHS 27

solution that is the characteristic vector of a simple dipath. As we shall see
(Chapter 7), this result is equivalent to the statement that the vertices of the
polyhedron of feasible solutions to (2.14) are characteristic vectors of simple
dipaths.

Since we have solved the linear-programming problem (2.14) with Ford’s
Algorithm, one might wonder whether there is any connection between that
algorithm and the simplex algorithm. The simplex algorithm keeps a set T’
of “basic” arcs (corresponding to the variables in (2.14) that are basic), a
feasible solution z of (2.14), and a vector y € RY satisfying

z. =0, foralle¢ T (2.15)
Yy — Yw = Cyw, for all vw € T (2.16)

In each iteration it proceeds to a new such set by replacing one of the arcs
in the set by one outside the set. The set T of basic arcs must correspond
to a maximal linearly independent set of columns (that is, a column basis)
{a. : e € T} of the constraint matrix A = {a. : e € E} of the equality
constraints of (2.14). This matrix is called the incidence matriz of G. Its
column bases can be characterized in a very nice way. We state the result
here and leave the proof to Exercise 2.28.

Proposition 2.15 Let G be a connected digraph and A = {a. : e € E} be
its incidence matriz. A set {a.: e € T} is a column basis of A if and only if
T is the arc-set of a spanning tree of G. |

Ford’s Algorithm, once it has found paths to all nodes, does have such a set
T, namely, {p(v)v : v € V\{r}}. (It is possible to require that the simplex
method for (2.14) keep such a directed spanning tree.) Moreover, the dipath
from r to s determined by p uses only arcs from T, so its characteristic vector
xP satisfies (2.15). However, for this 7', (2.16) becomes Yp(v) T Cp(v)v = Yus
a relation that is generally not enforced by Ford’s Algorithm. Notice that
enforcing this (and y, = 0) would mean that the dipath to v determined by
p would have cost exactly y,. A spanning tree encountered by the simplex
method need not have the property that every node other than r is the head
of exactly one arc, but if it does encounter such a tree, then there is always
a choice of the arc to delete (namely, the arc of the tree having the same
head as the incoming arc) so that the property is kept. So (a version of) the
simplex method moves from spanning tree to spanning tree, as does Ford’s
Algorithm, but the former method keeps the path costs determined by the
current tree. In fact Ford’s Algorithm may do a correction step on an arc of
the form p(v)v, so that the tree does not change, but y does. In this sense,
each step of the simplex algorithm could be regarded as a sequence of steps
of Ford’s Algorithm, one ordinary step followed by several steps that do not
change the tree, until y “catches up” to the tree. We will learn more about
such “network” versions of the simplex method in Chapter 4.

28 OPTIMAL TREES AND PATHS

Refinements of Ford’s Algorithm

The basic step of Ford’s Algorithm could be written as

Choose an arc e;
If e is incorrect, then correct it;

Notice that, assuming that we store the values of y and p appropriately, we
can perform each basic step in constant time. But the number of basic steps
depends crucially on the order in which arcs e are chosen. Suppose that
arcs are chosen in the sequence fi, fo, fs,..., fr, which we denote by S. (In
general, there will be repetitions.) There are choices for S that result in very
bad performance of the algorithm. (For example, see Exercise 2.25.) The
basic idea for looking for good choices for & is simple. Denote by P the
dipath vg,e1,v1,...,ex, v from 7 = vg to v = v. After the first time that
Ford’s Algorithm considers the arc e; we will have y,, < yr + ce; < Cey-
After the first subsequent time that the algorithm considers ez, we will have
Yoy < Yo, +Cey < Cey +Ce,,. Continuing, once ey, es, . . ., €x have been considered
in that order, we will have y, < ¢(P). We say that P is embedded in S if its arcs
occur (in the right order, but not necessarily consecutively) as a subsequence
of §. Our discussion can be summarized as follows.

Proposition 2.16 If Ford’s Algorithm uses the sequence S, then for every
v € V and for every path P from r to v embedded in S, we have y, < c(P).l

It follows that, if S has the property that for every node v there is a least-cost
dipath to v embedded in S, then S will bring the algorithm to termination.
We want S to have this property, and we also want S to be short, since its
length will be the running time of the algorithm.

The Ford-Bellman Algorithm

A simple way to use Proposition 2.16 is to observe that every simple dipath
in G is embedded in &1,8,,...,S,_1, where for each i, §; is an ordering of
E. When we use such an ordering in Ford’s Algorithm we speak of a sequence
of “passes” through E. Since each arc is handled in constant time per pass,
we get a shortest path algorithm that runs in time O(mn). We call it the
Ford-Bellman Algorithm, because Bellman [1958] seems to have been the first
to prove a polynomial bound for such an algorithm. We want the algorithm
also to recognize whether there exists a negative-cost dicircuit. We know
that, if there is no negative-cost dicircuit, then n — 1 passes are sufficient to
determine a feasible potential. Therefore, if y is not a feasible potential after
n — 1 passes, then there exists a negative-cost dicircuit.

SHORTEST PATHS 29

Ford-Bellman Algorithm

Initialize y, p;
Set ¢ = 0;
While i < n and y is not a feasible potential
Replace i by ¢ + 1;
Foreec E
If e is incorrect
Correct e.

Theorem 2.17 The Ford-Bellman Algorithm correctly computes a least-cost
dipath from r to v for allv € V (if i < n at termination), or correctly detects
that there is a negative-cost dicircuit (if i = n at termination). In either case
it runs in time O(mn). |

We shall see that the running time of O(mn) can be improved if special
assumptions are made about G or ¢. However, in the general case, no better
bound is currently known. Here we mention some further refinements that
speed up the algorithm in practice. Most of them are based on the natural idea
of scanning nodes, that is, considering consecutively all the arcs having the
same tail. (We point out that the simplex method is not based on scanning.
For another such example, see Exercise 2.42.)

A usual representation of a digraph is to store all the arcs having tail v in
a list L,. To scan v means to do the following:

For vw € L,
If vw is incorrect
Correct vw;

A natural further refinement of the Ford-Bellman Algorithm is to replace the
last three lines in its statement by

ForveV
Scan v;

It is obvious that, if y, has not decreased since the last time v was scanned,
then v need not be scanned. Taking advantage of this observation saves time.
One way to do that is to keep a set @ of nodes to be scanned, adding a
node v to @ when y, is decreased (if v ¢ @) and choosing the next node
to be scanned from @ (and deleting it from Q). Initially @ = {r}, and the
algorithm terminates when) becomes empty. We keep @ both as a list and

30 OPTIMAL TREES AND PATHS

b J

f g

Figure 2.5. Digraph having a topological sort

a characteristic vector, so that we can add, delete, and check membership
in @ in constant time. In order to do the first two operations in constant
time, we add and delete at the ends of Q). If we add at one end, the “back,”
and delete at the other, the “front,” we are keeping () as a “first in, first
out” list or a queue. In this case it can be checked (Exercise 2.32) that the
algorithm is equivalent to a refinement of the Ford-Bellman Algorithm and
so has a running time of O(mn). This refinement also works well in practice,
but there are some variants that are even faster. The paper of Gallo and
Pallottino [1986] contains more information.

Acyclic Digraphs

Suppose that the nodes of G can be ordered from left to right so that all
arcs go from left to right. More precisely, suppose that there is an ordering
V1,V2,...,U, of V so that v;v; € E implies ¢+ < j. We call such an ordering a
topological sort. In the digraph of Figure 2.5, d, h,t, g, j,b, a, f is a topological
sort.

If we order E in the sequence S so that v;v; precedes viv, if ¢ < K, then
every dipath of G is embedded in S. It follows that Ford’s Algorithm will
solve the shortest path problem in just one pass through E. There is a simple
description of the class of digraphs for which this observation works. It is
obvious that if G has a topological sort, then it has no dicircuit at all (and
hence no negative-cost dicircuit); in other words, G is acyclic. Conversely,
we claim that every acyclic digraph has a topological sort. To see this, first
observe that each acyclic digraph has a candidate for vy, that is, a node v
such that uwv € E for nou € V. (Why?) Moreover, since G\v is acyclic, this
can be repeated. This idea can be turned into an O(m) algorithm to find a
topological sort (Exercise 2.33). Notice that, if » = v; with ¢ > 1, then there
can be no dipath from r to vy,...,v;_1, so these can be deleted. Hence we
may assume that vy =r.

SHORTEST PATHS 31

Shortest Paths in an Acyclic Digraph

Find a topological sort vy, ...,v, of G with r = vy;
Initialize y, p;
Fori=1ton

Scan v;.

Theorem 2.18 The shortest path problem on an acyclic digraph can be solved
in time O(m). |

Nonnegative Costs

In many applications of the shortest path problem we know that ¢ > 0.
In fact, probably this is the situation more often than not, so this is an
extremely important special case. Again it is possible to design a correct
“one-pass” algorithm. Moreover, the ordering is determined from an ordering
of the nodes as in the acyclic case. However, this ordering is computed during
the course of execution. Namely, if vy,vs,...,v; have been determined and
scanned, then v;y1 is chosen to be the unscanned node v for which y, is
minimum. In this situation we have the following result.

Proposition 2.19 For each w € V, let y., be the value of y,, when w is
chosen to be scanned. If u is scanned before v, then y,, < y..

Proof: Suppose y., < y. and let v be the earliest node scanned for which
this is true. When u was chosen to be scanned, we had y!, = y, < y, , so
yy was lowered to a value less than y!, after u was chosen to be scanned but
before v was chosen. So y, was lowered when some node w was scanned, and
it was set to y,, + cwy. By choice of v, y!, > y., and since ¢y, > 0, we have
yl >y, a contradiction. |

We claim that after all nodes are scanned, we have y, + ¢y > ¥, for all
vw € E. Suppose not. Since this was true when v was scanned, it must be
that y, was lowered after v was scanned, say while ¢ was being scanned. But
then y, = y; + cqv > v, since ¢ was scanned later than v and ¢4, > 0, a
contradiction. So the following algorithm, due to Dijkstra [1959], is valid.

32 OPTIMAL TREES AND PATHS

a 1 p
2 3
r 3 4
h 2
b 2 q

Figure 2.6. Example for Dijkstra’s Algorithm

Dijkstra’s Algorithm

Initialize y, p;

Set S =V;

While S #£ 0
Choose v € S with y, minimum;
Delete v from S;
Scan v.

For example, in the digraph of Figure 2.6, the nodes will be scanned in the
order r,a,p,b, q.

Actually, one can slightly improve the algorithm by observing that, for
w &S, Yy + Cow > Yy follows from y, > y,,. So the test that y, + cpw < Yuw
could be done only for w € S. The running time of the algorithm is O(m)
plus the time to find v. But this simple step requires considerable time: k — 1
comparisons when |S| =k and n —1+n —2+ ...+ 1= O(n?) comparisons
in all. So the running time of a straightforward implementation is O(n?).

Theorem 2.20 Ifc > 0, then the shortest path problem can be solved in time
O(n?). |

A number of improvements are discussed in Tarjan [1983].

Shortest path problems with nonnegative costs arise frequently in appli-
cations, so it is convenient to have a notation for the time required to solve
them. We use S(n,m) for the time needed to solve a nonnegative-cost shortest
path problem on a digraph having n nodes and m arcs.

Feasible Potentials and Nonnegative Costs

If we happen to know a feasible potential y, we can use it to transform
the cost vector ¢ to a nonnegative one ¢’. Namely, put ¢, = cyw + Yo — Yu-
This does not affect the least-cost dipaths, since any (r, s)-dipath P satisfies
¢ (P) = ¢(P) + y» — ys. Hence Dijkstra’s Algorithm can be used.

SHORTEST PATHS 33

There are several applications of this simple idea. We shall see an important
one in Chapter 4. Meanwhile, here is another useful one. The “all pairs”
shortest path problem is to find a least-cost dipath from r to v for every
choice of r and v. There are direct algorithms for this problem but, from the
point of view of running time, it seems to be better just to use a standard
algorithm n times. Hence we get a running time of O(nS(n,m)) in the case
of nonnegative costs, and O(n?m) in general. But the latter time can be
improved. We find a feasible potential in time O(nm) with Ford-Bellman,
then transform to nonnegative costs, and then use Dijkstra n (or n— 1) times,
resulting in an overall running time of O(nS(n,m)).

Unit Costs and Breadth-First Search

The problem of finding a dipath from r to v having as few arcs as possible
is, of course, a kind of shortest path problem, namely, it is the case where
all arc-costs are 1. It is interesting to see how Dijkstra’s Algorithm can be
improved in this situation.

Proposition 2.21 If each ¢, = 1, then in Dijkstra’s Algorithm the final value
of y, is the first finite value assigned to it. Moreover, if v is assigned its first
finite y, before w is, then y, < Y.

Proof: Notice that these statements are obviously true for v =r. If v # r,
the first finite value assigned to y, is y!, + 1, where y!, is the final value of y,,.
Moreover, any node j scanned later than w has y} > y,, by Proposition 2.19,
so y, will not be further decreased. Similarly, any node ¢ assigned its first
finite y, after v, will have y, =y +1 >y, +1 = y,. |

When picking v € S such that y, is minimum, we choose among the set
@ of those unscanned nodes v having y, finite. Proposition 2.21 tells us that
we can simply choose the element of () that was added to () first, that is, we
can keep @) as a queue, and v can be found in constant time. So Dijkstra’s
Algorithm has a running time of O(m) in this case. Notice that we no longer
need to maintain the y, (although we may want to). This algorithm is often
called breadth-first search.

34 OPTIMAL TREES AND PATHS

Breadth-first Search

Initialize p;

Set @ = {r};

While Q # 0
Delete v from the front of Q;
For vw € L(v)

If p(w) = -1
Add w to the back of Q;
Set p(w) = v.

Exercises

2.18. Show by an example that a spanning directed tree rooted at r can be of
minimum cost but not contain least-cost dipaths to all nodes. Also show
the converse, that it may contain least-cost dipaths but not be of minimum
cost.

2.19. Show by an example that a subpath of a shortest simple dipath need
not be a shortest simple dipath, if a negative-cost dicircuit exists.

2.20. Modify Ford’s Algorithm (in a simple way) so that it always terminates,
recognizing the existence of a negative-cost dicircuit if there is one.

2.21. Solve the shortest path problem for the digraph described by the fol-
lowing lists, using (a) Ford-Bellman using node-scanning and a queue; (b)
the acyclic algorithm; (c) Dijkstra. V' = {r,a,b,d, f, g, h, j, k}, and for each
v € V the elements of the list L, are the pairs (w, ¢y,) for which vw € E.
L, : (a,2),(k,7),(,5). Ly : (d,8),(f,4). Ly : (k,3),(f,2). Lq: (h,5). Ly :
(gv 3)7 (.7’ 7) Lg : (h74)7 (.7’ 3) Lj : (k74)7 (ha 3) Ly : (da 2)7 (h79)7 (gv 6)7 (f7 1)
(Ly, is empty.)

2.22. We are given a digraph G' = (V, E), ¢ € R¥, and disjoint sets R, S C V.
The problem is to find a least-cost dipath joining a node in R to a node
in S. Show that this problem can be reduced to an ordinary shortest path
problem.

2.23. Suppose that we are given a shortest path problem on a digraph G such
that a node w is incident with exactly two arcs. Explain how the solution
of a shortest path problem on a smaller digraph yields the solution to the
given problem.

2.24. There are certain street corners in Bridgetown such that the street on
which a car leaves the intersection may depend on the street on which it
entered (for example, “no left turn”). How can a digraph, and arc costs,
be defined so that the dipaths correspond to legal routes?

SHORTEST PATHS 35

2.25. (Edmonds) Consider the digraph Gy of Figure 2.7. Show that Ford’s
Algorithm (in fact, the simplex method) can take more than 2* steps to
solve the shortest path problem on Gj. Hint: Use induction. Try to make
the algorithm solve the problem on G _1 twice.

Figure 2.7. A bad example for the Ford and simplex algorithms

2.26. Prove that the problem of finding a least-cost simple dipath joining two
fixed nodes in a digraph is hard, assuming only that the traveling salesman
problem is hard.

2.27. Prove Proposition 2.13.

2.28. Prove Proposition 2.15. Hint: To prove that if 7' does not contain the
arc-set of a circuit, then the corresponding columns are linearly indepen-
dent, use the fact that if a forest has at least one arc, then there is a node
incident to just one of its arcs.

2.29. Generalize Proposition 2.9 in the following way. Suppose that we have
dipath costs y,, v € V such that for every arc vw we have gy, —Cpp—y, < K.
Prove that for each node v, y, is within Kn of being optimal.

2.30. A “scaling” approach to improving the complexity of Ford’s Algorithm
for integral arc-costs might work as follows. For some integer p suppose
that in “stage p,” we do correction steps only for arcs vw that satisfy
Yw — Yo — Cyw > 2P. If there are no more arcs of this sort, then we decrease
p by 1. When we get to p = 0 we are just doing Ford’s Algorithm. Use
Exercise 2.29 to prove a bound on the number of steps in each stage after
the first one. Then choose the first value of p so that the bound also applies
for the first stage. What is the overall running time?

2.31. Here is a variant on the approach of doing only large correction steps in
Ford’s Algorithm. Suppose that at each step we choose to correct the arc
that maximizes y,, — ¢y — you- (Of course, this requires some extra work to
identify the arc.) Let gap(k) denote the difference between the value after k
iterations of Y (y, : v € V) and its minimum value. What will happen in
the first n — 1 iterations? To analyze the number of subsequent iterations,
use the result of Exercise 2.29 to prove that gap(k+1) < gap(k)(1—1/n?),
and hence prove a bound on the number of steps. (You may need the
inequality 1 —z < e™%.)

36 OPTIMAL TREES AND PATHS

2.32. Prove that the version of Ford’s Algorithm that uses node-scanning and
a queue to store the nodes to be scanned, has a running time of O(nm).

2.33. Give an O(m) algorithm to find in a digraph either a dicircuit or a
topological sort.
2.34. We are given numbers aq,...,a,. We want to find i and j, 1 <:<j <
j—1
n+ 1, so that > aj is minimized. Give an O(n) algorithm.
k=i
2.35. Suppose that we are given tasks ty,ts,...,t;. Each task ¢; has a pro-
cessing time p;. For certain pairs (i,j), t; must precede t;, that is, the
processing of ¢; cannot begin until the processing of ¢; is completed. We
wish to schedule the processing of the tasks so that all of the tasks are
completed as soon as possible. Solve this problem as a maximum feasible
potential problem on an acyclic digraph.

2.36. Give an example to show that Dijkstra’s Algorithm can give incorrect
results if negative costs are allowed.

2.37. Consider the least cost path problem for undirected graphs. Show that
if the costs can be assumed to be nonnegative, then this problem can be
solved by reducing it to a digraph problem. When costs are allowed to be
negative, what difficulty arises?

2.38. Consider the problem of finding a minimum cost dipath with an odd
(even) number of arcs from r to s in a digraph G having nonnegative arc
costs. Notice that the dipath may not be simple. Show how to solve this
problem by solving a shortest path problem in a digraph having two nodes
for each node different from r and s.

2.39. Consider the minmax path problem: Given a digraph G with arc-costs
and nodes 7 and s, find an (r,s) dipath P whose maximum arc-cost is as
small as possible. Show how the idea of Exercise 2.17 can be applied to
solve this problem. What is the running time?

2.40. Try to adapt Dijkstra’s Algorithm to solve the minmax path problem.
Prove that your algorithm works and give the running time.

2.41. Describe a direct all-pairs shortest-path algorithm based on the following
idea. Given a set S C V, let y,y, for v, w € V, denote the least cost of a
(v, w)-dipath whose internal nodes are from S. Compute this information
beginning with S =), adding one node at a time to S until S = V.

2.42. Consider the following refinement of Ford’s Algorithm. Let vy,...,v,
be an ordering of V', with » = v;. Split F into E; and E,, where E; =
{viv; : i < j}. Now order E; into a sequence Si, so that v;v; precedes vivy
if ¢ < k and order E> into a sequence S» so that v;v; precedes v if ¢ > k.
Now use the sequence Si,Ss,S1,Ss, - .. in Ford’s Algorithm. How does the
running time compare to that of Ford-Bellman?

Bibliography

[1974]
[1987]
[1995]

[1993]

[1983]
[1983]
[1989]
[1958]
[1957]

[1958]

[1995]

[1946]

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, 1974.

R.P. Anstee, “A polynomial algorithm for b-matchings: An alterna-
tive approach,” Information Processing Letters 24 (1987) 153-157.

D. Applegate, R. Bixby, V. Chvétal, and W. Cook, “Finding cuts in
the TSP,” DIMACS Technical Report 95-05, 1995.

D. Applegate and W. Cook, “Solving large-scale matching problems,”
in: Algorithms for Network Flows and Matching (D.S. Johnson and
C.C. McGeoch, eds.), American Mathematical Society, 1993, pp. 557—
576.

J. Ardoz, W.H. Cunningham, J. Edmonds, and J. Green-Krétki, “Re-
ductions to 1-matching polyhedra,” Networks 13 (1983) 455-483.

M.O. Ball and U. Derigs, “An analysis of alternative strategies for
implementing matching algorithms,” Networks 13 (1983) 517-549.

F. Barahona and W.H. Cunningham, “On dual integrality in match-
ing problems,” Operations Research Letters 8 (1989) 245-249

R.E. Bellman, “On a routing problem,” Quarterly of Applied Mathe-
matics 16 (1958) 87-90.

C. Berge, “Two theorems in graph theory,” Proceedings of the Na-
tional Academy of Sciences (U.S.A.) 43 (1957) 842-844.

C. Berge, “Sur le couplage maximum d’un graphe,” Comptes Rendus
de I’Académie des Sciences Paris, series 1, Mathématique 247 (1958),
258-259.

D. Bertsimas, C. Teo, and R. Vohra, “Nonlinear relaxations and im-
proved randomized approximation algorithms for multicut problems,”
in: Proceedings of the 4th IPCO Conferences (E. Balas and J. Clausen,
eds.), Lecture Notes in Computer Science 920, Springer, 1995, pp. 29—
39.

G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Revista Fac-
uwltad de Ciencias Ezxactas, Puras y Aplicadas Universidad Nacional
de Tucuman, Serie A (Matematicas y Fisica Teorica) 5 (1946) 147—
151.

337

338

[1961]

[1983)]

[1997)

[1989)]

[1976]

[1973]
[1973a]

[1983]
[1985)

[1989)]

[1997)

[1976]
[1979]
[1978]
[1954]
[1991]

[1959]

BIBLIOGRAPHY

R.G. Busacker and P.J. Gowen, “A procedure for determining a family
of minimal cost network flow patterns,” Technical Paper 15, Opera-
tions Research Office, 1961.

R.W. Chen, Y. Kajitani, and S.P. Chan, “A graph theoretic via mini-
mization algorithm for two-layer printed circuit boards,” IEEE Trans-
actions on Circuits and Systems 30 (1983) 284-299.

C.S. Chekuri, A.V. Goldberg, D.R. Karger, M.S. Levine, and C. Stein,
“Experimental study of minimum cut algorithms,” in: Proceedings of
the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 1997,
pp- 324-333.

J. Cheriyan and S.N. Maheshwari, “Analysis of preflow push algo-
rithms for maximum network flow,” SIAM Journal on Computing 18
(1989) 1057-1086.

N. Christofides, “Worst-case analysis of a new heuristic for the trav-
elling salesman problem,” Report 388, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh, PA, 1976.

V. Chvatal, “Edmonds polytopes and a hierarchy of combinatorial
problems,” Discrete Mathematics 4 (1973) 305-337.

V. Chvétal, “Edmonds polytopes and weakly hamiltonian graphs,”
Mathematical Programming 5 (1973) 29-40.

V. Chvétal, Linear Programming, Freeman, New York, 1983.

V. Chvatal, “Cutting planes in combinatorics,” European Journal of
Combinatorics 6 (1985) 217-226.

V. Chvétal, W. Cook and M. Hartmann, “On cutting-plane proofs
in combinatorial optimization,” Linear Algebra and its Applications
114/115 (1989) 455-499.

W. Cook and A. Rohe, “Computing minimum-weight perfect match-
ings,” Report Number 97863, Research Institute for Discrete Mathe-
matics, Universitit Bonn, 1997.

W.H. Cunningham,“A network simplex method,” Mathematical Pro-
gramming 11 (1976) 105-116.

W.H. Cunningham, “Theoretical properties of the network simplex
method,” Mathematics of Operations Research 4 (1979) 196-208.

W.H. Cunningham and A.B. Marsh III, “A primal algorithm for op-
timum matching,” Mathematical Programming Study 8 (1978) 50-72.

G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Operations Research 2 (1954) 393-410.

U. Derigs and A. Metz, “Solving (large scale) matching problems
combinatorially,” Mathematical Programming 50 (1991) 113-122.

E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik 1 (1959) 269-271.

BIBLIOGRAPHY 339

[1970]

[1987)
[1965)

[1965a]

[1970]

[1971]

[1965)

[1977]

[1970]

[1973]

[1969)]

[1972]

[1956]
[1956]

[1957]

E.A. Dinits, “Algorithm for solution of a problem of maximum flow
in a network with power estimation,” Soviet Mathematics Doklady 11
(1970) 1277-1280.

H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-
Verlag, Berlin, 1987.

J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of Math-
ematics 17 (1965) 449-467.

J. Edmonds, “Maximum matching and a polyhedron with 0, 1-
vertices,” Journal of Research of the National Bureau of Standards
(B) 69 (1965) 125-130.

J. Edmonds, “Matroids, submodular functions, and certain polyhe-
dra,” in: Combinatorial Structures and Their Applications (R.K. Guy,
H. Hanani, N. Sauer, and J. Schénheim, eds.), Gordon and Breach,
New York, 1970, pp. 69-87.

J. Edmonds, “Matroids and the greedy algorithm,” Mathematical
Programming 1 (1971) 127-136.

J. Edmonds and D.R.Fulkerson, “Transversal and matroid partition,”
Journal of Research of the National Bureau of Standards B 69 (1965)
147-153.

J. Edmonds and R. Giles, “A min-max relation for submodular func-
tions on graphs,” in: Studies in Integer Programming (P.L. Hammer,
et al. eds.), Annals of Discrete Mathematics 1 (1977) 185-204.

J. Edmonds and E.L. Johnson, “Matching: A well-solved class of
integer linear programs,” in: Combinatorial Structures and their Ap-
plications (R.K. Guy, H. Hanani, N. Sauer, and J. Schonheim, eds.),
Gordon and Breach, New York, 1970, pp. 89-92.

J. Edmonds and E.L. Johnson, “Matching, Euler tours, and the Chi-
nese postman,” Mathematical Programming 5 (1973) 88-124.

J. Edmonds, E.L. Johnson, and S.C. Lockhart, “Blossom I, a code for
matching,” unpublished report, IBM T.J. Watson Research Center,
Yorktown Heights, New York.

J. Edmonds and R.M. Karp, “Theoretical improvements in algorith-
mic efficiency for network flow problems,” Journal of the Association
for Computing Machinery 19 (1972) 248-264.

L.R. Ford, Jr., “Network flow theory,” Paper P-923, RAND Corpo-
ration, Santa Monica, California, 1956.

L.R. Ford, Jr. and D.R. Fulkerson, “Maximal flow through a net-
work,” Canadian Journal of Mathematics 8 (1956) 399-404.

L.R. Ford, Jr. and D.R. Fulkerson, “A primal-dual algorithm for the
capacitated Hitchcock problem,” Nawval Research Logistics Quarterly
4 (1957) 47-54.

340

[1958]

[1962]
[1981]

[1986]

[1990]

[1957]
[1986]

[1979]

[1995]

[1986]
[1979]

[1995)

[1985)

[1988]

[1989]

[1960]

BIBLIOGRAPHY

L.R. Ford, Jr. and D.R. Fulkerson, “Suggested computation for max-
imal multi-commodity network flows,” Management Science 5 (1958)
97-101.

L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton
University Press, Princeton, New Jersey, 1962.

A. Frank, “A weighted matroid intersection algorithm,” Journal of
Algorithms 2 (1981) 328-336.

S. Fujishige, “A capacity-rounding algorithm for the minimum-cost
circulation problem: A dual framework for the Tardos algorithm,”
Mathematical Programming 35 (1986) 298-308.

H. Gabow, “Data structures for weighted matching and nearest com-
mon ancestors,” in: Proceedings of the 1st Annual ACM-SIAM Sym-
posium on Discrete Algorithms, ACM, New York, 1990, pp. 434—443.

D. Gale, “A theorem on flows in networks,” Pacific Journal of Math-
ematics 7 (1957) 1073-1082.

G. Gallo and S. Pallottino, “Shortest path methods: A unifying ap-
proach,” Mathematical Programming Study 26 (1986) 38-64.

M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-completeness, Freeman, San Francisco,
1979.

A M.H.Gerards, “Matching,” in: Network Models (M.O. Ball, T.L.
Magnanti, C.L. Monma, and G.L. Nemhauser, eds.), North Holland,
Amsterdam, 1995.

A.M.H. Gerards and A. Schrijver, “Matrices with the Edmonds-
Johnson property,” Combinatorica 6 (1986) 403-417.

F.R. Giles and W.R. Pulleyblank, “Total dual integrality and integer
polyhedra,” Linear Algebra and its Applications 25 (1979) 191-196.

M.X. Goemans and D.P. Williamson, “A general approximation tech-
nique for constrained forest problems,” SIAM Journal on Computing
24 (1995) 296-317.

A.V. Goldberg, “A new max-flow algorithm,” Technical Report MIT /-
LCS/TM 291, Laboratory for Computer Science, M.I.T. (1985).

A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum
flow problem,” Journal of the Association for Computing Machinery
35 (1988) 921-940.

A.V. Goldberg and R.E. Tarjan, “Finding minimum-cost circulations
by canceling negative cycles,” Journal of the Association for Comput-
ing Machinery 33 (1989) 873-886.

R.E. Gomory, “Solving linear programming problems in integers,” in:
Combinatorial Analysis (R. Bellman and M. Hall, eds.), Proceedings of
Symposia in Applied Mathematics X, American Mathematical Society,
Providence, 1960, pp. 211-215.

BIBLIOGRAPHY 341

[1961]

[1988)

[1988]

[1979]

[1985]

[1986]

[1990]
[1975]

[1992]

[1970]

[1971]

[1974]

[1960)]

[1974]

[1956]

[1987]

R.E. Gomory and T.C. Hu, “Multi-terminal network flows,” SIAM
Journal on Applied Mathematics 9 (1961) 551-556.

M. Grotschel and O. Holland, “Solution of large-scale symmetric trav-
elling salesman problems,” Mathematical Programming 51 (1991) 141—
202.

M. Grotschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, Springer-Verlag, Berlin, 1988.

M. Groétschel and M.W. Padberg, “On the symmetric travelling sales-
man problem II: Lifting theorems and facets,” Mathematical Program-
ming 16 (1979) 282-302.

M. Grotschel and M.W. Padberg, “Polyhedral theory,” in: The Trav-
eling Salesman Problem (E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy
Kan, and D. Shmoys, eds.), Wiley, Chichester, 1985, pp. 251-306.

M. Grotschel and W.R. Pulleyblank, “Clique tree inequalities and the
symmetric travelling salesman problem,” Mathematics of Operations
Research 11 (1986) 537-569.

D. Gusfield, “Very simple methods for all pairs network flow analysis,”
SIAM Journal on Computing 19 (1990) 143-155.

F.O. Hadlock, “Finding a maximum cut in a planar graph in polyno-
mial time,” SIAM Journal on Computing 4 (1975) 221-225.

X. Hao and J.B. Orlin, “A faster algorithm for finding the minimum
cut in a graph,” Proceedings of the 3rd SIAM-ACM Symposium on
Discrete Algorithms, 1992, pp. 165—174.

M. Held and R.M. Karp, “The traveling-salesman problem and min-
imum spanning trees,” Operations Research 18 (1970) 1138-1162.

M. Held and R.M. Karp, “The traveling-salesman problem and min-
imum spanning trees: Part I1,” Mathematical Programming 1 (1971)
6-25.

M. Held, P. Wolfe, and H.P. Crowder, “Validation of subgradient
optimization,” Mathematical Programming 6 (1974) 62—-88.

A.J. Hoffman, “Some recent applications of the theory of linear in-
equalities to extremal combinatorial analysis,” Proceedings of Sym-
posia on Applied Mathematics 10 (1960) 113-127.

A.J. Hoffman, “A generalization of max flow-min cut,” Mathematical
Programming 6 (1974) 352-359.

A.J. Hoffman and J.B. Kruskal, “Integral boundary points of convex
polyhedra,” in: Linear Inequalities and Related Systems (H.W. Kuhn
and A.W. Tucker, eds.), Princeton University Press, Princeton, 1956,
pp- 223-246.

O. Holland, Schnittebenenverfahren fir Travelling-Salesman- und ver-
wandte Probleme, Ph.D. Thesis, Universitdt Bonn, Germany, 1987.

342

[1973]

[1930]
[1997)

[1997]

[1993)]

[1995]

[1994]

[1942]

[1993]

[1993]

[1972]

[1931]
[1990]

[1956]

BIBLIOGRAPHY

J.E. Hopcroft and R.M. Karp, “An n®/2? algorithm for maximum
matching in bipartite graphs,” STAM Journal on Computing 2 (1973)
225-231.

V. Jarniik, “O jistém problému minimélniim,” Prdce Moravské
Priirodovédecké Spolecnosti 6 (1930) 57-63.

D.S. Johnson, J.L. Bentley, L.A. McGeoch, and E.E. Rothberg, in
preparation.

D.S. Johnson and L.A. McGeoch, “The traveling salesman problem:
A case study in local optimization,” in: Local Search in Combinatorial
Optimization (E.H.L. Aarts and J.K. Lenstra, eds.), Wiley, New York,
1997, pp. 215-310.

M. Jiinger and W. Pulleyblank, “Geometric duality and combinato-
rial optimization,” in: Jahrbuck Uberblicke Mathematik (S.D. Chat-
terji, B. Fuchssteiner, U. Kluish, and R. Liedl, eds.), Vieweg, Brun-
schweig/Wiesbaden, 1993, pp. 1-24.

M. Jinger, G. Reinelt, and G. Rinaldi, “The traveling salesman
problem,” in: Handbook on Operations Research and Management
Sciences: Networks (M. Ball, T. Magnanti, C.L. Monma, and G.
Nemhauser, eds.), North-Holland, 1995, pp. 225-330.

M. Jiinger, G. Reinelt, and S. Thienel, “Provably good solutions for
the traveling salesman problem,” Zeitschrift fiir Operations Research
40 (1994) 183-217.

L.V. Kantorovich, “On the translocation of masses”, CR de
I’Academie des Sciences de 'URSS, 1942.

D.R. Karger, “Global min-cuts in RN C and other ramifications of a
simple mincut algorithm,” in: Proceedings of the 4th Annual ACM-
SIAM Symposium on Discrete Algorithms, ACM-STAM, 1993, pp. 84—
93.

D.R. Karger and C. Stein, “An O(n?) algorithm for minimum cuts,”
in: Proceedings of the 25th ACM Symposium on the Theory of Com-
puting, ACM Press, 1993. pp. 757-765.

R.M. Karp, “Reducibility among combinatorial problems,” in: Com-
plexity of Computer Computations (R.E. Miller and J.W. Thatcher,
eds.), Plenum Press, New York, 1972, pp. 85-103.

D. Konig, “Graphok és matrixok,” Matematikai €s Fizikai Lapok 38
(1931) 116-119.

B. Korte, L. Lovész, H.J. Promel, and A. Schrijver, eds., Paths, Flows,
and VLSI-Layout, Springer, Berlin, 1990.

A. Kotzig, “Suvislost” a Pravidelind Suvislost” Konecnych Grafor,”
Bratislava: Vysokd Skola Ekonomickd (1956).

BIBLIOGRAPHY 343

[1956]

[1955]
[1975]
[1985]
[1973]

[1979]

[1986]
[1993]
[1979]
[1996]

[1992]

[1980]

[1995]

[1957]

[1990]

[1992]

J.B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathemat-
ical Society 7 (1956) 48-50.

H.W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly 2 (1955) 83-97.

E.L. Lawler, “Matroid intersection algorithms,” Mathematical Pro-
gramming 9 (1975) 31-56.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D. Shmoys, The
Traveling Salesman Problem, Wiley, Chichester, 1985.

S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the
traveling salesman problem,” Operations Research 21 (1973) 498-516.

L. Lovasz, “Graph theory and integer programming,” in: Discrete
Optimization I (P.L. Hammer, E.L. Johnson, and B.H. Korte, eds),
Annals of Discrete Mathematics 4 (1979) 146-158.

L. Lovasz and M. Plummer, Matching Theory, North Holland, Ams-
terdam, 1986.

K.-T. Mak and A.J. Morton, “A modified Lin-Kernighan traveling-
salesman heuristic,” Operations Research Letters 13 (1993) 127-132.

A.B. Marsh III, Matching Algorithms, Ph.D. Thesis, Johns Hopkins
University, Baltimore.

O. Martin and S.W. Otto, “Combining simulated annealing with local
search heuristics,” Annals of Operations Research 63 (1996) 57-75.

O. Martin, S:W. Otto, and E.W. Felten, “Large-step Markov chains
for the TSP incorporating local search heuristics,” Operations Re-
search Letters 11 (1992) 219-224.

S. Micali and V.V. Vazirani, “An O(y/|V||E|) algorithm for finding
maximum matching in general graphs,” Proceedings of the 21st An-
nual Symposium on Foundations of Computer Science, IEEE, 1980,
pp. 17-27.

D.L. Miller and J.F. Pekney, “A staged primal-dual algorithm for per-
fect b-matching with edge capacities,” ORSA Journal on Computing
7 (1995) 298-320.

J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” STAM Journal on Applied Mathematics 5 (1957) 32-38.

D. Naddef, “Handles and teeth in the symmetric traveling salesman
polytope,” in: Polyhedral Combinatorics (W. Cook and P.D. Sey-
mour, eds.), American Mathematical Society, 1990, pp. 61-74.

H. Nagamochi and T. Ibaraki, “Computing edge connectivity in multi-
graphs and capacitated graphs,” SIAM Journal on Discrete Mathe-
matics 5 (1992) 54-66.

344

[1966]

[1988]
[1985]
[1988]
[1992]
[1982]
[1990]

[1991]

[1977]

[1976]
[1984]
[1900]
[1967]
[1957]

[1973]

[1974]

[1942]

BIBLIOGRAPHY

C.St.J.A. Nash-Williams, “An application of matroids to graph the-
ory,” in: Theory of Graphs (P. Rosenstiehl, ed.) Dunod, Paris, 1966,
pp- 263-265.

G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Opti-
mization, Wiley, New York, 1988.

J.B. Orlin, “On the simplex algorithm for networks and generalized
networks,” Mathematical Programming Study 24 (1985) 166-178.

J.B. Orlin, “A faster strongly polynomial minimum cost flow algo-
rithm,” Proceedings of the 20th ACM Symposium on Theory of Com-
puting, ACM Press, 1988, pp. 377-387.

J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.

M.W. Padberg and M.R. Rao, “Odd minimum cut-sets and b-
matchings,” Mathematics of Operations Research 7 (1982) 67-80.

M. Padberg and G. Rinaldi, “An efficient algorithm for the minimum
capacity cut problem,” Mathematical Programming 47 (1990) 19-36.

M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the res-
olution of large-scale symmetric traveling salesman problems,” STAM
Review 33 (1991) 60-100.

C. Papadimitriou and K. Steiglitz, “On the complexity of local search
for the traveling salesman problem,” SIAM Journal on Computing 6
(1977) 76-83.

J.-C. Picard, “Maximal closure of a graph and applications to com-
binatorial problems,” Management Science 22 (1976) 1268-1272.

R.Y. Pinter, “Optimal layer assignment for interconnect,” Journal
VLSI Comput. Syst. 1 (1984) 123-137.

H. Poincaré, “Second complément & l’analysis situs,” Proceedings of
the London Mathematical Society 32 (1900) 277-308.

B.T. Polyak, “A general method of solving extremum problems” (in
Russian), Doklady Akademmi Nauk SSSR 174 (1) (1967) 33-36.

R.C. Prim, “Shortest connection networks and some generalizations,”
Bell System Technical Journal 36 (1957) 1389-1401.

W.R. Pulleyblank, Faces of Matching Polyhedra, Ph.D. Thesis, De-
partment of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, 1973.

W.R. Pulleyblank and J. Edmonds, “Facets of 1-matching polyhe-
dra,” in: Hypergraph Seminar (C. Berge and D. Ray-Chaudhuri, eds.),
Springer, Berlin, 1974, pp. 214-242.

R. Rado, “A theorem on independence relations,” Quarterly Journal
of Mathematics Ozford 13 (1942) 83-89.

BIBLIOGRAPHY 345

[1957]
[1991]
[1994]
[1970]

[1977]

[1980]

[1983)]

[1983a]

[1984]

[1986]
[1980]
[1981]

[1977]

[1994]
[1987]

[1985]

R. Rado, “A note on independence functions,” Proceedings of the
London Mathematical Society 7 (1957) 300-320.

G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA
Journal on Computing 3 (1991) 376-384.

G. Reinelt, The Traveling Salesman: Computational Solutions for
TSP Applications, Springer-Verlag, Berlin, 1994.

J. Rhys, “A selection problem of shared fixed costs and network
flows,” Management Science 17 (1970) 200-207.

D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis II, “An analysis of
several heuristics for the traveling salesman problem,” SIAM Journal
on Computing 6 (1977) 563-581.

A. Schrijver, “On cutting planes,” in: Combinatorics 79, Part II (M.
Deza and I.G. Rosenberg, eds.), Annals of Discrete Mathematics 9
(1980) 291-296.

A. Schrijver, “Short proofs on the matching polytope,” Journal of
Combinatorial Theory (Series B) 34 (1983) 104-108.

A. Schrijver, “Min-max results in combinatorial optimization,” in:
Mathematical Programming, the State of the Art: Bonn 1982 (A.
Bachem, M. Grétschel, and B. Korte, eds.), Springer-Verlag, Berlin,
1983, pp. 439-500.

A. Schrijver, “Total dual integrality from directed graphs, crossing
families, and sub- and supermodular functions,” in: Progress in Com-
binatorial Optimization (W.R. Pulleyblank, ed.), Academic Press,
Toronto, 1984, pp. 315-361.

A. Schrijver, Theory of Linear and Integer Programming, Wiley,
Chichester, 1986.

P.D. Seymour, “Decomposition of regular matroids,” Journal of Com-
binatorial Theory (Series B) 28 (1980) 305-359.

P.D. Seymour, “On odd cuts and plane multicommodity flows,” Pro-
ceedings of the London Mathematical Society (1981) 178-192.

T.H.C. Smith and G.L. Thompson, “A LIFO implicit enumeration
search algorithm for the symmetric traveling salesman problem using
Held and Karp’s 1-tree relaxation,” in: Studies in Integer Program-
ming (P.L. Hammer , et al. eds.), Annals of Discrete Mathematics 1
(1977) 479-493.

M. Stoer and F. Wagner, “A simple min cut algorithm,” to appear.

R. Tamassia, “On embedding a graph in the grid with the minimum
number of bends,” STAM Journal on Computing 16 (1987) 421-444.

E. Tardos, “A strongly polynomial minimum cost circulation algo-
rithm,” Combinatorica 5 (1985) 247-255.

346

[1983]
[1994]
[1947]
[1954]
[1965]
[1968]

[1976]
[1996]

[1973)]

BIBLIOGRAPHY

R.E. Tarjan, Data Structures and Network Algorithms, SIAM,
Philadelphia, 1983.

L. Tungel, “On the complexity of preflow-push algorithms for the
maximum flow problem,” Algorithmica 11 (1994) 353-359.

W.T. Tutte, “The factorization of linear graphs,” Journal of the Lon-
don Mathematical Society 22 (1947) 107-111.

W.T. Tutte, “A short proof of the factor theorem for finite graphs,”
Canadian Journal of Mathematics 6 (1954) 347-352.

W.T. Tutte, “Lectures on matroids,” Journal of Research of the Na-
tional Bureaw of Standards (B) 69 (1965) 1-47.

A F. Veinott and G.B. Dantzig, “Integral extreme points,” SIAM Re-
view 10 (1968) 371-372.
D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.

D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Sad-
dle River, 1996

N. Zadeh, “A bad network problem for the simplex method and other
minimum cost flow algorithms,” Mathematical Programming 5 (1973)
255-266.

