Exercises: Bipartite Matching and Beyond

For all of the following graphs tell whether they are bipartite and provide a certificate for your answer.

In the following two graphs, find a minimum weight perfect matching and a proof of optimality.

\begin{figure}% h=here; t=top; b=bottom;\begin{center}
\leavevmode
\psfig {figure=bipmatch.eps, height=4 true cm}\par\end{center}\end{figure}

Do the following graphs admit a perfect matching? (motivate) Can I color their edges in three colors? (motivate)

\begin{figure}% h=here; t=top; b=bottom;\begin{center}
\leavevmode
\psfig {figure=colore.eps, height=3.5 true cm}\par\end{center}\end{figure}

In the following two graphs, find a minimum weight perfect matching and convince me of the optimality of the solutions you propose.

\begin{figure}% h=here; t=top; b=bottom;\begin{center}
\leavevmode
\psfig{figure=match1.eps, height=4.2 true cm}\par\end{center}\end{figure}



2002-01-15 © Dipartimento di Matematica - Università di Trento