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Prof. Romeo Rizzi

Anno accademico 2003–2004



1 Partition into Triangles

PARTITION INTO TRIANGLES (PT) is the following problem:

Instance: A graph G = (V,E), with |V | = 3q for some integer q.

Question: Can the vertices ofG be partitioned into q disjoint sets V1, V2, . . . , Vq,
each containing exactly 3 vertices, such that each of these Vi is the node set
of a triangle in G?

In this document we will prove the following result:

Theorem 1.1 PARTITION INTO TRIANGLES is NP-Complete even when
the input graph is 3-partite.

It is easy to see that PARTITION INTO TRIANGLES (PT) is in NP,
since a nondeterministic algorithm needs only to guess q disjoint triples of
vertices in G and check in polynomial time that each of them induces a
triangle in G.

To show that any problem in NP reduces to PT we need only to show how
to reduce a known NP-complete problem to PT. We have chosen to build a
reduction from 3DM.

3DM is the following problem:

Instance: Three sets X, Y and W , each containing q elements, and a set
M ⊆ X × Y ×W of triples (xi, yi, wi).

Question: There exists a perfect matching for M , that is, a subset M1 of
M such that each element of X, Y and W is contained in exactly one triple
in M1?

3DM has been shown to be NP-complete in [Karp72].

I have tried to reduce 3DM to PT in polynomial time, with the technique
of local replacement. To do this, I searched a gadget to represent every triple
in M. This gadget is a piece of graph with certain properties, such that the
composition of these pieces is a graph that is a yes-instance of PT if and
only if M contains a perfect matching. The gadget I have found is given in
Figure 1.
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Figure 1: Gadget for 3DM ∝ PT.

Construction: LetX = {x1, x2, ..., xq}, Y = {y1, y2, ..., yq}, W = {w1, w2, ..., wq}
and M ⊆ X×Y×Z be the generic input instance of 3DM. Construct an initial
set of vertices V , called the ”public vertices”, as the union of X, Y and W .
For every triple m = (xa, yb, wc) in M , construct the graph Gm = (Vm, Em),
depicted in Figure 1. Here Vm contains the three public vertices xa, yb and
wc plus three ”private vertices” v1

m, v2
m and v3

m. The ten edges in Em are
v1
mv

2
m, v1

mv
3
m, v2

mv
3
m, xav

3
m, xav

2
m, ybv

3
m, ybv

1
m, wcv

1
m, wcv

2
m and xayb. The

whole graph GM is obtained from the union of all the gadgets Gm as follows:
GM = (VM , EM) = (

⋃
m
Vm,

⋃
m
Em).

(We call the vertices xa, yb and wc public because they are the only nodes
in Vm which are shared with other gadgets and which can be incident with
further edges beyond those in Em. The remaining three vertices are called
private, because they cannot be connected to other gadgets by an edge in
EM .)

Observation 1.2 Notice that, as a property of the construction, no edge in
EM has both end nodes in X ∪W or in Y ∪W .

Observation 1.3 The graph GM is 3-partite.

Proof: Notice first that every gadget Gm is 3-partite: just consider the 3-
partitioning {xa, v1

m}, {yb, v2
m}, {wc, v3

m}. Similarly, the whole graph GM is
3-partite, just consider the three sets X ∪ {v1

m : m ∈M}, Y ∪ {v2
m : m ∈M}

and W ∪ {v3
m : m ∈M}.
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Figure 2: Complete state.
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Figure 3: Shared state.

Properties of the gadget: Every single gadget Gm, taken in isolation, can
be partitioned into the two triangles with the vertices xaybv

3
m and wcv

1
mv

2
m as

in Figure 2. I call this the complete state. A second possibility to cover the
nodes of Gm by a packing of triangles in GM is given by taking the triangle
v3
mv

1
mv

2
m to cover the private nodes plus other triangles of GM to cover the

public nodes. This is called the shared state (Figure 3).

Claim 1.4 Let m be any triple in M and let Gm be the corresponding gadget
in GM . The only possible triangle of GM , that covers precisely one private
vertex of Gm, is the triangle xaybv

3
m.

Proof: A triangle with only one private vertex v requires two public vertices
that are adjacent and connected to v. By Observation 1.2, xayb is the only
edge in GM between public vertices of the gadget Gm. The claim follows.

Lemma 1.5 Given any partition of the graph GM into triangles, each gadget
Gm must be either in the complete state or in the shared state.

Proof: Consider a partition P of GM into triangles and a generic gadget
Gm. Assume Gm is not in the shared state. This implies that the three
private vertices are not in the same triangle in P. The only triangle of Gm

that takes precisely one private vertex is the triangle xaybv
3
m (Claim 1.4).

However, if xaybv
3
m is in P, the gadget has to be in the complete state, since

the remaining private vertices have no other possibility than to be covered
by triangle wcv

1
mv

2
m.

Lemma 1.6 The Graph GM is a yes-instance of PT if and only if the 3DM-
instance M has a matching.
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Proof: Assume that M has a perfect matching M1 ⊆ M . Every time a
triple of M is in M1, set the corresponding gadget to the complete state.
Otherwise set it in the shared state (the remaining vertices will be taken by
other gadgets whose triple is in M1). Notice that all private vertices are taken
precisely once. Furthermore, the public vertices are also taken precisely once
since, by definition of 3DM, all the triples in M1 are disjoint and cover all
elements in X, Y and W .

Conversely, assume that the graph GM is partitionable into triangles. Let
P be such a partition. As a consequence of Observation 1.2, no new triangles
are introduced connecting gadgets to a graph GM . Therefore every triangle
in P belongs to a gadget Gm of GM that is either in the complete or in the
shared state (Lemma 1.5). Notice that all public vertices of GM have to
be covered by triangles in P that belong to gadgets in the complete state,
because the shared state does not cover any public vertex. Call M1 the set of
all triples corresponding to the gadgets in the complete state. So M1 covers
all elements in X, Y and W (as a property of the construction these elements
correspond to the public vertices of the gadgets).

Since the triangles in P are vertex-disjoint, no gadget in the complete
state shares a vertex with other gadgets in the complete state. Therefore the
triples of M1 are also disjoint and so M1 is a perfect matching for M .

Lemma 1.7 The reduction needs only polynomial time in dependence to the
size of the input instance of 3DM.

Proof: For every triple in input we need to create one gadget. So the
reduction requires only linear time and logarithmic space.
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