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The first step of the solution is computing distance[a][b], the minimum distance from 

city a to city b, for all pairs of cities. If there is no possible path between a pair of cities, 

we will use +inf as the distance. It follows that, if distance[1][2] = +inf or distance[2][1] = 

+inf, then no solution exists. This part can easily be implemented using the Floyd-

Warshall algorithm. 

 

Let us denote by dp[a][b] the minimum number of cities that need to be monitored so 

that a path 1 → a → b → 1 is possible, where cities a and b do not necessarily have to be 

distinct. Then it is possible to move from "state" dp[a][b] to dp[x][y] with the following 

cost: 

 

dp[x][y] = dp[a][b] + distance[b][x] + distance[x][y] + distance[y][a] – 1 

 

 

 

 

 

 

 

 

 

 

 

 

If we search the state space over all (a, b) pairs using Dijkstra's algorithm, we will obtain 

the optimal solution in dp[2][2]. 

 



COCI 2011/2012 Task MJESEC 

Round 7 - COI  

 

The first thing we need to do is finding the orientation of the robot. It can be done by 

issuing the command “move L”, where L is the total length of the track, calculated easily 

from input data. The command will cause the robot to complete one full circle along the 

track, counting each turn exactly once. Since the track is a polygon that doesn't intersect 

itself, it is easy to show that the number of left turns will be greater than the number of 

right turns if and only if the robot is moving counterclockwise. 

 

The next step is moving the robot to some vertex (turn). It can be solved using binary 

search. Observe that, if the robot is currently at some position P with distance exactly X 

to the closest vertex, then X is the smallest number such that “move Y” returns (0, 0) for 

all Y < X and a value different from (0, 0) for all Y ≥ X. It follows that we can find X by 

binary search, by following each “move Y” command (whose result we search over) by a 

“move L-Y” command in order to return to position P before the next iteration. After 

finding X, we simply execute “move X”, which is guaranteed to place the robot in some 

polygon vertex - we just don't know which one. 

 

The last step is finding the exact vertex where we have moved the robot. In the 

beginning, all vertices are possible candidates for the robot's position. Now we need to 

find, for some two candidates A and B, a number Y such that the command “move Y” 

returns a different value depending on whether the robot is in A or in B. Then, after 

executing “move Y”, we can eliminate at least one of the vertices as a possible 

candidate (perhaps even both). Then we can return to our starting vertex using the 

command “move L-Y” and repeat the process until only one candidate vertex is left, 

giving us the exact position of the robot. Now we simply need to find a good value of Y 

for given vertices A and B: it can be done by simulation, walking along the track and 

constructing the sequence [segment_length, turn_orientation, segment_length, …] for 

one complete circuit around the track,  with each of the two vertices as a starting 

position. The sequences for A and B must differ because the problem statement 

guarantees that a unique solution exists. The first difference between the two 

sequences gives us the needed value of Y.  

 

Since the first step uses 1 command, the second at most 2*log(max segment length) 

commands, and the third 2*N commands, we are guaranteed to use less than 5000 

commands in total. 

  



COCI 2011/2012 Task SETNJA 

Round 7 - COI  

 
Each of Mirko's friends is described by numbers X, Y, P. Notice that possible meeting 

points with a given friend form a square centered at (X, Y) – more precisely, a square 

with opposing vertices at (X – P, Y – P) and (X + P, Y + P). 

 

Now the task has been reduced to finding the shortest possible path that touches all 

squares in order from first to last. 

 

For each K from 1 to N, we consider all possible shortest paths that visit squares 1, 2, …, 

K, in that order. Let S(K) be the set of all endpoints of those paths, i.e. the set of all 

positions where we could have ended up after visiting the first K friends in an optimal 

manner. Let d(K) be the length of these shortest paths. 

 

Notice that S(1) is precisely the square corresponding to the first friend, since we could 

have started (and ended) a path with length 0 by visiting the first friend in any point of 

that square. 

 

The solution should proceed to find S(2), S(3), …, S(N). As we will show, all the sets will 

be rectangles. Now we have to determine how to find S(K+1) if we are given S(K). 

 

Let D be the minimum distance (number of steps) from any point of S(K) to the square 

belonging to the (K+1)
st

 friend (whom we need to visit next). Notice that d(K+1) = d(K) + 

D. 

 

If we expand the rectangle S(K) by D units in all four directions, we will obtain all points 

reachable after optimally visiting the first K friends and then moving D steps in any 

direction. The intersection of the expanded rectangle and the square corresponding to 

the (K+1)
st

 friend is therefore the set of points where we can meet friend (K+1) after 

making d(K) + D steps (from the definition of D, the intersection is guaranteed to be 

nonempty) – therefore, this intersection is exactly S(K+1), furthermore it is a rectangle 

(as an intersection of a square and a rectangle, both aligned with the same axes). 

 

The final solution is simply the sum of all D values obtained while finding S(2), S(3), …, 

S(N) – this is precisely d(N). 

  



COCI 2011/2012 Task TRAMPOLIN 

Round 7 - COI  

 

Depending on Kickass's starting position, we can distinguish two 
cases: 
 
Case #1 (appearing in 20% of test data): it is impossible to reach any 

trampoline. 
At first glance, we might think that it is enough to simply 

compare the number of skyscrapers visitable by moving as far as 
possible to the left versus to the right. However, there are two 

additional possibilities: moving left visiting all skyscrapers with 
the same height as the starting one and then moving all the way 

to the right, as well as the mirror case of this. It is easy to check 
both possibilities and choose the better one. 

 

Case #2 (appearing in 20% of test data): at least one trampoline is 
reachable. 
Let us assume that A, B, C, ..., M are indices of all skyscrapers 
which contain a trampoline or have at least one trampoline 

reachable from them. We will call such skyscrapers beautiful. 
Notice that the starting skyscraper (K) is among them according 
to the assumption. Let T(A), T(B), T(C), ..., T(M) be the 
corresponding reachable skyscrapers with trampolines (not 

necessarily distinct). 
Consider the following path: 
K -> ... -> T(K) -> A -> … -> T(A) -> B -> … -> T(B) -> C -> … 

-> T(C) -> … … … -> M -> … -> T(M) 

This path is guaranteed to visit all beautiful skyscrapers. After 
that, we need to visit the longest possible sequence of non-
beautiful skyscrapers (ones with no reachable trampoline); we 

can reach any such sequence using T(M). The total solution is 
then the sum of the number of beautiful skyscrapers and the 

length of the longest non-beautiful skyscraper sequence. 
We can implement this solution in several steps: 
1) We first mark all skyscrapers containing a trampoline as 

beautiful. 

2) Traversing the skyscrapers from left to right, we mark 
skyscraper i as beautiful if skyscraper (i – 1) is beautiful and 
we can jump from i to (i – 1). 

3) Traversing the skyscrapers from right to left, we mark 

skyscraper i as beautiful if skyscraper (i + 1) is beautiful and 
we can jump from i to (i + 1). 



4) For all skyscrapers that haven't been marked beautiful in one 

of the previous steps, we have to find the number of 
skyscrapers we can visit from that skyscraper going to the 

left. It can be computed dynamically, in a way similar to step 
2). Analogously, the number of skyscrapers visitable to the 

right can be computed similarly to step 3). 
5) The final length of the longest non-beautiful sequence is 

simply the largest of the numbers obtained in step 4). 
 

The complexity of the algorithm is O(N) in both cases. 


