

CROATIAN OPEN COMPETITION IN

INFORMATICS 2011/2012

Round 7

Croatian Olympiad in Informatics

SOLUTIONS

COCI 2011/2012 Task KAMPANJA

Round 7 - COI

The first step of the solution is computing distance[a][b], the minimum distance from

city a to city b, for all pairs of cities. If there is no possible path between a pair of cities,

we will use +inf as the distance. It follows that, if distance[1][2] = +inf or distance[2][1] =

+inf, then no solution exists. This part can easily be implemented using the Floyd-

Warshall algorithm.

Let us denote by dp[a][b] the minimum number of cities that need to be monitored so

that a path 1 → a → b → 1 is possible, where cities a and b do not necessarily have to be

distinct. Then it is possible to move from "state" dp[a][b] to dp[x][y] with the following

cost:

dp[x][y] = dp[a][b] + distance[b][x] + distance[x][y] + distance[y][a] – 1

If we search the state space over all (a, b) pairs using Dijkstra's algorithm, we will obtain

the optimal solution in dp[2][2].

COCI 2011/2012 Task MJESEC

Round 7 - COI

The first thing we need to do is finding the orientation of the robot. It can be done by

issuing the command “move L”, where L is the total length of the track, calculated easily

from input data. The command will cause the robot to complete one full circle along the

track, counting each turn exactly once. Since the track is a polygon that doesn't intersect

itself, it is easy to show that the number of left turns will be greater than the number of

right turns if and only if the robot is moving counterclockwise.

The next step is moving the robot to some vertex (turn). It can be solved using binary

search. Observe that, if the robot is currently at some position P with distance exactly X

to the closest vertex, then X is the smallest number such that “move Y” returns (0, 0) for

all Y < X and a value different from (0, 0) for all Y ≥ X. It follows that we can find X by

binary search, by following each “move Y” command (whose result we search over) by a

“move L-Y” command in order to return to position P before the next iteration. After

finding X, we simply execute “move X”, which is guaranteed to place the robot in some

polygon vertex - we just don't know which one.

The last step is finding the exact vertex where we have moved the robot. In the

beginning, all vertices are possible candidates for the robot's position. Now we need to

find, for some two candidates A and B, a number Y such that the command “move Y”

returns a different value depending on whether the robot is in A or in B. Then, after

executing “move Y”, we can eliminate at least one of the vertices as a possible

candidate (perhaps even both). Then we can return to our starting vertex using the

command “move L-Y” and repeat the process until only one candidate vertex is left,

giving us the exact position of the robot. Now we simply need to find a good value of Y

for given vertices A and B: it can be done by simulation, walking along the track and

constructing the sequence [segment_length, turn_orientation, segment_length, …] for

one complete circuit around the track, with each of the two vertices as a starting

position. The sequences for A and B must differ because the problem statement

guarantees that a unique solution exists. The first difference between the two

sequences gives us the needed value of Y.

Since the first step uses 1 command, the second at most 2*log(max segment length)

commands, and the third 2*N commands, we are guaranteed to use less than 5000

commands in total.

COCI 2011/2012 Task SETNJA

Round 7 - COI

Each of Mirko's friends is described by numbers X, Y, P. Notice that possible meeting

points with a given friend form a square centered at (X, Y) – more precisely, a square

with opposing vertices at (X – P, Y – P) and (X + P, Y + P).

Now the task has been reduced to finding the shortest possible path that touches all

squares in order from first to last.

For each K from 1 to N, we consider all possible shortest paths that visit squares 1, 2, …,

K, in that order. Let S(K) be the set of all endpoints of those paths, i.e. the set of all

positions where we could have ended up after visiting the first K friends in an optimal

manner. Let d(K) be the length of these shortest paths.

Notice that S(1) is precisely the square corresponding to the first friend, since we could

have started (and ended) a path with length 0 by visiting the first friend in any point of

that square.

The solution should proceed to find S(2), S(3), …, S(N). As we will show, all the sets will

be rectangles. Now we have to determine how to find S(K+1) if we are given S(K).

Let D be the minimum distance (number of steps) from any point of S(K) to the square

belonging to the (K+1)
st

 friend (whom we need to visit next). Notice that d(K+1) = d(K) +

D.

If we expand the rectangle S(K) by D units in all four directions, we will obtain all points

reachable after optimally visiting the first K friends and then moving D steps in any

direction. The intersection of the expanded rectangle and the square corresponding to

the (K+1)
st

 friend is therefore the set of points where we can meet friend (K+1) after

making d(K) + D steps (from the definition of D, the intersection is guaranteed to be

nonempty) – therefore, this intersection is exactly S(K+1), furthermore it is a rectangle

(as an intersection of a square and a rectangle, both aligned with the same axes).

The final solution is simply the sum of all D values obtained while finding S(2), S(3), …,

S(N) – this is precisely d(N).

COCI 2011/2012 Task TRAMPOLIN

Round 7 - COI

Depending on Kickass's starting position, we can distinguish two
cases:

Case #1 (appearing in 20% of test data): it is impossible to reach any

trampoline.
At first glance, we might think that it is enough to simply

compare the number of skyscrapers visitable by moving as far as
possible to the left versus to the right. However, there are two

additional possibilities: moving left visiting all skyscrapers with
the same height as the starting one and then moving all the way

to the right, as well as the mirror case of this. It is easy to check
both possibilities and choose the better one.

Case #2 (appearing in 20% of test data): at least one trampoline is
reachable.
Let us assume that A, B, C, ..., M are indices of all skyscrapers
which contain a trampoline or have at least one trampoline

reachable from them. We will call such skyscrapers beautiful.
Notice that the starting skyscraper (K) is among them according
to the assumption. Let T(A), T(B), T(C), ..., T(M) be the
corresponding reachable skyscrapers with trampolines (not

necessarily distinct).
Consider the following path:
K -> ... -> T(K) -> A -> … -> T(A) -> B -> … -> T(B) -> C -> …

-> T(C) -> … … … -> M -> … -> T(M)

This path is guaranteed to visit all beautiful skyscrapers. After
that, we need to visit the longest possible sequence of non-
beautiful skyscrapers (ones with no reachable trampoline); we

can reach any such sequence using T(M). The total solution is
then the sum of the number of beautiful skyscrapers and the

length of the longest non-beautiful skyscraper sequence.
We can implement this solution in several steps:
1) We first mark all skyscrapers containing a trampoline as

beautiful.

2) Traversing the skyscrapers from left to right, we mark
skyscraper i as beautiful if skyscraper (i – 1) is beautiful and
we can jump from i to (i – 1).

3) Traversing the skyscrapers from right to left, we mark

skyscraper i as beautiful if skyscraper (i + 1) is beautiful and
we can jump from i to (i + 1).

4) For all skyscrapers that haven't been marked beautiful in one

of the previous steps, we have to find the number of
skyscrapers we can visit from that skyscraper going to the

left. It can be computed dynamically, in a way similar to step
2). Analogously, the number of skyscrapers visitable to the

right can be computed similarly to step 3).
5) The final length of the longest non-beautiful sequence is

simply the largest of the numbers obtained in step 4).

The complexity of the algorithm is O(N) in both cases.

