Printed by romeo

Oct 10, 12 12:42 long_walk.cpp Page 1/3

Oct 10, 12 12:42 long_walk.cpp

Page 2/3

/* FILE: long_walk.cpp last change: 8-Sept-2012 Romeo Rizzi
* a solver for problem long_walk in 28-09-2012 exam in Algorithms
*/

/* BASIC FACTS: a digraph is a directed graph. A node with no exiting arcs is ca
lled a sink. In a digraph, no directed circuit can pass through a sink. Converse

ly, if a directed graph has no sink then it must necessarily contain a directed

circuit since once can be found as follows: place a pebble into a node and then
move it from nodo to node following the arcs (from the tail node to the head nod

e) until it gets back to an already visited node.

ALGORITHM: until the digraph has some sinks, we keep removing them (no directed
circuit can pass through a sink) meanwhile labelling each of them with the leng

th of a longest walk starting from it (whence entirely made of removed nodes). |
ndeed, the subdigraph induced by the removed nodes is a DAG (=directed acyclic g
raph), whence these longest paths can be computed by dynamic programming.
IMPLEMENTATION: to get a linear time algorithm, when a node becomes a sink it i
s put in the stack "LIFOsink" where it stays until it gets removed from the digr

aph. (A node becomes a sink when its out_degree drops to 0).

The original digraph is stored in star representation implemented by means of 2
vectors for the out—neighborhoods plus 2 vectors for the in—-neighborhoods. The b
oolean array "removed" is used to spot out removed nodes

*/

#def i ne NDEBUG
#i ncl ude <cassert>
#i f ndef NDEBUG
i ncl ude <iostream>
#endi f

#i ncl ude <fstream>

/I NDEBUG definita nella versione che consegno

/I uso di cin e cout non consentito in versione finale

usi ng nanespace std;

const int MAX_N = 100000; int n; // numero nodi.
const int MAX_M =1000000; int m; // numero archi.
const int TAIL=0, HEAD=1,;

int out_deg[MAX_N +1], in_deg[MAX_N +1];
aladn

int arc]MAX_M +1][2]; /I a temporary buffer to receive the input. L’arco j—esimo
e’ (arcs[j][TAIL], arcs[j][HEAD])

int first_out_nei[MAX_N +2], out_nei[MAX_M];
eighborhoods of each node

int first_in_nei[MAX_N +2], in_nei[MAX_M];
int LIFOsink[MAX_N], LIFOpos = 0;

h have become sinks

bool removed[MAX_N +1];

int max_from[MAX_N +1], nextfMAX_N +1], max_so_far, max_start,

dynamic programming to find the max Tenght path; their value is defined on top o

f the already removed nodes. When v is a removed node then:

/I max_from[v] is the maximum length of a path starting at v;

/I next[v] stores the second node of a maximum length path starting at v.

/I Meanwhile, max_so_far is the running maximum of the max_from([v] values over t
he nodes v removed so far and max_start stores the removed node achieving this m
aximum.

/l'i nodi (e gli archi) sono numerati d

/I 2 vectors to represent the out-n

/I the very same for the in—neighs
/' just an handy bag where to store nodes whic

/I implement the

/* void displayVect(int v[], int from, int to) {
for(int i = from; i <= to; i++)
cout << V[i] << "™
cout << endl;
p

int main() {
ifstream fin("
fin>>n>>m;
for(int i=0;i<=n; i++)
next[i] = max_from[i] = out_deg[i] = in_deg[i] =
for(int j=1;j<=m,;j++){
fin >> arc[j][TAIL] >> arc[|][HE D];
}out _deg[arc[j][TAIL]]++; in_deg[arc[j][HEAD]]++;

input.txt"); assert(fin);

fin.close();

first_out_nei[1] = first_in_nei[1] = 0
for(int i=1;i<=n;i++){
first_out_nei[i+1] = first_out_nei[i] + out_deq[i];
first_in_nei[i+1] = first_in_nei[i] + in_deg][i];

int cur_out_nei[MAX_N +1], cur_in_nei[MAX_N +1];
to the compilation of out_nei and in_nei

for(int i=1;i<=n;i++){

cur_out_nei[i] = first_out_nei[i];

cur_in_nei[i] = first_in_neili];

/I temporary arrays auxiliary

for(int j=1;j<=m;j++){
out_nei[cur_out_nei[arc[j][TAIL]]++] = arc[j][HEAD];
in_nei[cur_in_nei[arc[j[HEAD]]++] = arc[j][TAIL];
} I/ displayVect(out_deg, 1, n); displayVect(first_out_nei, 1, n+1); display
Vect(out_neighbour, 0, m-1);

for(int i=1;i<=n;i++) {
removed[i] = false ;
i f(out_deg[il==0) LIFOsmk[LIFOpos++] =1i;

int n_removed = 0;

whi | e(LIFOpos) { /I hearth of the algorithm
int v = LIFOsIink[——LIFOpos];
removed[v] = true ; n_removed++;

for(int i=first_out_nei[V]; i<first_out_nei[v+1]; i++)
i T (max_from[out_neili]] >= max_from[v]) {
max_from[v] = max_from[out_nei[i]] +
next[v] = out_nei[i];
I f (max_from[v] > max_so_far) {
max_so_far = max_from[v]; max_start = v

// begin: dyn prog

} /I end: dynamic programming

for(int i=first_in nei[v]' i<first_in_nei[v+1]; i++) {
out deg[in nel[l]]
(out_deg[in ne|[|]] =0)
LIFOsmk[LIFOpos++] = in_nei[i];
} /I end: updating the graph (node v has been removed)

}

ofstream fout(" output.txt"); assert(fout);
i f (n_removed ==n) { /I it was a DAG: we are ready to output a longest path
fout << max_so_far << endl; /I max length of a path in the removed nodes
int v =max_start; /I max_start = the first node of a maximum length path

/I begin: update graph

while(v){ 1 we print the nodes one by one
fout<<v<<"
V = next[v]; i next[] was properly set up during the dyn programming
el se{ /I we are left with some nodes but no sink —> there must be a cycle

fout << -1 << endl; /I there must be a cycle, we now search forit ...
bool visited[MAX_N +1]; /I with the algo described in "BASIC FACTS"
for(int i=1;i<=n;i++) visited[i] = false ; // nonode visited yet

int v=1; whil e(removed[v]) v++; I/ place the pebble in any unremoved v
whi | e(Wisited[v]) {
visited[v] = true ; //cout<<endl <<endl<<v<<""

for(int i=first_out_nei[v]; i<first_out_nei[v+1]; i++)
i f ('removed[out_nei[i]]) {
next[v] = out_nei[i];
[lcout << next[" << v << "]=" << next[v] <<, i =" <<
/I << " first_out_nei[v+1] =" << first_out_nei[v+1];

v = next[v];

Wednesday October 10, 2012

long_walk.cpp

1/2

Page 3/3

Oct 10, 12 12:42 long_walk.cpp
int u=v; /Iwe got back to an already visited node v, now go round again...

do{ //and print the nodes one by one
fout<<u<<" " llcout<<u<<"";
u = next[u];
} while(ul=v);

fout.close();
returnO;

Wednesday October 10, 2012

long_walk.cpp

Printed by romeo

22

