
Ranking and Unranking Permutations in LinearTimeWendy Myrvold � Frank RuskeyyApril 13, 2000AbstractA ranking function for the permutations on n symbols assigns a uniqueinteger in the range [0; n!�1] to each of the n! permutations. The correspondingunranking function is the inverse: given an integer between 0 and n!�1, thevalue of the function is the permutation having this rank. We present simpleranking and unranking algorithms for permutations that can be computed usingO(n) arithmetic operations.Keywords: permutation, ranking, unranking, algorithms for combinatorial problems.1 Historical BackgroundA permutation of order n is an arrangement of n symbols. For convenience whenapplying modular arithmetic, this paper considers permutations of f0; 1; 2; :::; n�1g.The set of all permutations over f0; 1; 2; :::; n�1g is denoted by Sn.There are many applications that call for an array indexed by the permutations inSn [2]. One example is the development of programs that search for Hamilton cyclesin particular types of Cayley graphs [10, 11]. To do such indexing, what is desiredis a bijective ranking function r that takes as input a permutation � and producesr(�), a number in the range 0; 1; : : : ; n!�1. The inverse of r is also often useful, andis called the unranking function.�Department of Computer Science, University of Victoria, Victoria, B.C. V8W 3P6, CANADA,wendym@csr.uvic.ca. Research supported in part by grant OGP0041927yDepartment of Computer Science, University of Victoria, Victoria, B.C., Canada V8W 3P6,fruskey@csr.uvic.ca. Research supported in part by NSERC grant OGP0003379.1

The traditional approach to this problem is to �rst de�ne an ordering of per-mutations and then �nd ranking and unranking functions relative to that ordering.For example, in lexicographic order, the rank of a permutation is simply the num-ber of permutations that precede it in lexicographic order. Naive implementations ofranking and unranking functions for lexicographic order require O(n2) time [7, 9].Given a permutation � = �0�1:::�n�1, its inversion vector v = v0v1:::vn�1, has viequal to the number of entries �j such that �j > �i and j < i. Hall (see [12, p. 203])�rst observed that the inversion vector uniquely determines a permutation.More sophisticated algorithms for ranking and unranking permutations in lexico-graphic order calculate the inversion vector as an intermediate step. The �rst step inranking is to determine the inversion vector of a permutation. Unfortunately, naiveimplementations require O(n2) time and even the O(n logn) implementations usingmodular arithmetic [5, Ex. 6, p. 18] or mergesort [5, Ex. 21, p. 168] are too slow.The last step in unranking is to determine the permutation from its inversion vector.Again, the naive approach takes O(n2) time. A balanced binary search tree can beused to improve this to O(n logn). Using the fancy data structure of Dietz [3] therunning time can be reduced to O((n logn)=(n log logn)), but we know of no imple-mentations of this algorithm. Conversion between the inversion vector and the rankis straightforward and can be done in O(n) arithmetic operations. So the bottleneckis the translation between a permutation and its inversion vector.The whole problem of ranking permutations in lexicographic order seems inex-tricably intertwined with the problem of computing the number of inversions in apermutation, and it seems that a major breakthrough will be required to do thatcomputation in linear time, if indeed it it possible at all. Our new algorithm achieveslinear time by not insisting that the permutations are lexicographically ordered.Other ranking algorithms for permutations have been published, for example in theSteinhaus-Johnson-Trotter order, but these o�er no running-time advantages over thelexicographic algorithm. See Reingold, Nievergelt, and Deo [9] or Kreher and Stinson[6] for a description of these algorithms.Our approach to this problem di�ers from previous approaches in two importantaspects. First, instead of selecting an ordering of the permutations and then �ndingthe corresponding ranking and unranking algorithms, the ordering is de�ned by theunranking algorithm and it is not particularly easy to describe. The second di�erenceis that the unranking algorithm is developed �rst and then the ranking algorithm isderived from it. Traditionally, ranking algorithms have been developed �rst, then theunranking algorithms. Furthermore, in all other cases that we know of, the unrankingalgorithm is more complicated than the ranking algorithm | but that is not the casehere! 2

2 Ranking and UnrankingIn this section we present two slightly di�erent approaches for ranking and unrankingpermutations. The �rst (rank1 and unrank1) has simpler code. The second approach(rank2 and unrank2) is included as it is easier to understand the ordering of thepermutations according to their ranks.Our inspiration is the standard algorithm [8, 4, 1] for generating a random permu-tation. The array �[0::n�1] is initialized to the identity permutation (or some otherpermutation) and then the following loop is executed:for k := n�1; n�2; :::; 1; 0 do swap(�[k]; �[rand(k)]);where the call rand(k) produces a random integer in the range 0::k�1.This algorithm produces a permutation selected uniformly at random from amongstall permutations in Sn. Let rn�1; : : : ; r1; r0 be the sequence of random elements pro-duced by the algorithm, where 0 � ri � i. Since there are exactly n(n�1)(n�2) � � �2 �1 = n! such sequences, each di�erent sequence must produce a di�erent permutation.Thus we should be able to unrank if we can take an integer r in the range 0::n!�1and turn it into a unique sequence of values rn�1; : : : ; r1; r0, where 0 � ri � i. Thedetails are given below.To unrank a permutation we �rst initialize � to be the identity permutation:�[i] := i for i = 0; 1; :::; n�1.procedure unrank1 (n, r, �)if n > 0 thenswap(�[n�1], �[r mod n]);unrank1(n�1, br=nc, �);�;end fof unrank1g;It should be fairly obvious why this function works. We can use the argumentalluded to above or argue directly as follows. We need only show that every permuta-tion in Sn is a possible outcome for some r 2 f0; 1; : : : ; n!�1g. Clearly, every possiblevalue of �[0::n�1] can appear in position n�1 after the interchange. After �[n�1] isset it is never again modi�ed. Further,fbr=nc : r 2 f0; 1; : : : ; n!�1gg = f0; 1; : : : ; (n�1)!� 1g;so, inductively, we may assume that every possible permutation of �[0::n�2] canoccur. 3

0: 1 2 3 0 6: 3 0 1 2 12: 2 1 3 0 18: 0 3 1 21: 3 2 0 1 7: 2 0 1 3 13: 2 3 0 1 19: 0 2 1 32: 1 3 0 2 8: 1 3 2 0 14: 3 1 0 2 20: 3 1 2 03: 1 2 0 3 9: 3 0 2 1 15: 2 1 0 3 21: 0 3 2 14: 2 3 1 0 10: 1 0 3 2 16: 3 2 1 0 22: 0 1 3 25: 2 0 3 1 11: 1 0 2 3 17: 0 2 3 1 23: 0 1 2 3Figure 1: Ranks of permutations for rank1, n = 4To rank, �rst compute ��1. This can be done in O(n) operations by iterating��1[�[i]] := i for i = 0; 1; :::; n�1. In the algorithm below, both � and ��1 aremodi�ed.function rank1 (n, �, ��1) : integer;if n = 1 then RETURN(0) �;s := �[n�1];swap(�[n�1], �[��1[n�1]]);swap(��1[s], ��1[n�1]);RETURN(s+ n� rank1(n�1, �, ��1));end fof rank1g;These algorithms obviously use O(n) operations. The corresponding ranks for thepermutations for n=4 are as illustrated in Figure 1.An alternative formulation makes it easier to describe the order in which thepermutations are ranked. Consider instead the following ranking and unranking al-gorithms.Before calling unrank2, initialize � to be the identity permutation; �[i] := i fori = 0; 1; :::; n�1.procedure unrank2 (n, r, �)if n > 0 thens := br=(n�1)!c;swap(�[n�1], �[s]);unrank2(n�1, r � s � (n�1)!, �);�;end fof unrank2g;Compute ��1 before calling rank2. 4

0: 1 2 3 0 6: 3 2 0 1 12: 1 3 0 2 18: 1 2 0 31: 2 1 3 0 7: 2 3 0 1 13: 3 1 0 2 19: 2 1 0 32: 2 3 1 0 8: 2 0 3 1 14: 3 0 1 2 20: 2 0 1 33: 3 2 1 0 9: 0 2 3 1 15: 0 3 1 2 21: 0 2 1 34: 1 3 2 0 10: 3 0 2 1 16: 1 0 3 2 22: 1 0 2 35: 3 1 2 0 11: 0 3 2 1 17: 0 1 3 2 23: 0 1 2 3Figure 2: Ranks of permutations for rank2, n = 4function rank2 (n, �, ��1) : integer;if n = 1 then RETURN(0) �;s := �[n�1];swap(�[n�1], �[��1[n�1]]);swap(��1[s], ��1[n�1]);RETURN(s � (n�1)! + rank2(n�1, �, ��1));end fof rank2g;The order of generation for n=4 is given in Figure 2. The ordering is such that thepermutations ending in 0 appear �rst followed by those ending in 1, then 2, then 3.If you look at the second to last digit of the permutations which end with the symboli, these are in order except for the fact that i was swapped with n�1 and hence theordering is 0; 1; :::; i�1; n�1; i + 1; :::; n�2. In general, if you consider position i forall the permutations that have the same symbols in positions i+1::n�1, the symbolsare ordered but the ordering depends on the swaps that have occurred so far.3 Possible ExtensionsIf the algorithm for generating random permutations is terminated at the k-th stepthen positions n�k::n�1 hold a random k-permutation of 0; 1; :::; n�1. Hence, ourranking and ranking algorithms are easily modi�ed to do k-permutations of an n-set.References[1] G. de Balbine, \Note on random permutations," Mathematics of Computation, 21(1967) 710-712.
5

[2] F. Critani, M. Dall'Aglio, G. Di Biase, \Ranking and unranking permutations withapplications", Innovation in mathematics (Rovaniemi, 1997), 99{106, Comput. Mech.,Southampton, 1997.[3] P.F. Dietz, \Optimal algorithms for list indexing and subset rank", Workshop onAlgorithms and Data Structures (WADS), Lecture Notes in Computer Science, 382(1989) 39-46.[4] R. Durstenfeld, \Algorithm 235: Random permutation," CACM (1964) 420.[5] D.E. Knuth, The Art of Computer Programming Volume 3: Sorting and Searching,Addison Wesley, Reading, MA, 2nd ed., 2000 (�rst published in 1938).[6] D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation, Enumeration,and Search, CRC Press, 1999.[7] J. Liebehenschel, \Ranking and unranking of lexicographically ordered words: Anaverage-case analysis," J. of Automata, Languages, and Combinatorics, 2 (1997) 227-268.[8] L.E. Moses and R.V. Oakland, \Tables of Random Permutations", Stanford UniversityPress, Stanford, CA, 1963.[9] E.M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory andPractice, Prentice Hall, Englewood Cli�s, N.J., 1977.[10] F. Ruskey, M. Jiang, and A. Weston, \The Hamiltonicity of directed �-� Cayley graphs(or: A tale of backtracking)". Discrete Appl. Math. 57 (1995), no. 1, 75{83.[11] F. Ruskey and C. Savage, \Hamilton cycles that extend transposition matchings inCayley graphs of Sn". SIAM J. Discrete Math. 6 (1993), no. 1, 152{166.[12] Tompkins, C. B, \Machine attacks on problems whose variables are permutations,"in Numerical Analysis (Proceedings of Symposia in Applied Mathematics, Vol. 6),American Mathematical Society, Providence, R.I., 1956.[13] S. G. Williamson, Combinatorics for Computer Science, Computer Science Press, 1985.
6

